A NON-SEPARABLE MEASURABLE CHOICE PRINCIPLE RELATED TO INDUCED REPRESENTATIONS

ESBEN T. KEHLET

1. Introduction.

Let G be a locally compact group, H a closed subgroup, K a topological group, and u a continuous homomorphism of H into K. We shall call a map P of G into K a ϱ -extension of u, if it is an extension of u satisfying

$$\forall g \in G \ \forall h \in H$$
: $P(gh) = P(g)u(h)$.

If T is a transversal containing the identity for the quotient map $\pi: G \to G/H$, then any identity preserving map of T into K is the restriction of a unique ϱ -extension, and conversely, if P is a ϱ -extension of an isomorphism, then the counter image of the identity is a transversal.

In some cases ϱ -extensions with useful continuity or measurability properties are known to exist, e.g. if G has countable basis for the topology, see [19, p. 104] and [20, p. 289], or if G is abelian and K = T or $K =]0, \infty[$, cf. also [9]. The main result of the paper is an existence theorem of this type in the case where K is the unitary group of a von Neumann algebra with the ultraweak topology, and in the case where K is a closed subgroup of the unitary group of a von Neumann algebra with separable predual.

In some cases we can deduce the existence of measurable cross sections; and ϱ -extensions can be utilized in the theory of induced representations in much the same way as Borel cross sections are used in the case of second countable groups, cf. [19], [20]. We give some examples, among these a generalization of Theorem 8.2 of [20], cf. [2] Theorem 2.3, dropping the condition of countable basis on the groups but keeping it on the Hilbert space. This combined with results of Blattner [3] makes the little group method, [20] Theorem 8.4, work for σ -compact groups.

In a following paper we shall give another proof of the Mackey-Blattner-Nielsen theorem [24], cf. [25].

Most of our methods are borrowed from I. Segal's proof of the imprimitivity theorem [26, pp. 441–447], used here on an induced representation, and some

Received October 8, 1976; in revised form September 5, 1977.

of our results are implicitly given there. We also use the Aumann-von Neumann measurable choice principle [1], used in similar contexts in [14], [28] and [12]. We use freely [6], [7], [8], [10], and [11]. For the definition of induced representations in the non-separable case, see e.g. [24] section 2.

Professor Tatsuuma has kindly informed me that Takesaki and he has obtained (unpublished) Theorem 1 (a) of this paper some years ago, utilizing approximate cross sections, and not using the Aumann-von Neumann theorem.

2. Preliminaries.

If T is a locally compact space, μ a positive Radon measure on T, and S a topological space, we call a map f of T into S Lusin measurable if for any $\varepsilon > 0$ any compact subset of T is the union of a compact set on which f is continuous and a set with measure less than ε , cf. [6]. If S is metrizable with countable basis, we usually just write measurable. If f is a Hilbert space and f is a measurable field when f is Lusin measurable for each f is a measurable subset of f, the essential measure of f is the supremum of the measures of the compact subsets of f, cf. [7]; we call f essential, if any nonempty relatively open subset has positive essential measure.

An essential value of a Lusin measurable map f of T into S is a point $s \in S$ such that the counter image of any open neighbourhood of s has positive essential measure. The set of essential values of f is the closure of the set of values of f on essential compact (or measurable) sets on which f is continuous. Locally equivalent maps have the same essential values, and any Lusin measurable map is locally equivalent to a map taking essential values only. As in [6] $\mathscr{L}^{\infty}(\mu)$ denotes the set of measurable complex functions on f with a bounded set of essential values, and f denotes the f classes with respect to equality locally almost everywhere (l.a.e.) of functions in f f classes

Now assume given a locally compact group G with left Haar measure dg and module Δ_G , and a closed subgroup H with left Haar measure dh and module Δ_H . Let π denote the quotient map of G onto G/H.

