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A FIXED POINT FORMULA
FOR VARIETIES OVER FINITE FIELDS

WILLIAM FULTON*

In this note we prove a localization theorem for coherent sheaves on
algebraic schemes over a finite field F,. This is an analogue for the Frobenius of
localization theorems of Nielsen [6] and Quart [8], which are valid for
automorphisms of finite order prime to the characteristic. There results a
simple proof of the congruence formula for the number of F -valued points in
a proper F -scheme, a result which has been proved by Deligne [3] and by
Katz [5] by other methods.

Let X be an algebraic F -scheme, .# a coherent sheaf on X, and ¢: A4 — A
a g-linear endomorphism, ie. ¢ is additive and ¢(am)=a@(m) for
ae'(U,0x), me(U,.#), U open in X.If x is an F,-valued point of X, ie.
the residue field x(x) is F,, then the fibre .#(x)=#®,p,x(x) is a finite
dimensional vector space over F,, and ¢ induces an F -linear endomorphism
@(x) of #(x). If X is proper over F,, then the cohomology groups H(X, .H#)
are finite dimensional over F,, and ¢ induces F -linear endomorphisms H'(¢)
of H'(X, .#).

FIXep PoINT FORMULA. If X is proper over F,, then
;XI trace (p(x)) = Y. (—1)'trace (H'(p))
xe iz0

where |X| denotes the set of F-valued points of X.

When # =0y, ¢ the gth power map, let F;= H'(¢) be the Frobenius action
on H(X, Ox). If we let N, (X)= #1X| be the number of F-valued points of X,
the formula specializes to a result of [3] and [5]:

N,(X) = Y (—1) trace (F)) modp

where q is a power of the prime p. In this case Deligne and Katz prove a
stronger congruence formula for the zeta function of X.
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If X is the subscheme of projective n-space defined by homogeneous
polynomials F,...,F, in F [X,,...,X,], with dim X =n—r and Y deg F;<n,
then H'(X,0x4)=0 for i>0 and H°(X,0x)=F, [7]. and we have the
Chevalley-Warning formula [10]:

N,(X) =1 modp.

If V is a complete scheme over an algebraically closed field k, f: ¥V — V an
endomorphism, & a coherent sheaf on V, and f*# — & is a homomorphism
of Oy-sheaves, a fixed point formula should give a formula for the alternating
sum of the traces of the induced maps on H!(V, %) in terms of contributions
localized at the fixed components (See [2], [8], [9] for some recent results
under various conditions on ¥V, f and #.) If we take k to be the algebraic
closure of F,, V=X ®qu, f: V— V the (geometric) Frobenius, # =.# ®F¢k,
then a g-linear endomorphism of .# induces a homomorphism f*# — #,
and our result becomes a fixed point formula of this type. There is not yet one
theorem or approach which yields these various fixed point formulae for
coherent sheaves.

Note that for endomorphisms other than the Frobenius, the contribution at
an isolated fixed point which is singular is usually quite different from the
contribution at a non-singular point (cf. [2]).

We define a modified Grethendieck group K.X of coherent sheaves with g-
linear endomorphisms on X, and construct a natural transformation ¢.: K.X
— K.|X| which we prove is an isomorphism. We have followed the treatment
of [8] rather closely, and this note may be regarded as an elementary variation
on, or perhaps introduction to, Quart’s work.

We also include a reinterpretation of the result as a theorem of Riemann—
Roch type. The homomorphisms t.: K.X — K.|X| is a natural transformation
of functors, covariant for proper morphisms. If we construct K'X using locally
free sheaves, restriction from X to |X| gives a natural transformation ¢: K'X
— K'|X| of contravariant functors. Motivated by [1], where a covariant map
was constructed dual to the Chern character, we found our results by looking
for a covariant ¢. to accompany t".

1. The localization theorem.

Let X be an F,-scheme, by which we mean a (separated) scheme of finite
type over F,. Consider the category whose objects are (.#, @), where ./ is a
coherent sheaf on X and ¢: # — .# is a g-linear endomorphism. A morphism
from (A, ) to (A, ¢) is a homomorphism a: # — A of coherent sheaves
such that ya=a¢p. We define K.X to be the free abelian group on the
isomorphism classes [.#, ¢] of such (.#, ¢), modulo relations:

(i) [A.0] = [A,9)+[ A", 0"]
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if there is an exact sequence 0 — #' — .# — 4" — 0 compatible with the
endomorphisms.

