THE DISCRETE SKELETON METHOD AND A TOTAL VARIATION LIMIT THEOREM FOR CONTINUOUS-TIME MARKOV PROCESSES

E. NUMMELIN

Abstract.

In this paper we consider the discrete skeleton Markov chains of continuous-time Markov processes and give sufficient conditions for the recurrence of the skeleton chains. As an application of these results we consider a total variation convergence theorem for the transition probability function of a continuous-time Markov process.

0. Introduction.

Kingman [6] studied for a continuous-time Markov proces $\{X_n, t \ge 0\}$ on a countable state space the discrete skeleton Markov chain $\{X_{n\delta}, n=0,1,\ldots\}$, $\delta > 0$, and deduced from known convergence results of the latter process convergence results for the continuous-time process. In a recent work Winkler [13] uses discrete skeletons and known decomposition theorems for Markov chains when proving decomposition theorems for continuous-time Markov processes.

The main purpose of the present paper is to prove a total variation convergence result for a continuous-time, recurrent Markov process $\{X_t\}$ on a general locally compact separable state space S. More specifically, we shall give sufficient conditions for the convergence of the integral $\int_0^\infty \|\lambda P_t\| dt$, where λ is a finite signed measure on the Borel σ -field \mathcal{B} of S with total mass $\lambda(S)$ zero, and P_t denotes the transition probability function of the process (Theorem 2). We also construct a recurrent potential kernel G satisfying

$$\lim_{t\to\infty}\left\|\lambda\int_0^t P_u du - \lambda G\right\| = 0.$$

On one hand our results complement the earlier results of Duflo and Revuz [3], who proved that $\lim_{t\to\infty} \|\lambda P^t\| = 0$ under certain recurrence and regularity conditions, and on the other hand the corresponding results (convergence of

sums of transition probabilities) for discrete-time Markov chains (see Cogburn [2], Griffeath [4], Nummelin [8]).

We also give (see Theorem 1) sufficient conditions for the recurrence of the skeleton chains $\{X_{n\delta}; n=0,1,\ldots\}$ and for the regularity (in the sense of Nummelin [8]; see also Proposition 1.2 below) of probability measures with respect to the skeleton chains. For other studies on the recurrence of the skeleton chains see Winkler [13] and Arjas, Nummelin and Tweedie [1].

1. Notation and preliminaries.

Let S be a locally compact separable topological space and let \mathscr{B} denote the Borel σ -field of S. Denote $R_+ = [0, \infty)$, $N_+ = \{1, 2, \ldots\}$, $N = \{0, 1, 2, \ldots\}$, \mathscr{R}_+ = the Borel σ -field of R_+ , l= the Lebesgue measure. Let $\{X_t, t \in R_+\}$ be a strong Markov process on (S, \mathscr{B}) with transition probability function $P_t(x, E)$, $(t \in R_+, x \in S, E \in \mathscr{B})$. P_t satisfies

(1.1)
$$P_0(x, E) = 1_E(x) = 1(0)$$
 if $x \in E$ $(x \notin E)$,

- (1.2) for fixed $t, x, P_t(x, \cdot)$ is a probability measure on \mathcal{B} ,
- (1.3) for fixed $t, E, P_t(\cdot, E)$ is a measurable function on S,

(1.4) for all
$$t, s, x, e, P_{t+s}(x, E) = \int_{S} P_{t}(x, dy) P_{s}(y, E)$$
.

We denote by (Ω, Σ) the canonical sample space $(\otimes_{R_+} S, \otimes_{R_+} \mathscr{B})$ of $\{X_t\}$, and by $\theta_s : \Omega \to \Omega$ the translation operator

$$\theta_s X_t(\omega) = X_{t+s}(\omega), \quad t, s \in \mathbb{R}_+, \ \omega \in \Omega$$
.