Choose a continuous ϱ -extension $\varrho: G \to]0, \infty[$ of $h \mapsto \Delta_H(h)\Delta_G(h)^{-1}$, $h \in H$; define a continuous function $\kappa: G \times G/H \to]0, \infty[$ by

$$\varkappa(g,\pi(k)) = \varrho(gk)\varrho(k)^{-1}, \quad g,k \in G,$$

and define a Radon measure λ on G/H by

$$\int_{G/H} \int_{H} f(gh) \, dh \, d\lambda \big(\pi(g) \big) \, = \, \int_{G} f(g) \varrho(g) \, dg, \quad f \in \mathscr{K}(G) \, .$$

The measure λ is quasi-invariant and

$$\int_{G/H} \varphi(g^{-1}x) d\lambda(x) = \int_{G/H} \varphi(x) \varkappa(g,x) d\lambda(x), \quad \varphi \in \mathscr{K}(G/H), g \in G,$$

cf. [9], [17], or [8].

Let u be a strongly continuous unitary representation of H on the non-zero Hilbert space h(u).

Let $\mathscr{F}(u)$ denote the space of Lusin measurable functions $f: G \to h(u)$ satisfying

$$\forall g \in G \ \forall h \in H \colon f(gh) = u(h)^{-1} f(g)$$

and

$$\int_{G/H} \|f(g)\|^2 d\lambda(\pi(g)) < \infty.$$

Let h(ind u) denote the Hilbert space of classes modulo equality l.a.e. of functions in $\mathcal{F}(u)$. We use the same notation for operators on $\mathcal{F}(u)$ respecting the equivalence classes and the corresponding operators on h(ind u).

The induced representation $\operatorname{ind}_{H\to G} u = U$ is defined by

$$(U(g)f)(k) = \varkappa(g^{-1}, \pi(k))^{\frac{1}{2}} f(g^{-1}k), \quad f \in \mathcal{F}(u), \ g, k \in G.$$

Define

$$(\varphi\xi)^{\mathbf{u}}(g) = \int_{H} \varphi(gh)u(h)\xi\,dh, \quad \varphi \in \mathcal{K}(G), \ \xi \in h(u) \ .$$

Then $(\varphi \xi)^{\mu}$ is continuous and belongs to $\mathscr{F}(u)$, the corresponding elements in $h(\operatorname{ind} u)$ span $h(\operatorname{ind} u)$, and for each $g \in G$ the values $(\varphi \xi)^{\mu}(g)$ span h(u) [19], [5].

LEMMA 1. Let A be a bounded measurable field: $G \to \mathcal{L}(h(u))$ with the property

$$\forall g \in G, \ \forall h \in H: \quad A(gh) = u(h)^{-1}A(g)u(h)$$
.

If A(g)f(g) = 0 l.a.e. for every $f \in \mathcal{F}(u)$, $A(g)\xi = 0$ l.a.e. for every $\xi \in h(u)$, and A(g) = 0 l.a.e. if also h(u) is separable.

PROOF. For $\varphi \in \mathcal{K}(G)$, $\xi \in h(u)$ and F continuous in $\mathcal{F}(u)$ we have

$$0 = \int_{G/H} (A(g)(\varphi \xi)^{u}(g) | F(g)) d\lambda(\pi(g))$$
$$= \int_{G/H} \int_{H} \varphi(gh)(u(h)A(gh)\xi | F(g)) dh d\lambda(\pi(g)),$$

so

$$0 = \int_{C} \varphi(g) (A(g)\xi | F(g)) \varrho(g) dg.$$

Since $g \mapsto (A(g)\xi \mid F(g))\varrho(g)$ is locally integrable, the last formula holds for any $\varphi \in \mathcal{L}^{\infty}(G)$ with compact support. So $A(g)\xi = 0$ on any essential compact set K, on which $g \mapsto A(g)\xi$ is continuous.

