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THE DIOPHANTINE EQUATION y?=Dx*+1, Il

J. H. E. COHN

Ljunggren [6] has shown that the equation of the title has at most two
solutions in positive integers, for any positive integer D, not a square. For
special values of D, elementary methods have been employed [1], [3] to specify
the solutions more closely. Mordell [8] and subsequently others [2], [4], [7]
have found conditions of a simple type under which there are no positive
solutions. We shall prove a result which includes that of Mordell as well as the
subsequent ones and show how it may be used to deal completely with all
values of D <400.

LeMMA 1. Let a=a+ bD?* denote the fundamental solution of £* —Dn?=1. We
distinguish three cases: —

Cask L. If a is even, then 2a= Q% with Q, =ur* +vs*, D=rs, r,s,u and v all odd
and Q,Q,=2 where Q,=ur* —pst.

Case IL. If a is odd and b is even, then a = Q2 where Q, and Q, are of the above
form, D=rs, r£1, and Q,Q2,=1.

Cask IIL If a and b are both odd, then o.= Q3 where again Q, and Q, are of the
above form, t>1, D=4'rs, r+1, u and v are both odd and 2,Q,=1.

Proor. Case I. If a is even, Db>=a%? —1=1 (mod 2) and so D and b are both
odd. Thus (a+1)(a—1)=Db? gives, since the two factors of the left have no
common factor,

a+1l =re?, a-1=s*,
with D=rs, b=uv and hence r,s,u,v are all odd. Thus

2 =ri-s* = Q,Q,,
and
Q3 = ru? 4+ 2uv(rs)* +sv®> = 2a+2bD* = 2u.

Case I If a is odd, b even, then (a+1,a—1)=2 and so
a+1 =2ru?, a-1 = 2sv?,
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where D=rs, b=2uv. Thus 1=ru®>—sv* and here r+1, otherwise we should
have s =D, and since v <b, this would contradict the assumption that « was the
fundamental solution. Thus Q,Q,=1 and

Q% = ru* +2uo(rs)f +s0® = a+bD?* = «.
Case IIL. If a and b are both odd, then D is even and since again (a+1,a—1)
=2 we obtain
a+1 = 2D,b}, a—1 = 2D,b3,
where b=b,b,, D=4D D, and 1=D,b?—D,b2.
Suppose first that D, 1. Thenlet D, =r, D,=s,b, =u, b, =vand t=1. Then

r+1, u and v are both odd (since b is odd) and Q?=a, Q,Q,=1.
Secondly, if D; =1, then D,=%4D and since b, and b, are odd we obtain

(by +1)(by—1) = D,b3
where the factors on the left have common factor precisely 2. Thus
b,+1 = 2Db%, b,—1 = 2D,b2,
with b,=bsb,, D,=4D;D, and 1=D;b3—D,b2. If now D;#+1, then let r=Dj,
s=D,, u=b;, v=>b, and t=2. Then r=1, u and v are both odd, Q,Q,=1 and
O = D;3b3+2b3b,(D3D,)* +D,b; = by +b,D}

whence Qf =a.
If ' D, =1 we continue in like fashion, the process terminating after a finite
number of steps.

THEOREM 1. Let D denote a positive integer, not a square. Using the notation of
Lemma 1, let p denote any odd divisor of a—1 and q any divisor of a+1 with q
=1 (mod 4). Then the equation y*=Dx*+1 has no solution in positive integers
unless

(@) in case 1, (i) (u|p)=(vlg)=1
and (ii) the equation rX*—sY*=2 has solution in positive integers;
in particular

r—s = 2 (mod16)

and r=2 (mod5) or s=3 (mod5) or r—s=2 (mod>5).
(b) in case 1I at least one of the following holds, viz,

(b)) () mlp)=(lg=1
and (ii) the equations rX*—sY*=1, Z2=2sY*+1 hold simultaneously

in positive integers; in particular

r =1 (mod16) or r—s = 1 (mod 16), 4|s



182 J. H. E. COHN

and r=1 (mod5) or s=—1 (modS) or r=3 (mod5), s
=2 (mod 5).
or (by) (i) Qulp=(lg=1
and (ii) the equation 4rX*—sY*=1 has a solution in positive integers; in
particular