We denote by P_{μ} the canonical probability measure on Σ corresponding to the initial distribution μ and transition probability P_t ; for $\mu = \varepsilon_x$, the probability measure assigning unit mass to $x \in S$, we write $P_{\varepsilon_x} = P_x$. In the following the abbreviation "a.s." means " P_x —a.s. for all $x \in S$ ". We shall assume that $\{X_t\}$ has right-continuous sample paths a.s.

Let τ be an arbitrary stopping time (relative to $\{X_t\}$). We define the iterates of τ by

(1.5)
$$\tau_0 = 0, \quad \tau_{n+1} = \tau_n + \tau \circ \theta_{\tau_n}.$$

We denote for all $A \in \mathcal{B}$, $\delta > 0$,

$$(1.6) T_A = T_A^{(0)} = \inf\{t \in \mathbb{R}_+ ; X_t \in A\},$$

(1.7)
$$T_A^{(\delta)} = \inf\{t \in \mathbb{R}_+ \; ; \; X_{\delta+t} \in A\} \; ,$$

(1.8)
$$\tau_A^{(\delta)} = \inf\{n \in \mathbb{N}_+ \; ; \; X_{n\delta} \in A\} \; .$$

152 E. NUMMELIN

DEFINITION 1.1. A set A is called recurrent, provided that the random set $\{t \in \mathbb{R}_+ : X_t \in A\}$ is unbounded a.s., or equivalently, provided that $T_A^{(\delta)}$ is finite a.s. for some (hence for all) $\delta > 0$ (note that in our definition we do not require the more usual condition $\int_{\mathbb{R}_+} 1_A(X_t) dt = \infty$).

In Nummelin [8] (cf. also Griffeath [4, Chapter 3.3]) the following result was proved. It is the result we need from Markov chain theory when proving our continuous-time limit theorem.

PROPOSITION 1.2. (Theorem 6.6 of Nummelin [8]). Let $\{X_n, n \in \mathbb{N}\}$ be an aperiodic, φ -recurrent (cf. Orey [11]) Markov chain on a general measurable state space (S,\mathcal{B}) (\mathcal{B} is assumed to be countably generated) with transition probability P(x,A) ($x \in S$, $A \in \mathcal{B}$) and invariant measure π . Call a finite measure μ on \mathcal{B} regular, provided that $E_{\mu}[\inf\{n \in \mathbb{N}_+; X_n \in A\}]$ is finite for all A with $\pi(A) > 0$. If $\{X_n\}$ is positive recurrent (that is, $\pi(S) < \infty$), and if λ is a finite signed measure on \mathcal{B} with total mass $\lambda(S)$ zero such that $|\lambda|$ is regular, then

$$\sum_{n=0}^{\infty} \|\lambda P^n\| < \infty ,$$

and there exists a recurrent potential kernel $G: S \times \mathcal{B} \to [0, \infty]$ such that for μ a finite regular measure, μG is a finite measure, and

$$\lim_{N\to\infty}\left\|\sum_{n=0}^N \lambda P^n - \lambda G\right\| = 0.$$

Remark. Note that the above concept of a regular measure should not be confused with the usual topological regularity of a measure on a topological space.

2. The main results.

At first we formulate a minorization condition, called (MC). In Theorem 1 we prove that it implies the recurrence (in the sense of Harris [5]) of the skeleton chains. It is also needed when studying the regularity of a given measure with respect to the skeleton chains. In Theorem 2 we combine Proposition 1.2 and Theorem 1 in order to get the total variation convergence results mentioned in Section 0. Recall from Revuz [12, p. 90], the definition of spread-outness: a finite measure F on \mathcal{R}_+ is called spread-out, provided that some convolution multiple F^{**} of F has a non-trivial absolutely continuous component with respect to the Lebesgue measure.

