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THE DISCRETE SKELETON METHOD
AND A TOTAL VARIATION LIMIT THEOREM
FOR CONTINUOUS-TIME MARKOV PROCESSES

E. NUMMELIN

Abstract.

In this paper we consider the discrete skeleton Markov chains of
continuous-time Markov processes and give sufficient conditions for the
recurrence of the skeleton chains. As an application of these results we consider
a total variation convergence theorem for the transition probability function of
a continuous-time Markov process.

0. Introduction.

Kingman [6] studied for a continuous-time Markov proces {X,t=0} on
a countable state space the discrete skeleton Markov chain {X,; n=0,1,...},
0>0, and deduced from known convergence results of the latter process
convergence results for the continuous-time process. In a recent work Winkler
[13] uses discrete skeletons and known decomposition theorems for Markov
chains when proving decomposition theorems for continuous-time Markov
processes.

The main purpose of the present paper is to prove a total variation
convergence result for a continuous-time, recurrent Markov process {X,} on a
general locally compact separable state space S. More specifically, we shall give
sufficient conditions for the convergence of the integral j3° |AP,| dt, where 4 is
a finite signed measure on the Borel o-field # of S with total mass A(S) zero,
and P, denotes the transition probability function of the process (Theorem 2).
We also construct a recurrent potential kernel G satisfying

lim =0.

t— 00

t
AJ P,du—AG

0

On one hand our results complement the earlier results of Duflo and Revuz
[3], who proved that lim,_, ., ||AP'|| =0 under certain recurrence and regularity
conditions, and on the other hand the corresponding results (convergence of
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sums of transition probabilities) for discrete-time Markov chains (see Cogburn
[2], Griffeath [4], Nummelin [8]).

We also give (see Theorem 1) sufficient conditions for the recurrence of the
skeleton chains {X,s; n=0,1,...} and for the regularity (in the sense of
Nummelin [8]; see also Proposition 1.2 below) of probability measures with
respect to the skeleton chains. For other studies on the recurrence of the
skeleton chains see Winkler [13] and Arjas, Nummelin and Tweedie [1].

1. Notation and preliminaries.

Let S be a locally compact separable topological space and let # denote the
Borel o-field of S. Denote R, =[0,00), N, ={1,2,...}, N={0,1,2,...}, #,
=the Borel o-field of R,, /=the Lebesgue measure. Let {X,te R,} be a
strong Markov process on (S, %) with transition probability function P,(x, E),
(teR,, x€ S8, E e ). P, satisfies

(1.1) Py(x,E) = 1g(x) = 1(0) if xe E (x ¢ E),
(1.2) for fixed t,x, P,(x, -) is a probability measure on % ,

(1.3) for fixed t,E, P,(-, E) is a measurable.function on § ,
(1.4) for all t,s,x,e, P, (x,E) = f P,(x,dy)P(y,E) .
s

We denote by (2,Y) the canonical sample space (®g, S, ®r, B) of {X,},
and by 6;: Q — Q the translation operator

0,X,(w) = X,4,(w), tseR,, weQ.

We denote by P, the canonical probability measure on 3 corresponding to the
initial distribution p and transition probability P,; for u=g,, the probability
measure assigning unit mass to x € S, we write P, =P,. In the following the
abbreviation “a.s.” means “P,—a.s. for all x € S”. We shall assume that {X,}
has right-continuous sample paths a.s.

Let t be an arbitrary stopping time (relative to {X,}). We define the iterates
of t by

(1.5) 10 =0, 1,4, =1,+1°0,.

We denote for all 4 € 8, >0,

(1.6) T, =T = inf{teR, ; X, €A},
§%)) T = inf{te R, ; X;,, €A},

(1.8) P

inf{neN, ; X,;€4}.
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DerFiniTION 1.1. A set A is called recurrent, provided that the random set
{t e R, ; X, € A} is unbounded a.s., or equivalently, provided that T¥ is finite
a.s. for some (hence for all) >0 (note that in our definition we do not require
the more usual condition (g, 14(X,)dt=00).

In Nummelin [8] (cf. also Griffeath [4, Chapter 3.3]) the following result
was proved. It is the result we need from Markov chain theory when proving
our continuous-time limit theorem.

ProposiTioN 1.2. (Theorem 6.6 of Nummelin [8]). Let {X,, n € N} be an
aperiodic, @-recurrent (cf. Orey [11]) Markov chain on a general measurable
state space (S,#) (# is assumed to be countably generated) with transition
probability P(x, A) (x € S, A € #) and invariant measure n. Call a finite measure
puon B regular, provided that E [inf{n € N, ; X, € A}] is finite for all A with
n(A)>0. If {X,} is positive recurrent (that is, n(S)<00), and if A is a finite
signed measure on B with total mass A(S) zero such that |A| is regular, then

[AP"]| < oo,
n=0
and there exists a recurrent potential kernel G: S x # — [0, 00] such that
for u a finite regular measure, uG is a finite measure, and

lim
N-x

N
Y m—m“ =0.

n=0

RemARrk. Note that the above concept of a regular measure should not be
confused with the usual topological regularity of a measure on a topological
space.