4r—s =1 (mod16) or s = —1 (mod 16)

and r=—1 (mod5) or s=—1 (mod5) or r+s=—1 (mod5)
and (iii) 2%**||u for some integer k=0.
or (by) (i) (ulp)=(2vlg)=1
and (i) the equation rX*—4sY*=1 has a solution in positive integers; in
particular

r—4s =1 (mod16) or r = 1 (mod 16)

and r=1 (mod5) or s=1 (mod5) or r+s=1 (mod 5)
and (i) 2%**||v for some integer k=0,
(c) in case 111, one of the following holds, viz.,
(c) @) t=1
and (i) (u|p)=(v|g)=1
and (iii) the equation rX*—sY*=1 has a solution in odd integers X and
Y; in particular

r—s =1 (mod16)

and r=1 (mod5) or s=—1 (modS5) or r—s=1 (mod5)
or (c) (i) t=2
and (i) (u|p)=(v|q9)=1,
and (iii) the equations Z*=2rX*—1=2sY*+1 hold simultaneously for
odd integers X,Y and Z; in particular

r—s =1 (mod16) and 4|s
and r=1 (mod5) or s=—1 (modS5) or r=3, s=2 (mod )

or (c;) D=456, 960.

PrOOF. Suppose that y>=Dx*+1, x>0 and that x is minimal with this
property. Then for some integer n>0, y+x2D* =" whence

o' —a"
2D}

x? =

where o denotes a—bD?, and n is minimal with this property.
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Suppose first that n=2m is even. Then

am+ alm ‘xm _alm

2 — 2
X 2 2D*

= 2hk, say.

Clearly both h and k are rational integers and since h> —Dk?*=1, (h,k)=1. We
cannot have k=x? since this would contradict the assumption that n was
minimal with the property. Hence we must have k=2x2. We cannot now have
that m=2M is even, for it would imply

M M M 'M
@ = o’ +a ay—a
2 2D?

= HK, say,

yielding K =x2 which would again contradict the minimal property. Thus

m m

o —a

2x? = —Spi = Om  SA%, with m=1 (mod?2) .

But ¢,,,— (0 +a)0,,+, +ac'c, =0, that is,

Om+2 = 200’m+1 — Oy = Op (mOd 2)
and so 2x? =0, with m=1 (mod 2) implies 2| o, =b, and so this can occur only
in Case II. We have in this case a=9? and o =Q% and so
2 = Q3m_— Q2m _ Qr+QF QT-QF
! 4(rs)t 2rt 2st

it being readily verified that 4 and u are rational integers, since m is odd.
Moreover ri2—su?=1 and so (4,pu)=1. Thus A=X? and u=Y? yielding
rX*—sY*=1, and

rX*+sY* = HQim+ 3"} = h = 27,

whence Z2=2sY*+1. .
In this case if Y is even, then X is odd whence r=1 (mod 16) and if Y is odd
then 4|s and so again X is odd with r—s=1 (mod 16). Similarly

if S|rX then 54 Y and so s = —1 (mod5)
if 5|sY then 5f X andsor =1 (mod5)

and if 5} rsX Y then r—s=1 (mod5) and 2s+1=0 or 1 or 4 (mod 5). But 2s
+1=1 (mod 5) is impossible since 5 f s; 25+ 1=4 (mod 5) is impossible since it
would imply r=s+1=0 (mod 5) and so we obtain only r=3 (mod 5), s=2
(mod 5). This completes the proof of condition (b,) (ii). To prove (by) (i) in this
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case we observe that we have here

X2rd+ Y2t = Jrt+pust = Q

I

= (urt+osh)".
Thus

X2

umpAm - 4 (r;)u""zr*""‘3’vzs+ e +< " 1>u(vzs)*("'—1)

u(u?r)¥™-Y (mod sv?)

u (mod sv®), since ,Q,=ru*—sv*=1.

Now a—1=2sv*> and so X?=u (modp) yields (u|p)=1. Similarly Y?>= +v
(mod ru?) and so (v|q)=1 since g=1 (mod4).