(MC): There exist a stopping time τ relative to the process $\{X_t, t \in \mathbb{R}_+\}$, a

constant $\alpha > 0$, a recurrent, (topologically) closed set $C \in \mathcal{B}$ and a probability measure ν on $\mathcal{B} \times \mathcal{R}_+$ such that the measure $\nu(C \times \cdot)$ on \mathcal{R}_+ is spread-out and

$$(2.1) P_x\{X_\tau \in A, \ \tau \in \Gamma\} \ge \alpha 1_C(x) \nu(A \times \Gamma), \quad x \in S, \ A \in \mathcal{B}, \ \Gamma \in \mathcal{R}_+.$$

Sometimes a suitable minorization condition, satisfied by the transition probability function P_t , implies (MC):

EXAMPLE 2.1. Suppose that there exist $\alpha' > 0$, a transition kernel η from (R_+, \mathcal{R}_+) into (S, \mathcal{B}) , and a recurrent, closed set $C \in \mathcal{B}$ such that

$$\int_{\mathbb{R}_+} \eta(t,C) dt > 0$$

and

$$P_t(x,A) \ge \alpha' 1_C(x) \eta(t,A)$$
 for all $t \in \mathbb{R}_+$, $x \in S$, $A \in \mathcal{B}$.

Then we can choose τ to be any non-negative random variable, independent of $\{X_t\}$ and with a strictly positive density function f(t), and (MC) holds with

$$\alpha = \alpha' \int_{R_+} f(u)\eta(u, S) du,$$

$$v(dy \times dt) = \left[\int_{R_+} f(u)\eta(u, S) du \right]^{-1} f(t)\eta(t, dy) dt.$$

In the following example we give the formulation of (MC) in the most important special case: that is the case, when C can be chosen to be a one-point set.

EXAMPLE 2.2. Assume that there exist a recurrent point $a \in S$ (that is, $\{a\}$ is a recurrent set), and a stopping time τ relative to $\{X_t\}$ such that $X_{\tau} = a$ a.s. and the P_a -distribution of τ ,

$$F(\Gamma) \,=\, \boldsymbol{P}_a \big\{ \tau \in \Gamma \big\}, \quad \Gamma \in \mathcal{R}_+ \;,$$

is spread out. Then (MC) holds with $C = \{a\}, v = \varepsilon_a \times F$.

The following proposition and its corollary give sufficient conditions for (MC).

PROPOSITION 2.3. Suppose that there exists a non-trivial finite measure φ on \mathcal{B} such that every set $A \in \mathcal{B}$ satisfying $\varphi(A) > 0$ is recurrent. Assume in addition that there exist a stopping time τ' relative to $\{X_t\}$, $E \in \mathcal{B}$ with $\varphi(E) > 0$ and an

interval $\Gamma_0 \in \mathcal{R}_+$ such that $l(\Gamma_0) > 0$ and for all $x \in E$, $\Gamma \in \Gamma_0 \cap \mathcal{R}_+$ with $l(\Gamma) > 0$ and all $\phi \times l$ -negligible $N \subset E \times \Gamma_0$

(2.2a)
$$P_x\{(X_{\tau'}, \tau'_n) \in E \times \Gamma \setminus N \text{ for some } n \in \mathbb{N}_+\} > 0$$
,

and for all $y \in S$, $A \subset E$ with $\varphi(A) > 0$,

$$(2.2b) P_{\nu}\{X_{\tau'_{+}} \in A \text{ for some } n \in \mathbb{N}_{+}\} > 0.$$

Then there exist τ , α , C and v such that (MC) holds.

PROOF. The process $\{(X_{\tau'_n}, \tau'_n), n \in \mathbb{N}\}$ is a Markov renewal process corresponding to the semi-Markov kernel

$$Q(x, A \times \Gamma) = P_x\{X_{\tau'} \in A, \ \tau' \in \Gamma\}, \quad x \in S, \ A \in \mathcal{B}, \ \Gamma \in \mathcal{R}_+ \ .$$

According to Proposition 3.1 of Nummelin [9], and since φ as a finite measure on a locally compact separable space is known to be topologically regular, there exist $k \in \mathbb{N}_+$, $\alpha > 0$, a closed set $C \subset E$ with $\varphi(C) > 0$ (hence C is recurrent) and a probability measure ν on $\mathscr{B} \times \mathscr{R}_+$ such that $\nu(C \times \cdot) \ll l$ and

$$Q^{*k}(x, A \times \Gamma) = P_x\{X_{\tau_k'} \in A, \ \tau_k' \in \Gamma\} \ge \alpha 1_C(x) \nu(A \times \Gamma).$$

By defining $\tau = \tau'_k$ we get (2.1).