Define

$$p_{u}(\varphi)f = (\varphi \circ \pi)f, \quad \varphi \in \mathscr{L}^{\infty}(\lambda), f \in h(\text{ind } u).$$

Then $p_{\mu}(\varphi) = 0$ if and, by Lemma 1, only if $\varphi = 0$ λ l.a.e.

Thus p_u defines an isomorphism and isometry (also denoted p_u) of $L^{\infty}(\lambda)$ onto a subalgebra \mathscr{A} of $\mathscr{L}(h(\operatorname{ind} u))$. Since p_u is continuous from $\sigma(L^{\infty}(\lambda), L^1(\lambda))$ to weak operator topology, the unit sphere in \mathscr{A} is strongly closed and \mathscr{A} is a von Neumann algebra.

Since $U(g) \mathscr{A} U(g)^{-1} = \mathscr{A}$, $g \in G$, and since the only U(g) invariant projections in \mathscr{A} are 0 and 1, because λ is ergodic, \mathscr{A}' is homogeneous, say of type I_n . It follows from Segal's proof of the imprimitivity theorem [26] combined with the Mackey-Blattner theorem [20], [4] that the multiplicity n of \mathscr{A} is equal to the dimension of h(u). We obtain it here as a corollary of Theorem 1.

Let h_n denote some Hilbert space with dimension n; there exists a unitary map D of $L^2(\lambda, h_n)$ onto $h(\operatorname{ind} u)$ intertwining the representation of $L^{\infty}(\lambda)$ as multiplication operators on $L^2(\lambda, h_n)$ and p_u , that is

$$D(\varphi f) = (\varphi \circ \pi)Df, \quad \varphi \in L^{\infty}(\lambda), \ f \in L^{2}(\lambda, h_{n}).$$

To any operator A in the commutant u(H)' of u(H) we define an operator $\hat{A} \in \mathcal{L}(h(\operatorname{ind} u))$ by $(\hat{A}f)(g) = A(f(g))$, $f \in \mathcal{F}(u)$. Then $\hat{A} \in U(G)' \cap \mathcal{A}'$, and $A \mapsto \hat{A}$ is an injective *-homomorphism, onto $U(G)' \cap \mathcal{A}'$ by the Mackey-Blattner theorem [20], [4]. We sketch a proof. It is enough to show that to any closed $U(G) \cup \mathcal{A}$ -invariant subspace L of $h(\operatorname{ind} u)$ there exists a projection $E \in u(H)'$, such that \hat{E} is the projection on L.

If K is a u(H)-invariant closed subspace of h(u), let K denote the set of classes of functions in $\mathcal{F}(u)$ with all essential values in K. If $f \in \mathcal{F}(u)$ and L is a compact set on which f is continuous, then f is continuous on LH; if L is essential then so is LH, since if O is open any compact subset of $OH \cap L$ is covered by finitely many translates of $O \cap LH$, so $OH \cap L$ has essential measure zero if $O \cap LH$ has. Thus any function in $\mathcal{F}(u)$ is locally equivalent to a function in $\mathcal{F}(u)$ taking essential values only. This implies that if $F \in \mathcal{L}(h(u))$ is the projection on K, then \hat{F} is the projection on K. If L is a $U(G) \cup \mathcal{L}$ -invariant closed subspace of $h(\operatorname{ind} u)$ let L denote the closed subspace of h(u) spanned by the essential values of functions in $\mathcal{F}(u)$ with equivalence classes in L. Then L is u(H)-invariant and $L \subseteq L$. To show equality it is enough to show that any essential value of any function $h \in \mathcal{F}(u)$ with class orthogonal to L is orthogonal to L. So assume that there exists $f \in \mathcal{F}(u)$ with class in L, and

essential values x of f and y of h, with $(x|y) \neq 0$; then there exist compact sets K and M with positive measure, such that $(f(k)|h(m)) \neq 0$ when $k^{-1} \in K$ and $m \in M$; since $||1_M * 1_K||_1 \neq 0$ there exists $a \in G$ such that $N = aK^{-1} \cap M$ has positive measure, but this contradicts

$$\int_{G/H} \varphi \circ \pi(g) ((U(a)f)(g) | h(g)) d\lambda(\pi(g)) = 0,$$

if $\varphi \in \mathscr{L}^{\infty}(\lambda)$ is chosen such that

$$\varphi \circ \pi(g) = \overline{\operatorname{sign} ((U(a)f)(g) | h(g))} 1_{N}(\pi(g)).$$