(ii) (A, 0, +0,] = [A,0,]+[ A4, 0,]

if ¢, and @, are g-linear endomorphisms of .#.

By abuse of notation we write [.#, ¢], or even [.#] if ¢ is understood, for
the element of K.X determined by (A, @).

If X =Spec (F,) is a point, .# is just a finite-dimensional F -space, and ¢ is a
linear map; it is easy to see that taking [.#, ¢] to the trace of ¢ gives an
isomorphism of K.X with F, (cf. Lemma 1).

When f: X — Yis a proper morphism, and .# is a coherent sheaf on X with
g-linear endomorphism ¢, the higher direct image sheaves R'f,.# have induced
g-linear endomorphisms Rf, ¢, and the formula

SLAM0) = T (=R, ARY 0]
determines a homomorphism f,: K.X — K.Y, so that K. becomes a covariant
functor for proper morphisms.

We regard the set |X| of F,-valued points as a (reduced) F,-scheme, and let
1y or t denote the closed imbedding of |X|in X. If f: X — Y is a morphism,
[f]: 1X] — |Y| denotes the induced morphism. Since |X] is a disjoint union of
N, points, K.|X| is a vector space over F, of dimension N,; an element of K.|X]|
has a unique expression Y A,{x), where 4, € F,, and the sum is over x € |X|.

LocaLizaTioN THEOREM. For any F,-scheme X, the inclusion 1: IX] — X
induces an isomorphism 1,: K.|X| = K.X. The inverse isomorphism t.: K.X

— K.|X| is defined by the formula

LM, g] = ¥ trace (p(x)(x)
xelX|

where @(x) is the induced map on the fibre of M at x.

Part of the assertion is that the mapping (.#, ¢) > trace (¢(x)) vanishes on
exact sequences as in (i), in spite of the fact that the functor taking .# to its
fibre M ®g,x(x) is not exact.

If f: X — Yis a proper morphism, then f,1, =1,|f], since for=10|f]. Since
t.=1,", it follows that t. is also covariant for proper morphisms. When we take
Y to be a point, this assertion is precisely the Fixed Point Theorem stated in
the introduction.

LemMma 1. (a) If ¢: M — M is a nilpotent g-linear endomorphism on X, then
[#,0]=0 in K.X.
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(b) If A is a direct sum of coherent sheaves M ,,. .., #M,on X, ¢p: M — M a
g-linear endomorphism, @;; the induced map from M; to M, then [M,¢]
=>1-1[#; 0] in KX.

ProoF. If ¢ =0, then [ A, ¢]=[#,¢]+[H,¢] by (ii), so [#,p]=0. If ¢*
=0, k>1, let #' =Ker (¢*" '), #"=.#/#’, with the induced endomorphisms
¢ and ¢". Then (¢')*"'=0 and ¢” =0, so (a) follows by induction and the
relation (i) defining K.

To prove (b), let m; be the projection of .# on .# , and g; the inclusion of .#;
in A. Then [A,0]=3; ;[.#,0¢;n;] by (ii). Each term with i=j is zero by
(a), and [ A, 0,p;m]=[#;, 9;] by ().

Lemma 2. If j: Y— X is a closed imbedding of F;-schemes, then the formula
J¥( A, 0] = [j* 4, j*¢]
defines a homomorphism j*: K.X — K.Y, and j*oj, is the identity on K.Y.

For Y=|X|, j=1x, this implies that the formula in the statement of the
localization theorem defines a well-defined mapping t.: K.X — K.|X|; the
mapping ix+ is one-to one since t.oiy+ is the identity on K.|X|.

If Y is defined by the ideal sheaf # <Oy, then j*.# = .#/F M, and @*j is the
induced mapping; note that ¢(f.#)c 9.4 by g-linearity.