COROLLARY. Suppose that there exists a non-trivial σ -finite measure φ on \mathcal{B} such that every set $A \in \mathcal{B}$ satisfying $\varphi(A) > 0$ is recurrent. Denote by $p_t(x, \cdot)$ the density of $P_t(x, \cdot)$ with respect to φ . If there exist a set $E \in \mathcal{B}$ and an interval $\Gamma_0 \in \mathcal{R}_+$ satisfying $\varphi(E) > 0$ and $l(\Gamma_0) > 0$, such that for every $x \in E$,

(2.3a)
$$\int_{E} p_{t}(x, y)\varphi(dy) > 0 \text{ for 'l-almost all } t \in \Gamma_{0},$$

and for every $y \in S$, $A \subset E$ with $\varphi(A) > 0$,

$$(2.3b) \qquad \int_{\mathbb{R}_+} P_t(y, A) dt > 0 ,$$

then there exist τ , α , C and v such that (2.1) holds.

PROOF. Let τ' be an exponentially distributed random variable with parameter λ , say, and assume that τ' is independent of the process $\{X_t\}$. Then for any $x \in S$, $E \in \mathcal{B}$, $\Gamma \in \mathcal{B}_+$,

(2.4)
$$E_x[\#\{n \in \mathbb{N}_+ ; (X_{\tau'_n}, \tau'_n) \in E \times \Gamma\}] = \int_{\Gamma} \lambda P_t(x, E) dt .$$

Now (2.3) and (2.4) imply (2.2), and Proposition 2.3 can be applied.

Next we come to the main results of this paper:

THEOREM 1. (i) (cf. Winkler [13, Theorem 2.1 and Lemma 2.7]) Assume that (MC) holds. Then the skeleton chains $\{X_{n\delta}\}$, $\delta > 0$, possess an essentially unique invariant measure, which we denote by π , and for any δ , $\{X_{n\delta}\}$ is aperiodic and π -recurrent.

(ii) Assume (MC), and that for some (hence for all) $\delta > 0$

$$\sup_{\mathbf{x}\in C} \mathbf{E}_{\mathbf{x}} T_C^{(\delta)} < \infty \dots$$

Then for all $\delta > 0$, the skeleton chain $\{X_{n\delta}\}$ is positive recurrent (that is, $\pi(S) < \infty$), and for any probability measure μ on \mathcal{B} satisfying

$$(2.6) E_{\mu}T_{C} < \infty ,$$

we have

(2.7)
$$E_{\mu}\tau_A^{(\delta)} < \infty \text{ for all } A \in \mathcal{B} \text{ with } \pi(A) > 0;$$

that is, μ is regular with respect to $\{X_{n\delta}\}$.

REMARK. It is clear that we have not necessarily $\pi(C) > 0$, that is, C may well be a transient set for all the skeleton chains $\{X_{n\delta}\}$, $\delta > 0$. As an example consider the Ornstein-Uhlenbeck process on R. Any point $a \in \mathbb{R}$ serves as a recurrent point for the process although the stationary measure π (the normal distribution) satisfies $\pi(\{a\}) = 0$ for any $a \in \mathbb{R}$.