3. The choice principle.

THEOREM 1. Let G be a locally compact group, H a closed subgroup, and u a strongly continuous unitary representation of H on a Hilbert space h(u).

- (a) There exists a ϱ -extension P of u with values in u(H)'', and with $g \mapsto P(g)\xi$ and $g \mapsto P(g)^*\xi$ Lusin measurable for each $\xi \in h(u)$.
- (b) If h(u) is separable, or if H is σ -compact and the center of u(H)'' is of countable type, then P can be chosen as a Lusin measurable map into the ultraweak closure $\overline{u(H)}$ of u(H) in u(H)''.

Remark. We can obtain P with the following measurability property:

To each compact $K \subseteq G$ there exists a family $(h_i)_{i \in I}$ of pairwise orthogonal, separable closed subspaces of h(u), each invariant under P(K) and $P(K)^*$, with sum h(u), and such that each map $k \mapsto P(k) | h_i$ is measurable.

Before the proof of Theorem 1 we mention some consequences.

COROLLARY 1. $(\tilde{P}f)(\pi(g)) = P(g)(f(g))$ defines a map of $\mathcal{F}(u)$ onto $\mathcal{L}^2(\lambda, h(u))$ and a unitary map of $h(\operatorname{ind} u)$ on $L^2(\lambda, h(u))$, transforming p_u into the representation of $L^{\infty}(\lambda)$ as multiplication operators on $L^2(\lambda, h(u))$, and for each $A \in u(H)'$ transforming the operator \hat{A} given by $(\hat{A}f)(g) = A(f(g))$, into the operator on $L^2(\lambda, h(u))$ corresponding to the constant field $x \mapsto A$ on G/H. The multiplicity n of $p_u(L^{\infty}(\lambda))$ is equal to the dimension of h(u).

PROOF. Straight forward verification on basis on Theorem 1(a).

Corollary 2. Assume given a continuous homomorphism ψ of H into a locally compact group K with countable basis. ψ has a measurable ϱ -extension.

PROOF. Let Φ be a homeomorphism and isomorphism of K with a closed

subgroup of the unitary group on a separable Hilbert space, e.g. the left regular representation. Choose a measurable ρ -extension P of $\Phi \circ \psi$ and use $\Phi^{-1} \circ P$.

COROLLARY 3. Let N be a closed normal subgroup of H, and assume H/N has countable basis. There exists a measurable transversal and a Lusin measurable cross section for the natural map $G/N \rightarrow G/H$.

PROOF. Let φ denote the natural map $G \to G/N$. Choose a measurable ϱ -extension $P: G \to H/N$ of $\varphi \mid H$. Then $P^{-1}(\varrho N)$ has the form $\varphi^{-1}(T)$ with T measurable in G/N; $\varphi(\pi^{-1}(x))$ intersects T in a unique point c(x) for each $x \in G/H$. As $g \mapsto gP(g)^{-1}$ is continuous where P is, and constant on H cosets, it defines a Lusin measurable cross section $G/H \to G/N$.

REMARK. Conversely, given a Lusin measurable cross section c with $c(\pi(e)) = \varphi(e)$, $g \mapsto [g^{-1}c(\pi(g))]^{-1}$ defines a Lusin measurable ϱ -extension. (To K compact in G we can choose a compact subset L of $\pi(K)$ such that $\pi^{-1}(L) \cap K$ has almost the same measure as K and $c \mid L$ is continuous, so $c \circ \pi$ is measurable.).

The case $N = \{e\}$ should be compared with [23] and [13].