2. The main results.

At first we formulate a minorization condition, called (MC). In Theorem 1
we prove that it implies the recurrence (in the sense of Harris [5]) of the
skeleton chains. It is also needed when studying the regularity of a given
measure with respect to the skeleton chains. In Theorem 2 we combine
Proposition 1.2 and Theorem 1 in order to get the total variation convergence
results mentioned in Section 0. Recall from Revuz [12, p. 90], the definition of
spread-outness: a finite measure F on &, is called spread-out, provided that
some convolution multiple F** of F has a non-trivial absolutely continuous
component with respect to the Lebesgue measure.

(MC): There exist a stopping time 7 relative to the process {X,, t € R,}, a
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constant >0, a recurrent, (topologically) closed set C € # and a probability
measure v on % x £, such that the measure v(C x *) on £, is spread-out and

(2.1) P{X.€eA tel} 2 alc(x)vV(AxT), xeS, AcB,TeR, .

Sometimes a suitable minorization condition, satisfied by the transition
probability function P,, implies (MC):

ExampLE 2.1. Suppose that there exist a'>0, a transition kernel n from
(R4, 2,) into (S,4), and a recurrent, closed set C € # such that

j nt,C)dt > 0
R,
and

P(x,A) = a'lc(x)n(t,A) forallteR,, x€S, AeR.

Then we can choose 7 to be any non-negative random variable, independent of
{X,} and with a strictly positive density function f(¢), and (MC) holds with

o

o f £ wn(u, S)du,
R,

v(dy x dt)

I

[L S (u,S) du]"f (On(e,dy)dt .

In the following example we give the formulation of (MC) in the most
important special case: that is the case, when C can be chosen to be a one-
point set.

ExampLE 2.2. Assume that there exist a recurrent point a € S (that is, {a} is a
recurrent set), and a stopping time 7 relative to {X,} such that X,=a a.s. and
the P ,-distribution of t,

F(I) = P{tel), Te®R,,

is spread out. Then (MC) holds with C={a}, v=¢,xF.

The following proposition and its corollary give sufficient conditions for
(MCQ).

ProrosiTION 2.3. Suppose that there exists a non-trivial finite measure ¢ on #
such that every set A € # satisfying ¢(A)>0 is recurrent. Assume in addition
that there exist a stopping time 1’ relative to {X,}, E € # with ¢(E)>0 and an
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interval I'y € R, such that I(I'))>0 and for all x € E,T € ['yNAR , with (I'>0
and all ¢ x I-negligible NcExT,

(2.2a) P.{(X.,t,) € ExI'\N for some ne N,} > 0,
and for all y € S, AcE with ¢(A)>0,
(2.2b) P{X, € A for someneN,} > 0.

Then there exist t, a, C and v such that (MC) holds.
Proor. The process {(X;,7,), ne N} is a Markov renewal process
corresponding to the semi-Markov kernel
Qx,AxIN' =P f{X . €A, vel}, xe€S, AecB, I'eR, .

According to Proposition 3.1 of Nummelin [9], and since ¢ as a finite measure
on a locally compact separable space is known to be topologically regular,
there exist k € N, >0, a closed set C = E with ¢(C)>0 (hence C is recurrent)
and a probability measure v on & x £, such that v(C x -)< I and

Q*(x,AxTI) = P{X €A, t,el} 2 alc(x)v(AxT).
By defining 1=1; we get (2.1).
COROLLARY. Suppose that there exists a non-trivial o-finite measure ¢ on #
such that every set A € ® satisfying ¢(A)>0 is recurrent. Denote by p,(x, *) the

density of P,(x, ) with respect to ¢. If there exist a set E € # and an interval
I'y e R, satisfying (E)>0 and I(I'y)>0, such that for every x € E,

(2.3a) ‘[ p.(x, »)p(dy) > O for*l-almost all t € I'y,
E
and for every y € S, AcE with ¢(A)>0,
(2.3b) j P,(y,A)dt > 0,
R,

then there exist 1, a, C and v such that (2.1) holds.

Proor. Let 7' be an exponentiallf: distributed random variable with
parameter A, say, and assume that 7’ is independent of the process {X,}. Then
forany xeS,Ee®#,I'e®,,

(2.4) El#{neN, ; (X,t)eExI)] = J AP,(x,E)dt .
r

. Now (2.3) and (2.4) imply (2.2), and Proposition 2.3 can be applied.
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Next we come to the main results of this paper:

THEOREM 1. (i) (cf. Winkler [13, Theorem 2.1 and Lemma 2.7]) Assume that
(MC) holds. Then the skeleton chains {X,;}, >0, possess an essentially unique
invariant measure, which we denote by n, and for any 6, {X s} is aperiodic and n-
recurrent.