Proor oF LEMMA 2. We must show that j* vanishes on the relations (i)
defining K.X. From an exact sequences as in (i) we obtain an exact sequence
O->M/SMNM—> MFSM—> M'|FM' — 0
with induced g-linear endomorphisms. The lemma will follow if we show that
(#/sMHNM] =[MH|/FH] in KY,

or equivalently that [F 4 N.#'/F#]=0 in K.Y. But
HMIMNM) ITHMNM < SM
for k large by the Artin—Rees lemma, so the result follows from Lemma 1(a).
Our next task is to calculate K.P for P= P" a projective space. We denote by
0(k) the usual line bundles on P", .# (k)=.# ®(0O(k), and we make use of the
correspondence between coherent sheaves .# on P and finitely generated

graded F [T,,. .., T,]-modules M; M =@M,, with M, =I'(P, # (k) ([7], [4]).
A g-linear endomorphism of ¢ of # induces a g-linear homomorphism .# (k)
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— M (gk), for all k, by m®a — @(m)®a? in local coordinates; this determines
a g-linear endomorphism of the F [T,,..., T,]-module M. Conversely, it is
easy to see that a g-linear endomorphism of M, with M, — M, for all k,
induces a g-linear endomorphism of .#. If L — M is a graded homomorphism
of a finitely generated free F [T,,...,T,]-module L onto M, a g-linear
endomorphism of M lifts to a g-linear endomorphism of L, since such a
mapping is determined by its action on a set of generators. Using the fact that
M has a finite free graded resolution, and Lemma 1(b), we see that K.P is
generated by [#, @] for #4=0(—k), k=0,1,2,..., and ¢ is determined by a
homogeneous F in F [T,,...,T,] of degree k(q—1); write ¢ =gp.

LEMMA 3. The elements [O(—k), oF] for F=Tg ... - Ti, 05a,2q—1, and
Yl.oa;=k(q—1), generate K.P" as a vector space over F,.

Proor. By relation (ii) K.P" is generated by [@O(—k), o], where F is a
monomial. It suffices to show that if F is divisible by some T%, then

LO(=k),oF] = [O(=k+1),06]

where F=T?"'G. In fact, if Q is the hyperplane defined by T,=0, we have an
exact sequence

0 — Op(—k) 1o Op(—k+1) - Op(—k+1)—> 0

compatible with the g-linear endomorphisms @, ¢, and @g respectively,
where

G =G(Ty..,T;-1,0, Tisrs. .., T);

if T, divides G, then G=0, and the result follows from Lemma 1(a) and relation
(i). This proves Lemma 3.

A simple count shows that there are just as many monomials satisfying the
conditions of Lemma 3 as there are F -valued points in P". Hence the injection
1,: K|P"| — K.P"is an isomorphism. The localization theorem (and hence the
fixed point theorem) for arbitrary projective F -schemes follows easily from
this result and Lemma 2; if j is a closed imbedding of X in P”, then j*oiprs =1+
o|j|*, and the surjectivity of j* and ip.s implies that of 1x+. In the next section we
will give a proof for arbitrary F,-schemes.

2. Locally free sheaves.

For an F -scheme X, let K'X be the abelian group defined using the same
construction as for K.X in section 1, but using only locally free sheaves in place
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of coherent sheaves. The tensor product makes K'X into a ring, and makes
K.X into a module over K'X.

If f: X — Y is a morphism, there is a ring homomorphism f*: K'Y - K'X
defined as usual by pulling back locally free sheaves (together with their g-
linear endomorphisms).

We now complete the proof of the localization theorem, by showing that
1,: K|X| - K.X is surjective for any F,-scheme X.

If P is a projective space, it follows from the fact that 1,: K.|P| — K.P is an
isomorphism with inverse 1* that [0p]=1,[0)p] in K.P. Let

02, -2, 1> ...>%;>1,0p—0

be a resolution of 1,05 by a complex of locally free sheaves, with a g-linear
endomorphism of the complex #. extending the identity endomorphism
of Op; such a resolution exists by the proof of Lemma 3. Then [0p]=
¥ (= 1)*[#,] in K.P. The argument preceding Lemma 3 shows that the canoni-
cal “Poincaré duality” map from K'P to K.P is an isomorphism. It follows
that [0p]=3 (—1)*[Z,] in K'P, and hence that [0x]=Y (- D}[f*Z,] in
K'X for any morphism f: X — P. .