Corollary 4. If H has countable basis, any continuous homomorphism ψ of H into a topological group allows a Lusin measurable ϱ -extension.

PROOF. Choose a Lusin measurable ϱ -extension P of $h \mapsto h$ and use $\psi \circ P$.

PROOF OF THEOREM 1. We split the proof in 7 steps.

STEP 1. We prove, after I. Segal [26, p. 445], that if G is σ -compact and h(u) is separable, then the multiplicity n of \mathscr{A} is $\leq \aleph_0$.

By the Mackey-Blattner theorem $\mathscr{A}' \cap U(G)'$ is of countable type, and so has a separating sequence $(x_i)_{i \in \mathbb{N}}$ of vectors. Then $\{U(g)x_i \mid g \in G, i \in \mathbb{N}\}$ is σ -compact and metric and so contains a dense sequence $(y_i)_{i \in \mathbb{N}}$.

Let T be a projection in \mathscr{A}' , and assume $Ty_j = 0$, $j \in \mathbb{N}$. Define $S \in \mathscr{A}' \cap U(G)'$ by

$$S = \sup_{g \in G} U(g)TU(g)^{-1};$$

since $U(g)TU(g^{-1})x_i=0$ for each $g \in G$ and $i \in \mathbb{N}$, $Sx_i=0$ for each i, S=0, and T=0. Thus \mathscr{A}' is of countable type, and $n \leq \aleph_0$.

STEP 2. If h(u) is separable and $n \le \aleph_0$, then $n = \dim h(u)$ and u has a Lusin measurable ϱ -extension with values in u(H).

The operator $D: L^2(\lambda, h_n) \to h(\operatorname{ind} u)$ introduced in Section 2 can be disintegrated. We follow the proof in [10, pp. 167-168], making all the choices of functions in the start of the proof in $\mathscr{F}(u)$, making all exceptional local null sets counter images under π of local λ null sets, and using the axiom of choice to get cross sections over these. This way we obtain a bounded measurable map $\tilde{D}: G \to \mathscr{L}(h_n, h(u))$ with the properties: if $f \in \mathscr{L}^2(\lambda, h_n)$, then $g \mapsto \tilde{D}(g)(f \circ \pi(g))$ is a function $G \to h(u)$, whose class is the image under D of the class of f, and

$$\forall g \in G \ \forall h \in H: \quad \tilde{D}(gh) = u(h)^{-1}\tilde{D}(g)$$
.

Then $g \mapsto \tilde{D}(g)^*$ is a bounded measurable map $\tilde{D}^*: G \to \mathcal{L}(h(u), h_n)$; if $f \in \mathcal{F}(u)$, then $\pi(g) \mapsto \tilde{D}^*(g)(f(g))$ is a well-defined function in $\mathcal{L}^2(\lambda, h_n)$ whose class in the image under D^* of the class of f[10, p. 161]. Now $g \mapsto \tilde{D}^*(g)\tilde{D}(g)$ is a disintegration of $1 \in \mathcal{L}(h_n)$, so $\tilde{D}(g)$ is an isometry l.a.e. [10, p. 160] and $g \mapsto \tilde{D}(g)\tilde{D}^*(g)$ is a disintegration of $1 \in \mathcal{L}(h(u))$, satisfying

$$\forall\,g\in G\,\,\forall\,h\in H\colon\quad \tilde{D}(gh)\tilde{D}^*(\dot{gh})\,=\,u(h)^{-1}\tilde{D}(g)\tilde{D}^*(g)u(h)\;.$$

Subtracting the constant field $g \mapsto 1$, and using Lemma 1 we see that $\tilde{D}(g)$ is unitary outside the counter image of a local λ null set, which we may assume empty.

This proves $n = \dim h(u)$, when both are $\leq \aleph_0$, and so by Step 1 when h(u) is separable and G is σ -compact.

