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SMALL VALUES OF ZETA-FUNCTIONS
OF QUADRATIC FIELDS

JOHN B. FRIEDLANDER

Let y denote a real primitive Dirichlet character of modulus ¢, L(s, y) the
corresponding L-function, and K the quadratic field with Dedekind zeta-
function (g (s)={(s)L(s, ).

In view of the class number formulae of Dirichlet [3, pp. 51-52], one sees
that if the regulator of K is not too large (e.g. when K is complex) a lower
bound for L(1,x) will lead to a lower bound for the class number of K.
Classically there have been two approaches for attacking this problem by use
of information about zeros of L-functions. The first, begun by Hecke [8], gives
a lower bound for L(1, y) which depends on the absence of real zeros near s=1.
The latter, initiated by Deuring [4], gives a lower bound which depends on the
presence of certain zeros off the critical line. Although neither of these
approaches has independently yielded substantial results for the original
problem, they have been productively combined [7, 11] to yield unconditional
bounds. The resulting estimates are ineffective, due to their dependence on
Deuring’s idea, since no suitable zero off the critical line has been found.

More recently Stark [13] has used the first approach to give effective bounds
in the case of totally imaginary quadratic extensions of totally real number
fields other than the rationals.

With regard to the second approach, it has been noticed by several authors
[2,5,6,9, 14] that the presence of certain zeros on the critical line may be used
to give lower bounds for L(1,y). Moreover, values other than zero, may
sometimes be useful.

It is the purpose of this paper to discuss some aspects of this latter
phenomenon. Although the results are of a conditional nature they do seem to
offer some hope since, for instance, one may feel more comfortable about
searching for zeros on the critical line rather than off it. Most of the bounds
derived herein are not the strongest possible; this for the sake of simplifying the
exposition. Presumably, at this stage, one should be more interested in the
hypotheses themselves. It should also be mentioned that similar results may be
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derived by other means, for example, from the formula of Deuring [4], and its
descendants.

2.

Throughout, s=0¢+it will denote a complex variable and g=pf+iy will be
fixed; 6 and ¢ will be fixed positive reals. All positive constants ¢,¢,,c¢, ..., as
well as those implied, will be computable. Let X =g/logq and a(m)=3,,, x(d).
Further,

S=S8X,0= Y m?» and S*
msX?

S*(X,0)

Y, a(mm™A(X/m)re X
ms X

Let D(Ty, T,) denote the rectangular region

{s| $So=<1-1/logX, T,St<T,}.

THEOREM 1. Assume that, for some g in D(0,1), we have
IS*—X"(k(@)l > c,S .
Then,
L(L,) > c,q~*(ogay

where c, is computable in terms of c,.

Proor. S* may be expressed as a contour integral in the classical fashion

X"
S*(X.0 = 5 f (k(s+o (9X"ds
T )2

Shifting the contour to o= — gives
S* = X'7r(1-L(1, 1)+ X"{k(e)+O(R),
where
R < ¢*"*(loggF  if p<3,

and

R < g +(loggf  if p23.
S may be bounded below as follows.

<p< 1+logloglogq

(I) For 2 log
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S>> g% Y m!' > ¢ floggq.

ms Xt
1 loglogloggq < 3
(II) For 5+ ogg = B < 2
Xt
S > J t™2dt > B-H'.
1
3 1
< S 1.
(I1II) For 1= <1 log X S>>

From these estimates it follows that, uniformly for ¢ in D(0, 1), we have

RS™! < (logq)~s .
From the hypothesis, |S* — X""{x(0)| >¢,S, it follows that
L(l,y) > X'7'S|Iri—o)™".

It is easily checked that in each of the three cases, this yields the bound stated
in the theorem.

One may remark that, since a(m)=0 and a(m?) 21, it follows that, for g in
D(0, Gn—d)/log X),

Re (S*(X,0)) > §,
and, for g in D(d/log X, (3n— d)/log X), we also have
Im (S*(X,0) > S.

These lead to the following conditions, any one of which gives satisfaction to
the hypothesis of Theorem 1.

(A) If, for some ¢ in D(0, ¢n—J)/log X), (x(¢)=0, the hypothesis of
Theorem 1 is amply satisfied.

(B,) There exists ¢ >0 such that if, for some y with 0=y = ($n—d)/log X, we
have |{x(t +iy)| <cloggq, then the hypothesis is satisfied.

(B,) There exists ¢ >0 such that if, for some g in D(0, (37 — d)/log X), we have
ICk (@)l <c, then the hypothesis is satisfied.

(C) If, for some ¢ in D(d/log X, 4n—d/log X), either
Re (X"(k(@) <0, or Im(X"k(e) =0,

then the hypothesis is satisfied.
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In connection with (A) one might mention the result of Siegel [12] that, if
L(s, ) has no zeros ¢ with T, <y=T, where 0T, <T,<1, then

1
T,—-T, |
2~ h = logloglogg

In connection with (B,) one can come a little closer although still far short of
the mark by adapting Siegel’s method to prove the following result.

THEOREM 2. If 0S T, £ T, <1 and if |{k(0)|>c for all g in D(T,, T,), then

1

T,— .
2=l = logloggq

Theorem 2 is proved by application of the following lemma.