THEOREM 2. (i) If for some $\delta > 0$, the skeleton chain $\{X_{n\delta}\}$ is positive recurrent and if λ is a finite, signed measure on \mathcal{B} with $\lambda(S) = 0$ and such that $|\lambda|$ is regular with respect to $\{X_{n\delta}\}$, then

$$(2.8) \int_{\mathbb{R}_+} \|\lambda P_t\| dt < \infty ,$$

and there exists a non-negative transition kernel G on (S, \mathscr{B}) satisfying $|\lambda|G(S)$ < ∞ and

(2.9)
$$\lim_{t\to\infty} \left\| \int_0^t \lambda P_u du - \lambda G \right\| = 0.$$

(ii) In particular, if (MC), and for some $\delta > 0$, (2.5) hold, and if λ is a finite, signed measure satisfying $\lambda(S) = 0$ and $E_{|\lambda|}T_C < \infty$, then the conclusions of part (i) are valid.

PROOF OF THEOREM 1. (i) Let $\delta, \varrho > 0$ be arbitrary and fixed. At first we shall prove that $\{X_{n\delta}\}$ is φ -recurrent with φ defined by

(2.10)
$$\varphi(A) = \int_{A}^{\infty} e^{-\varrho t} (v * P)_{t}(A) dt, \quad A \in \mathcal{B},$$

where we have used the notation $(v * P)_t(A) = \int_S \int_0^t v(dy \times du) P_{t-u}(y, A)$.

Denote $v_A = v(A \times \cdot)$, $A \in \mathcal{B}$. Since v_C is spread out by (MC), we can choose $\beta > 0$, $k, m_0 \in \mathbb{N}_+$ such that

$$(2.11) v_C^{*k}(du) \ge \beta 1_{\text{Im}(\delta - \delta, m(\delta + \delta)}(u) du$$

(see Revuz [12, p. 90]). From (MC) we get for all $x \in C$, $A \in \mathcal{B}$, $\Gamma \in \mathcal{R}_+$,

$$(2.12) P_x\{X_{\tau_k} \in A, \ \tau_k \in \Gamma\} \ge \alpha^k v_C^{*(k-1)} * v_A(\Gamma).$$

Since by assumption $\{X_t\}$ is strong Markov, we have from (2.1) for all $t \in \mathbb{R}_+$, $x \in S$, $A \in \mathcal{B}$,

$$(2.13) P_t(x,A) \ge \int_S \int_0^t P_x \{X_\tau \in dy, \ \tau \in du, \ X_t \in A\}$$

$$\ge 1_C(x)(v * P)_t(A).$$

Let now $A \in \mathcal{B}$ with $\varphi(A) > 0$ be arbitrary and fixed, and let $n_0 \in \mathbb{N}_+$ be such that

(2.14)
$$\gamma_A = \int_{n \circ \delta}^{n_0 \delta + \delta} (v * P)_t(A) dt > 0.$$

Denote $q_0 = m_0 + n_0 + 1$. Then we have for all $x \in C$, $u \in [0, \delta)$,

$$(2.15) \quad P_{q_{0}\delta-u}(x,A) \geq \int_{S} \int_{0}^{q_{0}\delta-u} P_{x} \{ X_{\tau_{k}} \in dy, \ \tau_{k} \in dv, \ X_{q_{0}\delta-u-v} \in A \}$$

$$\geq \alpha^{k} \int_{S} \int_{0}^{q_{0}\delta-u} v_{c}^{*(k-1)} * v_{dy}(dv) P_{q_{0}\delta-u-v}(y,A) \qquad .$$

$$\geq \alpha^{k} \int_{0}^{q_{0}\delta-u} v_{c}^{*k}(dv) (v * P)_{q_{0}\delta-u-v}(A) \quad \text{by (2.13)},$$

$$\geq \alpha^{k} \beta \int_{m_{0}\delta-\delta}^{m_{0}\delta+\delta} (v * P)_{q_{0}\delta-u-v}(A) dv \quad \text{by (2.11)},$$

$$\geq \alpha^{k} \beta \gamma_{A} > 0.$$

It is easily seen that the bivariate process $\{(X_{n\delta}, T_C^{(n\delta)}), n \in \mathbb{N}\}$ is a Markov chain with state space $(S \times \mathbb{R}_+, \mathcal{B} \times \mathcal{R}_+)$, and that it visits the set $S \times [0, \delta)$ infinitely often a.s., because C is a recurrent set for $\{X_t\}$. From (2.15) we get for any $m \in \mathbb{N}$, $y \in S$, $u \in [0, \delta)$