We apply this in the case where fimbeds X as a locally closed subscheme in
a projective space P over F_ to show that 1,: K.|X| — K.X is surjective. If # is
a coherent sheaf on X with g-linear endomorphism, then

[#] = [0x®@4] = ¥ (-D{f*%®#] in KX,

and this last sum equals 3" (— 1)*[2#,], where 5, is the kth homology sheaf of
the complex f*Z.®.#. But . is exact off |P|, so these homology sheaves are
supported on f ~}(|P|) N X =|X|. If # is the ideal sheaf of |X| in X, the fact that
STH, =0 for r large shows that

[H] = Y 1,[#'Hy/s"* ' H,] ,
i

and this shows that 1, is surjective. (The above argument is due to Quart [8].)

For an arbitrary F -scheme X, use Chow’s lemma [4, § 5.6] to find a proper
morphism f: £ — X from a quasi-projective F -scheme X onto X, which is an
isomorphism from f ~!(U) to U for some open U in X. Let Y=X-U, j: Y
— X the inclusion. Then if # is a coherent sheaf on X with g-linear
endomorphism, the kernel.and cokernel of the canonical map # — f, f*#,
as well as the sheaves R'f, f*.#, are all supported on Y. It follows that K.X
=f,K.X +j,K.Y, and the fact that 1,: K.|X| — K.X is surjective follows from
the corresponding result on X (by the quasi-projective case) and Y (by
noetherian induction).
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3. Riemann—Roch theorems.

Let € be a category. By a homology-cohomology theory on € we mean a
covariant functor K. from % to the category of abelian groups, and a
contravariant functor K* from € to the category of rings, together with a “cap
product”

KX®K.X 2 KX

for all X in ¥ making K.X into a K'X-module, and satisfying the “projection
formula”

fe(f*bna) = bn fLa

forf: X > Y,be K'Y, ae K.X. We also allow that K. may only be covariant
for some of the morphisms in ¥, e.g. the “proper” morphisms in algebraic
geometry or topology.

If H., H' is a homology-cohomology theory on a category 2, by a Riemann—
Roch theorem we mean a functor |-|: € — 2, taking prope1 morphisms in % to
proper morphisms in 2, together with (1) a natural transformation ¢': K
— H'o|:| of contravariant functors from € to rings, and (2) a natural
transformation t.: K. — H.c|| of covariant functors from € to abelian groups.
We require the compatibility condition, or “module property”:

KX®KX " KX
{ror je
HIX|®H.|X| -~ H|X|

should commute for all X in .

This formalism is abstracted from [1], where & is the category of complex
quasi-projective varieties, K.X and K'X are the Grothendieck groups of
coherent sheaves and locally free sheaves on X, 9 is the category of topological
spaces, and H. and H' are (Borel-Moore) homology and cohomology with
rational coefficients. The functor ¥ — 2 takes a variety X to its underlying
topological space |X|, t: KX — H'|X| is the Chern character; the
corresponding map t.: K.X — H.|X]| is constructed in [1]. The Hirzebruch—-
Riemann-Roch formula results by mapping X to a point. Riemann—-Roch
theorems satisfying this formalism are also common in topology.
~ To interpret the localization theorem as a Riemann-Roch theorem, let € be
the category of F -schemes, K., K the functors defined in sections 1 and 2. Let
2 be the category of finite sets. For a finite set S, let H.S be the vector space
over F, with S as a basis, and let H'S be the ring of F,-valued functions on §.
Then H.,H" form a homology-cohomology theory on 2 in an obvious way; in
fact if we regard S as a zero-dimensional (reduced) F ;-Scheme, then HS=K.§S
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and H'S=K'S. The functor ¥ — 2 takes an F -sceme X to its set |X| of F «
valued points. If 1: |X| — X is the inclusion as before, then t: K'X — H'|X]|
= K'|X| is simply the restriction, i.e. t =:1* and t.: K’X — H.|X|=K.|X| is the
homomorphism constructed in section 1. The module property follows easily
from the definition. We note that in contrast to the Riemann—-Roch theorems
of [1] and [2], we have a simple explicit formula for the covariant map ¢., and
the theorem is proved even for non-projective varieties; it follows easily
from Lemma 2 that there are “Gysin maps” f*: K.Y —» K.X for all mor-
phisms f: X — Y, which are compatible with t., and this too is much more
than one can usually expect (cf. [1, § 4.4]).
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