LemMA (Siegel). Let A>0,0<¢<1,0<My,< M and let f(z) be a function of z
=X + iy, analytic in the rectangle, 0S x <1, —3A<y<1A. Assume that Re (f(z))
<M in the whole rectangle and that |f(z)] <M, on the right side x=1.

It then follows that
2M 2M sinh (nAf)
1)
NG 1‘/ log (Mo 1) = Sinh (2)

Proor. See [12, p. 420].

log|——

ProoOF OF THEOREM 2. Let

1 1 2
T=3(Ti+T,), Trﬂ( )

2 \! 1 2 \"'/1 1
_<1—logq> (s—logq—T) and &= (l—logq) (rlogq)'

f(z)= —log{k(s) is regular in the required rectangle. On the right hand side,

[£(s)| < logg, |L(s,x)| < logq,

and, by hypothesis, |(x(s)] ! < 1. Thus we can take M,=c, loglog g, for some
c,. Inside the rectangle, we have for o 23, by hypothesis,

Re(f(2) = —loglix(s)| < ¢, .
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Recalling the functional equation,

(5)(7)
2
(k(s) = <;’> S k(1-9)
r(3)r(3)
where a=4{y(1)—x(—1)}, we have, for 6 <4,

F(l ——;+a>r<l ;s)
Re (f(2)) = (6—}log (—qz) —log | |
()|

2 2
The second term offers no problem except near the left side of the rectangle
where it is overwhelmed by the first term. Thus Re (f (z)) < ¢, throughout the

rectangle and we choose M =2M,,
Moreover, (&)= —log ({x (4 + Ti)), so

Re (f(&) < —2logg+0(1).

—log|Cx(1-3)l .

Thus,

loglogq

> 1.
logq

2M |
M,

log|— 2M and log

Q@

1} <

Hence,

loglogg sinh (n/4) _ A 7
2 nA h > —p T s
logg > sinhmj) = ¢ Smhlg)z3e

from which it follows that A>>logloggq, and this gives the result.

In connection with (C) one can again adapt Siegel’s method and now come
within a constant multiple of the required bound. Unfortunately the best
constant I can obtain in this manner seems to be even worse than one that
follows trivially from the functional equation.

Indeed, let 0=y <c/logq and assume that {x (} +iy)+0. From the functional
equation we have, for some integer n,

arg{x(3+iy) = —ylogg+o(l)+arg{x(G—iy)
= —ylogg+o(l)+2nn—arg{x(+iy)
and so, in D(d/log X, (n+25)/log X), X"{x (o) escapes the first quadrant.
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3
The above results stress values of {kx(s) that are not too large. Looking
further from the real axis one finds that it would be of use to know values that

are not too small.

THeOREM 3. (I) Let T=2 and 6 >0 and assume that K is a complex quadratic
field with class number one. There exists c(d) such that

sup [(xk(G+in)l < c(O)T**?.
1sysT

RemARK. This result seems most likely to be useful if T=0(g).

(II) Let q be prime and g(q) denote the least prime quadratic residue modulo q.
Let ¢;>0 and £>0 and assume g(q)> q°. There exists c,(c,,¢&) such that

sup |[{x(1+i)l < ¢, .
Isysqs

ProOOF. Let

1 if mis a square
blm) = {0 otherwise

and consider the sum

) T (atm—bmm e = o | {txls+0)= L2+ DT OFds
msY it J@

= I'(1-@L(L)Y'*+{k(@—{(20)—
1
Sirg-avieeg |

where 6o= —4—16 and 0<6 <4
Choosing Y=1q and assuming K has class number one, we may assume ¢ is
prime and then, as is well known, a(m)=b(m) for m< Y so the left side vanishes.

Choosing =3, 1Sy<T,
Ird—oL(1, Y'Y <« 1,
IC2e)l < logT,

and
Bré-ovt < < 1.
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J‘(Go)

by well known estimates, and the first result follows.
Returning to (*), choose 6=%, f=1, 1<y<q" and Y=¢4'"*°.

U(—}»

For the left side of (*) we use the estimate

Moreover,

< qao(q—ao.),—do_i_,y—%—lno) < T%+6,

3 oo
< ¢'Y ‘J (@7 +0)fe dt < gHireoy e oy
0

z (a(m)_b(m))m "Ge—m/Y a(m)

msY

<< —_—.
m%)’ m

Noting that a(m)=0 and that a(m)=0 unless m can be written in the form m
=rs? where r is divisible by no prime <¢’, it follows that a(m)<c;(c,,¢) and
thus

The number of integers r<Y of the required form has the upper bound
ci(cy,€)Y/log Y is well-known [1], and partial summation yields

Z g'%'q é CS(CL’E) .
msY

Returning to the right side of (*), one has the obvious bounds

L) <1 and |FT(—@VY Y < 1.

For the first term one uses the bound

L(L,x) = ce(e)/logq

which follows from the hypothesis g(q)>g° by a result of Wolke [15].
Combining these estimates, (II) follows.

ReMARk. With regard to (I), if T is actually taken to be bounded, the
conclusion still follows even if the hypothesis is weakened so that K is merely
supposed to be complex with bounded class number. This follows directly from
the Selberg-Chowla version [10] of Deuring’s formula.



168 JOHN B. FRIEDLANDER
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