(2.16)
$$P_{x}\{X_{(q_{0}+m)\delta} \in A \mid X_{m\delta} = y, T_{C}^{(m\delta)} = u\}$$

$$\geq E_{x}[P_{(q_{0}+m)\delta-(m\delta+T_{C}^{(m\delta)})}(X_{m\delta+T_{C}^{(m\delta)}}, A) \mid T_{C}^{(m\delta)} = u]$$

$$\geq \alpha^{k}\beta\gamma_{A} > 0,$$

since by the right-continuity of the sample paths $X_{m\delta+T_{k}^{(m\delta)}} \in C$ P_x —a.s.. From this we conclude that $\{X_{n\delta}, n \in \mathbb{N}\}$ visits the set A infinitely often a.s., and so we have proved the φ -recurrence of $\{X_{n\delta}\}$.

Let now π_{δ} be the essentially unique invariant measure of $\{X_{n\delta}\}$, which is known to exist by Harris [5]. As in Winkler [13] we get from the uniqueness of π_{δ} that

(2.17)
$$\pi_{\delta} P_{m\delta/n} = \pi_{\delta} \quad \text{for all } m, n \in \mathbb{N}_{+}.$$

Let now t>0 be arbitrary, and let the sequence

$$\{t_i\} \subset \left\{\frac{m\delta}{n} ; m, n \in \mathbb{N}_+\right\}$$

converge to t. As in Winkler [13, the proof of Lemma 2.7], we get from Fatou's lemma for any $A \in \mathcal{B}$

(2.18)
$$\pi_{\delta}P_{t}(A) \leq \liminf_{n \to \infty} \int_{S} \pi_{\delta}(dy)P_{t_{n}}(y, A) = \pi_{\delta}(A).$$

Hence π_{δ} is a subinvariant measure for P_t . From Nummelin and Arjas [10, Lemma 1], (cf. also Neveu [7, p. 198]) we know that then $\pi = \pi_{\delta}$ satisfies (2.18) with equality. From Orey [11, Theorem 7.2 (ii)], we get that, for any $\delta > 0$, $\{X_{n\delta}\}$ is π -recurrent.

It remains to prove the aperiodicity of every skeleton chain $\{X_{n\delta}\}$, $\delta > 0$. Assume the contrary: for some $\delta > 0$, $d \in \{2, 3, ...\}$, $\{X_{n\delta}\}$ is periodic with period d. Let $\{C_1, C_2, ..., C_d\}$ be a cycle of $\{X_{n\delta}\}$ satisfying the conditions of Theorem 3.1 of Orey [11, p. 13]. Then the skeleton chain $\{X_{nd\delta}, n \in \mathbb{N}\}$ would no more be π -recurrent, since the disjoint sets $C_1, ..., C_d$ are closed for this chain and a π -recurrent chain is necessarily indecomposable (Orey [11, p. 34]). From this contradiction we conclude the aperiodicity of every skeleton chain $\{X_{n\delta}\}$, $\delta > 0$.

(ii) From the definition of $T_C^{(m\delta)}$, and from (2.5) and (2.6) we get

(2.19)
$$\sup_{0 \leq u < \delta, x \in S} \mathbf{E}_{x} [\inf \{ n \in \mathbb{N}_{+} ; T_{C}^{(n\delta)} \in [0, \delta) \} \mid T_{C}^{(0)} = u]$$

$$\leq \delta^{-1} \sup_{z \in C} \mathbf{E}_{z} T_{C}^{(\delta)} + 1 < \infty ,$$

and

(2.20)
$$E_{\mu}[\inf\{n \in \mathbb{N} \; ; \; T_{C}^{(n\delta)} \in [0,\delta)\}] \leq \delta^{-1}E_{\mu}T_{C} < \infty \; .$$