Define $C(g) = \tilde{D}(e)\tilde{D}(g)^{-1}$; then C is a measurable unitary ϱ -extension of u.

LEMMA 2. Let S be a locally compact space and v a Radon measure on S. Let T be a topological space homeomorphic to a Borel set in a Polish space. Let M be a metrizable space, F a Borel set in M, and f a map: $S \times T \rightarrow M$. Assume that

$$\forall s \in S \ \exists t \in T: \ f(s,t) \in F, \ and$$

 $\forall s \in S: t \mapsto f(s,t)$ is continuous, and

 $\forall t \in T: s \mapsto f(s,t)$ is measurable.

Then there exists a measurable map $\varphi: S \to T$, with the property

$$\forall s \in S: f(s, \varphi(s)) \in F$$
.

PROOF. By a result of Mackey [19, Lemma 9.2] $f^{-1}(F)$ is Borel in the product Borel structure on $S \times T$, where we use the Borel structure of measurable sets on S. Choose a local null set N and a locally countable family $(K_i)_{i \in I}$ of pairwise disjoint compact sets in S, with $S = \bigcup_{i \in I} K_i \cup N$, and choose φ on each K_i by the Aumann-von Neumann measurable choice principle [1], and on N by the axiom of choice.

Now let T denote the unitary group on h(u), and let $f: G/H \times T \to T/\overline{u(H)}$ be defined by $f(\pi(g),Q) = QC(g)\overline{u(H)}$, $g \in G$, $Q \in T$. The lemma ensures the existence of a map $A: G/H \to T$, such that $A(\pi(g))C(g)\overline{u(H)} = \overline{u(H)}$ for all $g \in G$, and $A(\pi(e)) = 1$.

The map $g \mapsto P(g) = A(\pi(g))C(g)$ is a Lusin measurable ϱ -extension of u with values in u(H).

STEP 3. If G is σ -compact, there exists a ϱ -extension P of u with values in u(H)'', and with $g \mapsto P(g)\xi$ and $g \mapsto P(g)^*\xi$ Lusin measurable for each $\xi \in h(u)$.

First note that H is σ -compact.

If u(H)'' has separable predual, u is quasi-equivalent to a representation on a separable Hilbert space k, i.e. there exists an isomorphism Φ of u(H)'' with a sub von Neumann algebra of $\mathcal{L}(k)$. By Step 1 and Step 2 there exists a measurable ϱ -extension R of $\Phi \circ u$ with values in $\overline{\Phi \circ u(H)}$; then $\Phi^{-1} \circ R$ is a measurable ϱ -extension of u with values in $\overline{u(H)}$.

If the center of u(H)' is of countable type then u(H)' contains a projection E of countable type with central carrier 1 [10, Lemme 7, p. 236]; Eh(u) is separable since cyclic subspaces under u(H) are, so $A \mapsto A \mid Eh(u)$ defines a quasi-equivalence as wanted.

In any case there exists a family $(E_i)_{i \in I}$ of pairwise orthogonal projections of countable type in the center of u(H)' with sum 1. The direct sums P(g) of the corresponding unitary operators $P_i(g)$ on $E_ih(u)$ define a ϱ -extension P of u with values in u(H)'', such that $g \mapsto P(g)\xi$ and $g \mapsto P(g)^*\xi$ are Lusin measurable for each $\xi \in h(u)$.

STEP 4. Completion of the proof of Theorem 1 (a).

Let K be a compact set in G/H. Choose an open σ -compact subgroup G_0 of G with $\pi(G_0) \supseteq K$. Let $H_0 = G_0 \cap H$ and $u_0 = u \mid H_0$. Choose a ϱ -extension P_0 of u_0 with values in $u_0(H_0)'' \subseteq u(H)''$, such that $g \mapsto P_0(g)\xi$ and $g \mapsto P_0(g)^*\xi$ are Lusin measurable on G_0 for each $\xi \in h(u)$.