This concludes the consideration of this case. In what follows n must be odd.
To reduce the amount of working we shall in each case only obtain the relevant
quartic Diophantine equation(s), supressing the remaining details which may
be verified just as above.

Case 1. Here a=4Q2, o' =102 and so

N B S
= (g T pierE pRerng — A

say ,

where it is readily verified that for n odd both A and p are rational integers.
Also rA? —spy*=2and so (4, 0)=1. Thus A= X%, u=Y?and so rX*—sY*=2, as
required.

Case II. Here a=Q2, o’ =02 and so

,_QP-0r _ o1+0y @)
2(rs)* 2rt 25t

= 2iu, say,

Here ri2—su?=1 whence (4, u)=1 and so we obtain
either 4 = X2, u = 2Y? whence rX*—4sY* =1,
or 4 =2X?%* u=7Y? whence 4rX*—syY*

[
—

Case III. Here a=Q?, o' =02 and so

ot —o'"
2=m=2122...21_x1ﬂ,
where

z = y@y¥+ 2%, 1sise-1,
T+ Q-
d = —)"

7 > # 25t
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Since n is odd, A, p,z,,z,,...,2,_, are all rational integers with
ri2—sp? =1

2Z2—4rs(Ap)? = 1

23— 4%rs(Auz,)? = 1

22 =4 Yrs(Auzyzy oz, = 1.
z, = 2rA2—1 = 2su® +1.

Thus 4, p,2,,2,,...,2,_, are coprime in pairs, and so since their product is a
perfect square, each one must be a perfect square. Let A=X2, u=Y? and
z;=2Z2%for i=1,2,...,(t—1). Now to prove that Y is odd, let

Q-9
0n = 23*

Then
Cn+a = (QF+Q90,+,— 21070,
= 2(ru* +50°)0, 42— 04 = 0, (Mod?2)
and so g, is odd for every odd n, since both ¢, =v and g, = v(4ru?— 1) are. Thus

u and therefore Y is odd, and similarly X is odd.
Finally we observe that z;,, =2z2—1, and so if t =4, then

Z% =z, = 2231 =223 -1)>—1 = 821 -8z} +1,

and it is shown in [5] that this equation has no solution unless z, =0, 1 neither
of which gives a solution in positive integers for the given equation. Indeed,
even for t=3 we get

73 =z, = 2231 =2Z}{-1,

and by a result of Ljunggren the only solutions of this are Z, =1 and Z, =13.

The former gives no value, whereas Z,=13 yields 4rs(XY)*=28560

=2%.3-5-7-17, rX* —sY* =1 satisfied only by r=85, s=84, X = Y=1 yielding

the single value D =4%rs=456,960 with solution x=3107, y=6,525,617,281.
This concludes the proof of the theorem.

Given a numerical value for D the above theorem can be used in practice in
two ways. As is well known a and b can be found by the usual continued
fraction algorithm and then the lemma will determine which of the three cases
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has occurred and find u,v,r,s and if applicable, t. In many cases the theorem
will show that the given equation has no solution for example if D=7 we find a
=8, b=3 and so we have Case I with r=1,u=3,s=7, v=1, and the theorem
shows that no solution can occur, since the condition r —s=2 (mod 16) fails to
hold. In some cases on the other hand, the theorem may lead to a solution,
where one exists, by indicating which equations need to be solved; the example
D=5 yields a=9, b=4, case II, r=5, u=1, s=1, v=2. Here (b,) and (b,) are
both impossible modulo 16, but (b) leads to 5X*—4Y*=1 with the obvious
solution X =Y=1 leading to x=2 for the given equation. Of course this last
example is very simple, but less trivial examples do occur.

However, to construct a table of values for which no solutions occur, it is
worthwhile to reduce the amount of calculation by proving the following

LEMMA 2. The equation of the title has no solutions in positive integers in any
of the following cases: —

(1) D=D3,

(2) D=D$D, and y*=D,x*+1 has no such solutions,

(3) D=p, a prime, except if p=>5 or possibly if p=3, 63, 67 or 79 (mod 80),
(4) D=4p, except if p=2 or 5 or possibly if p=1 or 17 (mod 80),

(5) D=2p, except perhaps if p=1 or 7 or 9 or 39 (mod 40),

(6) D=8p, except perhaps if p=1, 3, 31, 33, 41, 49, 51, 73 or 79 (mod 80).