(i) Assume (MC), and that for some (hence for all) 6>0
(2.5) sup E,T® < 00..

xeC
Then for all 6>0, the skeleton chain {X,;} is positive recurrent (that is, n(S)
<00), and for any probability measure y on & satisfying

(2.6) E,Tc < © ,
we have
27 E,Q < oo for all A € # with n(4) > 0;

that is, u is regular with respect to {X,s}.

REMARK. It is clear that we have not necessarily n(C)> 0, that is, C may well
be a transient set for all the skeleton chains {X,;}, >0. As an example
consider the Ornstein—Uhlenbeck process on R. Any point a € R serves as a
recurrent point for the process although the stationary measure = (the normal
distribution) satisfies n({a})=0 for any a € R.

THEOREM 2. (i) If for some 6> 0, the skeleton chain {X ;} is positive recurrent
and if A is a finite, signed measure on # with 4(S)=0 and such that |A| is regular
with respect to {X,s}, then

28) . I IAP]|dt < oo,
R,

and there exists a non-negative transition kernel G on (S, &) satisfying 1A|G(S)
<00 and

(2.9) lim

t—=o00

(i) In particular, if (MC), and for some 6>0, (2.5) hold, and if 4 is a finite,

signed measure satisfying A(S)=0 and E; T¢c < 00, then the conclusions of part (i)
are valid.

t
J iP,,du—iG“ =0.

1}

Proor oF THEOREM 1. (i) Let 8,0 >0 be arbitrary and fixed. At first we shall
prove that {X,;} is @-recurrent with ¢ defined by
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(2.10) o(A) = J e ¥(vxP)(A)dt, AeR,
F
where we have used the notation (v« P),(4)=[s [, v(dy x du)P,_,(y, A).
Denote v4=v(A x *), A € #. Since v is spread out by (MC), we can choose
p>0, k,my € N, such that

(2.11) vE (du) 2 Blimos -5, mos + () du
(see Revuz [12, p. 90]). From (MC) we get for all xe C, Ae B, ' € #,,
(2.12) PiX, €A 1,el} 2 abvg* Vv, (D).

Since by assumption {X,} is strong Markov, we have from (2.1) forallt € R,
xeS, Ae B,

(2.13) P,(x, A)

v

t
f J P{X.edy, tedu, X,e A}
sJo

1\

le(x)(v+P)(A) .

Let now A € # with ¢(A4)>0 be arbitrary and fixed, and let n, € N, be such
that

2.14) vy = r’m (v+P),(A)dt > 0.

nod

Denote gq,=my+ny+ 1. Then we have for all x € C, u € [0,9),

900 —u
(2.15)  Pyys-u(x,4) 2 J; J. P{X,edy, t,edv, X,5-,-,€ A}
0

qod—u
g ak I J‘ va(k_”*vdy(dU)qu,)—u—u(ya A)
SJo

1\

00— u
ak Jq vek(dv)(v*P)qoé—u—-v(A) by (213) s

0

'myd + o
g akﬂ‘[ (V*P)qoé—u—v(A)dv by (2'11) ’

mod—d

2 a*fy, > 0.

It is easily seen that the bivariate process {(X,s, T8?), n € N} is a Markov
chain with state space (SxR,, #x #.), and that it visits the set S x [0, )
infinitely often a.s., because C is a recurrent set for {X,}. From (2.15) we get for
anymeN, ye S, ue[0,0)
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(2.16) PiXoims€A| Xps=y, TEV=u}

= Ex[P(qo+M)6-(m6+T‘c’"‘”)(Xm6+T‘(’-""’, A) l T(('."")zu]
2 ofyy >0,

since by the right-continuity of the sample paths X ,,;, r@s € C P,—a.s.. From
this we conclude that {X,;,n € N} visits the set A infinitely often a.s., and so we
have proved the ¢-recurrence of {X,;}.

Let now 7, be the essentially unique invariant measure of {X,;}, which is
known to exist by Harris [5]. As in Winkler [13] we get from the uniqueness of
ns; that

(2.17) NsPmsn = n5  for all mne N, .

Let now t>0 be arbitrary, and let the sequence
)
{t} = {mT ; mne N+}

converge to t. As in Winkler [13, the proof of Lemma 2.7], we get from Fatou’s
lemma for any A € #

(2.18) ngP,(A) < lim inff n5(dy)P, (y, A) = m5(A) .
n=o0o S

Hence =; is a subinvariant measure for P,, From Nummelin and Arjas [10,

Lemma 1], (cf. also Neveu [7, p. 198]) we know that then n =mn; satisfies (2.18)

with equality. From Orey [11, Theorem 7.2 (ii)], we get that, for any >0,

{X,s} is m-recurrent.