Then $gh \mapsto P_0(g)u(h)$ is a well-defined map $P: G_0H \to u(H)''$, and P(ghk) = P(gh)u(k) when $k \in H$. Let $\xi \in h(u)$ and a compact set $L \subseteq G_0H$ be given; choose L_0 compact in G_0 with $L_0H = LH$, and put $M = (L_0^{-1}L) \cap H$; choose a dense sequence $(x_i)_{i \in \mathbb{N}}$ in $u(M)\xi$ and a compact set $Q_0 \subseteq L_0$, such that $Q = (Q_0H) \cap L$ has almost the same measure as L and $g \mapsto P_0(g)x_i$ is continuous on Q_0 for each i; then $g \mapsto P_0(g)u(h)\xi$ is continuous on Q_0 for each $h \in M$, $(g,h) \mapsto P(gh)\xi$ is continuous on $Q_0 \times M$, and $gh \mapsto P(gh)\xi$ is continuous on Q.

So $g \mapsto P(g)\xi$ and (similarly) $g \mapsto P(g)^*\xi$ are Lusin measurable on $G_0H \supseteq \pi^{-1}(K)$ for each $\xi \in h(u)$.

Now write G/H as $\bigcup_{i \in I} K_i \cup N$, where $(K_i)_{i \in I}$ is a locally countable family of pairwise disjoint compact sets and N is a local λ null set. Define a map Q as P above on $\pi^{-1}(K_i)$ for each $i \in I$, and by choice of an arbitrary cross section on $\pi^{-1}(N)$. Finally define $P = Q(e)^{-1}Q$.

STEP 5. $n = \dim h(u)$.

This is contained in Corollary 1, which is an immediate consequence of Theorem 1 (a).

STEP 6. If h(u) is separable, then u has a Lusin measurable ϱ -extension with values in $\overline{u(H)}$.

In fact $n \leq \aleph_0$ by Step 5, so Step 2 applies.

STEP 7. Completion of the proof of Theorem 1 (b).

Assume H is σ -compact and the center of u(H)'' is of countable type. As in Step 3 there exists an isomorphism Φ of u(H)'' with a von Neumann algebra on some separable Hilbert space. By Step 6 there exists a measurable ϱ -extension R of $\Phi \circ u$ with values in $\overline{\Phi} \circ u(H)$; then $\Phi^{-1} \circ R$ is a measurable ϱ -extension of u with values in $\overline{u(H)}$.

4. The groupoid viewpoint. Some commutants.

Let the locally compact group G, the closed subgroup H, and the representation u of H be given as above. Let a ϱ -extension P of u be given with values in u(H)'' and such that P and P^* are measurable fields.

It is wellknown that products of measurable fields are measurable fields (cf. the proof in the beginning of Step 4 of the proof of Theorem 1). Also if Q is any Lusin measurable map on G, then $(g,k) \mapsto Q(gk)$ is Lusin measurable on $G \times G$.

So $(g_1, g_2) \mapsto P(g_1g_2)P(g_2)^{-1}$ is a measurable field on $G \times G$, constant on $\{e\} \times H$ cosets, and defines a measurable field K on $G \times G/H$ with values in u(H)'', also measurable in the variables separately. K satisfies:

$$\forall g_1, g_2 \in G \ \forall x \in G/H: \ K(g_1g_2, x) = K(g_1, g_2x)K(g_2x)$$

i.e. K is a representation of the associated groupoid, cf. [18]. Define the operator $K(g, \lambda)$ on $L^2(\lambda, h(u))$ by

$$(K(g,\lambda)f)(x) = K(g,x)f(x), f \in \mathcal{L}^2(\lambda,h(u)), g \in G, x \in G/H$$

and define V(g) on $L^2(\lambda, h(u))$ by

$$(V(g)f)(x) = \varkappa(g^{-1},x)^{\frac{1}{2}}f(g^{-1}x)$$
.