Let $A \in \mathcal{B}$ with $\varphi(A) > 0$ be arbitrary. Applying Lemma 5.7 of Nummelin [8] with

(2.21)
$$\tau = \inf\{n > q_0 \; ; \; T_C^{(n\delta)} \in [0, \delta)\} \; ,$$

$$(2.22) Z_n = 1_{\{X_{(t_{n-1}+g_0)\delta} \in A\}},$$

we get from (2.16), (2.19) and (2.20),

(2.23)
$$E_{\mu}\tau_A^{(\delta)} < \infty$$
 for all $A \in \mathcal{B}$ with $\varphi(A) > 0$,

From (2.13) we get for any $A \in \mathcal{B}$,

$$\pi(A) \geq \pi(C)(v*P)(A)$$
.

Choosing A such that $\pi(A) < \infty$ and $\varphi(A) > 0$ we conclude that $\pi(C) < \infty$. Similarly as we derived (2.21), we get, denoting by π_C the restriction of π to C,

$$(2.24) E_{\pi_{\mathbb{C}}}\tau_{\mathbb{C}}^{(\delta)} < \infty ,$$

which proves that $\{X_{n\delta}\}$ is positive recurrent (cf. Cogburn [2]). Let now $A \in \mathcal{B}$ with $\pi(A) > 0$ be arbitrary. We should prove that (2.7) holds. By Cogburn [2, Proposition 3.1], there exists a set $E \in \mathcal{B}$ with $\varphi(E) > 0$ such that

$$\sup_{x\in E} E_x \tau_A^{(\delta)} < \infty .$$

The inequality (2.7) now follows from (2.23) and from Cogburn [2, Lemma 3.1]:

$$(2.25) E_{\mu}\tau_A^{(\delta)} \leq E_{\mu}\tau_E^{(\delta)} + \sup_{x \in E} E_x \tau_A^{(\delta)}.$$

PROOF OF THEOREM 2. (i). By Proposition 1.2

(2.26)
$$\sum_{n=0}^{\infty} \|\lambda P_{n\delta}\| < \infty,$$

from which we get by the contractivity of P_t

(2.27)
$$\int_{\mathbb{R}_{+}} \|\lambda P_{t}\| dt = \sum_{n=0}^{\infty} \int_{n\delta}^{n\delta+\delta} \|\lambda P_{t}\| dt$$
$$\leq \delta \sum_{n=0}^{\infty} \|\lambda P_{n\delta}\| < \infty.$$

By Proposition 1.2 there exists a non-negative kernel G_{δ} satisfying $|\lambda|G_{\delta}(S) < \infty$ and

(2.28)
$$\lim_{n\to\infty} \left\| \sum_{m=0}^{n} \lambda P_{m\delta} - \lambda G_{\delta} \right\| = 0.$$

Denote

$$(2.29) G = G_{\delta} \int_{0}^{\delta} P_{u} du.$$

Then

$$(2.30) |\lambda|G(S) = \delta|\lambda|G_{\delta}(S) < \infty,$$

and for any t, denoting $n(t) = \sup \{n \in \mathbb{N}; n\delta \leq t\}$,

$$\begin{split} \left\| \lambda \int_{0}^{t} P_{u} du - \lambda G \right\| & \leq \left\| \lambda \sum_{m=0}^{n(t)-1} P_{m\delta} \int_{0}^{\delta} P_{u} du - \lambda G \right\| + \\ & + \left\| \lambda P_{n(t)\delta} \int_{0}^{t-n(t)\delta} P_{u} du \right\| \\ & \leq \delta \left\| \lambda \sum_{m=0}^{n(t)-1} P_{m\delta} - \lambda G_{\delta} \right\| + \delta \|\lambda P_{n(t)\delta}\| \to 0 , \end{split}$$

as $t \to \infty$ by (2.27) and (2.28).