Proor. (1) and (2) are clearly trivial. .

(3) If p=1 (mod4) this follows by a result of Ljunggren [7]. If p=3
(mod 8), then u? — pv? = —2 possesses solutions and so the result follows by the
corollary in [4]; if p=7 (mod 8) then u? — pv? =2 possesses solutions and the
result follows similarly. If p=2 it is well known that y?=2x*+1 possesses no
solutions.

(4) Solutions exist for D=28,20 given by x=1,6 respectively. Now suppose
(p, 10)=1. Consider first p=1 (mod 4). Then &2 — py? = —1 possesses solutions.
Let A+ Bp* be the fundamental solution. Then

(A+B-p*)? = A?+pB*+ ABD?

where D =4p gives the fundamental solution of x> — Dy?=1. Thus a= A%+ pB?,
b= AB and since a is odd and b even we have Case II with

a+1 = 2pB%, a-1 = 24% = 24(34)
and so we have r=p, s=4, u=B, v=%4A. Then (b,) gives

pX*—4Y* =1, Z? = 8Y*+1.
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The latter holds only for Y=1 and so we obtain only p=35; (b,) is impossible
modulo 16 and (b;) implies p=1 (mod 16) and p=1 or 2 (mod 5), that is, p
=1,17 (mod 80). Thus we must show that p=3 (mod 4) never yields a solution.

Suppose first that p=3 (mod8). Then the equation ¢*—py*=—2 has a
solution; let 4 + Bp* be the fundamental solution with both A and B odd. Then
3(A*+pB*)+ AB-p* is the fundamental solution of {2 —py?=1 and so since A4
and B are both odd we find since D=4p that

a+bD* = {4(A%+pB?)+ ABpt}?

and so we have Case II with r=4, s=p, u=%4(42+ pB?) and v= AB. Theorem 1
shows that no solution exists.

Similarly if p=7 (mod 8) and A4 + Bp? is the fundamental solution of £2 — py?
=2 then 4 and B are both odd and again we have Case II with r=4, s=p. In
this case, (b;) and (b,;) are clearly impossible modulo 16 and the only
possibility remaining is (b,) which would require

pY* = 16X*—1 = X2+ 1)(4X2—1) .
Since p=3 (mod4), pf4X?+1 and so we should have
4X*—1 = pY%, 4X*4+1 =Y}

and the latter is impossible for X >0.

(5) If D=2p, we can exclude p=2 by (1) and then if p is odd it is well known
that precisely one of the three equations ¢2—2py*=-—1,2 and —2 has
solutions. We consider these in turn.

If A+ B(2p)? is the fundamental solution of 2 —2pn? = —1 then A and B are
both odd, and a=Q? where Q, = B(2p)* + A. Here we have Case II with r=2p
and s=1. Then since r=2 (mod 4) Theorem 1 shows that no solution exists.

If A+ B(2p)? is the fundamental solution of {2 —2pn?= +2 then 2| 4 and B
is odd and a=0Q? where Q, = (4)2* + Bp*. Again we have Case II with now
r=2, s=p. In this case by Theorem 1 the only possibility arises in case (b,) with
p=7 or 39 (mod40). Similarly if 4+ B(2p)! is the fundamental solution of
&2 —2pn?= —2 then we obtain Case II with r=p and s=2 leading to p=1 or
9 (mod 40).

(6) The proof here is entirely similar to the previous case, and the details are
omitted.

The above results enable the following result to be proved: —
THEOREM 2. The equation y* = Dx* + 1 possesses a solution in positive integers

when D=3, 5, 8, 14, 15, 18, 20, 24, 33, 35, 39, 48, 60, 63, 65, 68, 79, 80, 83, 95, 99,
105, 120, 138, 143, 150, 156, 168, 183, 189, 195, 203, 224, 248, 254, 255, 258, 264,
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288, 315, 320, 323, 325, 328, 333, 360, 390 and 399 and for no other values of
D £400.

ProoFr. The details are omitted, but consist of a straightforward application
of the previous results save for the values 223, 227, 383 and 387 for which a
small refinement is required in each case.
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