It remains to prove the aperiodicity of every skeleton chain {X,;}, >0.
Assume the contrary: for some 6>0, d € {2,3,...}, {X,;} is periodic with
period d. Let {C,,C,,...,C,} be a cycle of {X,;} satisfying the conditions of
Theorem 3.1 of Orey [11, p. 13]. Then the skeleton chain {X,,;, n € N} would
no more be n-recurrent, since the disjoint sets C,,...,C, are closed for this
chain and a n-recurrent chain is necessarily indecomposable (Orey [11, p. 34]).
From this contradiction we conclude the aperiodicity of every skeleton chain

{Xm)}, 6>0
(ii) From the definition of T&?, and from (2.5) and (2.6) we get
(2.19) sup E[inf{neN, ; T e[0,0)} | T =u]
0su<d, xe§
<6 'supE, T +1 < o0,
zeC
and

(2.20) E[inf{ne N; T €[0,0)}] £ 6 'E,Tc < 0.
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Let A € # with ¢(A4)>0 be arbitrary. Applying Lemma 5.7 of Nummelin [8]
with

2.21) t = inf{n>q, ; TE €[0,0)},
(2'22) Z" = I{X(x,-,h,o)aeA} ’

we get from (2.16), (2.19) and (2.20),

(2.23) E P < 0o forall Ae# with ¢(4)>0,

From (2.13) we get for any 4 € 4,
n(4) 2 n(C)(v+P)(4) .

Choosing A such that n(4)<oo and ¢(A4)>0 we conclude that n(C)< 0.
Similarly as we derived (2.21), we get, denoting by = the restriction of = to C,

(2.24) E, i@ < oo,

which proves that {X,,} is positive recurrent (cf. Cogburn [2]). Let now A € #
with n(A4)>0 be arbitrary. We should prove that (2.7) holds. By Cogburn [2,
Proposition 3.1], there exists a set E € # with ¢(E)>0 such that

supE, ¥ < 00.
xeE

The inequality (2.7) now follows from (2.23) and from Cogburn [2, Lemma
3.17:

(2.25) E: < E“‘tg)+ilelg R

Proofr oF THEOREM 2. (i). By Proposition 1.2
(2.26) Y AP, < oo,
n=0
from which we get by the contractivity of P,

00 nd + 4
(2.27) f |AP|dt = ¥ |AP,|| dt
R, n=0 J nd

S8 Y APyl < 0o.
n=0
By Proposition 1.2 there exists a non-negative kernel G; satisfying |4]G4(S) < 00
and

(2.28) lim =0.

n= 00

L]
z APmé—}‘GJ

m=0
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Denote
o
(2.29) G = G,,J P,du .
(4]
Then
(2.30) [A1G(S) = d|A|G4(S) < o0,

and for any t, denoting n(t)=sup {n € N; n6 <t},

t
: J piu=ic]|
0

n(t)—1 0
iy P,,,,j P,,du—AG“+

m=0

t—n((:)é
+!|).P,,(,)‘, J‘ P,du

0

IIA

n(t)—1
Ay P.—iGs

m=0

<9

+5"'1Pn(t)o" -0,

as t — oo by (2.27) and (2.28).
Part (ii) follows directly from (i) and Theorem 1.
Theorem 2 has the following corollary.

CoroLLARY 1. (i) If for some 6>0, the skeleton chain {X,;} is positive
recurrent with invariant probability measure m, then for m-almost all x,y € §

(231) L [1Py(x, )= Py(y, )l dt < o0,
(2.32) lim ft P,(x, )du—G(x, -)l =0.
t=oo||J 0

(ii) In particular, if (MC), and for some 6> 0, (2.5) hold, then we have (2.31)
and (2.32) for n-almost all x,y € S.

Proor. For n-almost all x € S, the measure ¢, is regular (see Nummelin [8,
Corollary 5.16 (iii)]).

Finally, let us formulate the preceding general results in the case when there
exists a recurrent point for the Markov process {X,} (cf. Example 2.2).

COROLLARY 2. Assume that there exists a recurrent point a € S satisfying the
assumptions made in Example 2.2. Then all skeleton chains {X s}, 6>0, possess
an essentially unique invariant measure n and they all are n-recurrent. Moreover
if E,T{}}is finite for some 6>0, then n(S)< oo and for any finite, signed measure
4 on # satisfying A(S)=0 and
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(2.33) Eli.T{a} < 0,

we have (2.8), and there exists a non-negative transition kernel G satisfying
[A|G(S)< o0 and (2.9).
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