Part (ii) follows directly from (i) and Theorem 1.

Theorem 2 has the following corollary.

COROLLARY 1. (i) If for some $\delta > 0$, the skeleton chain $\{X_{n\delta}\}$ is positive recurrent with invariant probability measure π , then for π -almost all $x, y \in S$

(2.31)
$$\int_{\mathbf{R}_{t}} \|P_{t}(x,\cdot) - P_{t}(y,\cdot)\| dt < \infty ,$$

(2.32)
$$\lim_{t\to\infty} \left\| \int_0^t P_u(x,\cdot) du - G(x,\cdot) \right\| = 0.$$

(ii) In particular, if (MC), and for some $\delta > 0$, (2.5) hold, then we have (2.31) and (2.32) for π -almost all $x, y \in S$.

PROOF. For π -almost all $x \in S$, the measure ε_x is regular (see Nummelin [8, Corollary 5.16 (iii)]).

Finally, let us formulate the preceding general results in the case when there exists a recurrent point for the Markov process $\{X_t\}$ (cf. Example 2.2).

COROLLARY 2. Assume that there exists a recurrent point $a \in S$ satisfying the assumptions made in Example 2.2. Then all skeleton chains $\{X_{n\delta}\}$, $\delta > 0$, possess an essentially unique invariant measure π and they all are π -recurrent. Moreover if $E_aT_{\{a\}}^{\{\delta\}}$ is finite for some $\delta > 0$, then $\pi(S) < \infty$ and for any finite, signed measure λ on $\mathscr B$ satisfying $\lambda(S) = 0$ and

$$(2.33) E_{|\lambda}T_{\{a\}} < \infty,$$

we have (2.8), and there exists a non-negative transition kernel G satisfying $|\lambda|G(S) < \infty$ and (2.9).

ACKNOWLEDGEMENT. I would like to thank Professor Elja Arjas for useful comments on the paper.

REFERENCES

- 1. E. Arjas, E. Nummelin and R. L. Tweedie, Uniform limit theorems for non-singular renewal and Markov renewal processes. To appear in J. Appl. Probability.
- R. Cogburn, A uniform theory for sums of Markov chain transition probabilities, Ann. Probability 3 (1975), 191-214.
- M. Duflo and D. Revuz, Propriétés asymptotiques des probabilités de transition des processus de Markov récurrents, Ann. Inst. H. Poincaré, Sect. B, 5 (1969), 233-244.
- D. S. Griffeath, Coupling methods for Markov processes, Ph. D. thesis, Cornell University, 1976.
- T. E. Harris, The existence of stationary measures for certain Markov processes, Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability 2, 113-124, University of California Press, 1956.
- J. F. C. Kingman, Ergodic properties of continuous-time Markov processes and their discrete skeletons, Proc. London Math. Soc. (3) 13 (1963), 593-604.
- 7. J. Neveu, Mathematical Foundations of the Calculus of Probability, Holden-Day, San Francisco, 1965.
- 8. E. Nummelin, A splitting technique for φ-recurrent Markov chains. To appear.
- 9. E. Nummelin, Uniform and ratio limit theorems for Markov renewal and semi-regenerative processes on a general state space. To appear in Ann. Inst. H. Poincaré.
- 10. E. Nummelin and E. Arjas, A direct construction of the R-invariant measure for a Markov chain on a general state space, Ann. Probability 4 (1976), 674-679.
- 11. S. Orey, Lecture Notes on Limit Theorems for Markov Chain Transition Probabilities, Van Nostrand, London, 1971.
- 12. D. Revuz, Markov Chains, North-Holland Publ. Co., Amsterdam, 1975.
- 13. W. Winkler, Continuous parameter Markov processes. Submitted for publication.

MATEMATIIKAN LAITOS TEKNILLINEN KORKEAKOULU 02150 ESPOO 15 FINLAND

į