Then just as in the second countable case

 $V(g)K(g,\lambda) = \tilde{P} \operatorname{ind} u(g)\tilde{P}^{-1}.$

PROPOSITION 1. The von Neumann algebra generated by $\operatorname{ind} u(G)$ and $p_u(L^{\infty}(\lambda))$ is spatially isomorphic to the von Neumann tensor product $\mathcal{L}(L^2(\lambda)) \otimes u(H)''$.

PROOF. By Corollary 1 of Theorem 1, and the Mackey-Blattner Theorem (cf. Section 2) \tilde{P} takes ind $u(G)' \cap p_u(L^{\infty}(\lambda))'$ onto $1 \otimes u(H)'$.

A special case of this is [27, Lemma 10.1].

PROPOSITION 2. (cf. [27], [24]). To any operator $A \in \mathcal{L}(h(\text{ind } u))$ commuting with $p_u(L^{\infty}(\lambda))$ there exists a bounded measurable field $a: G \to \mathcal{L}(h(u))$, such that for each $f \in \mathcal{F}(u)$ the function $g \mapsto a(g)(f(g))$ is a function in $\mathcal{F}(u)$ the class of which is the image under A of the class of f, and such that

$$\forall g \in G \ \forall h \in H : \ a(gh) = u(h)^{-1}a(g)u(h)$$
.

PROOF. By [21] or [29] any operator on $L^2(\lambda, h(u))$ commuting with all multiplication operators can be disintegrated. Transformation with \tilde{P} gives the proposition.

5. Mackey's Theorem 8.2.

In this section H is a locally compact group; U = U(h) will denote the unitary group on a Hilbert space h, with ultraweak topology; T = U(C) will be identified with the center of U(h).

By a multiplier on $H \times H$ we understand a map $\omega: H \times H \to T$ measurable with respect to Haar measure on $H \times H$, and satisfying

$$\forall \, h_1, h_2, h_3 \in H \colon \omega(h_1, h_2) \omega(h_1 h_2, h_3) \, = \, \omega(h_1, h_2 h_3) \omega(h_2, h_3)$$

and

$$\omega(e,e) = 1.$$

We review some known facts, cf. [20], [16].

From $\omega(h, e)\omega(h, k) = \omega(h, k)\omega(e, k)$ we see that $\omega(h, e) = \omega(e, h) = 1$ for all $h \in H$.

The map $k \mapsto \omega(h, k)$ is measurable on H for each $h \in H$. Without lack of generality we assume, to show this, that H is σ -compact. Let H_0 denote the set

$$H_0 = \{ h \in H \mid k \mapsto \omega(h, k) \text{ is measurable} \}.$$

Since $\omega(h_1h_2,k) = \omega(h_1,h_2)^{-1}\omega(h_1,h_2k)\omega(h_2,k)$, and $\omega(h^{-1},k) = \omega(h,h^{-1}k)^{-1}\omega(h,h^{-1})$, H_0 is a subgroup of H. By the Fubini theorem the complement of H_0 in H is a local null set, so $H_0 = H$.

An ω -representation on a Hilbert space h = h(u) is a map $u: H \to U(h)$ satisfying $\forall h, k \in H: u(h)u(k) = \omega(h, k)u(hk)$, and $\forall \xi \in h(u): h \mapsto u(h)\xi$ is Lusin measurable.

When ω is a multiplier on $H \times H$, γ_{ω} defined by

$$(\gamma_{\omega}(h)f)(k) = \omega(h, h^{-1}k)f(h^{-1}k), \quad h, k \in H, f \in \mathcal{L}^2(H),$$

is an ω -representation of H. The Lusin measurability of $h\mapsto \gamma_\omega(h)f$ follows from

LEMMA 3. Let S and T be locally compact spaces with Radon measures α and β respectively. Let φ be a bounded measurable complex function on $S \times T$, and assume that $t \mapsto \varphi(s,t)$ is measurable for each $s \in S$. Define the operator $\varphi(s,\beta)$ on $L^2(\beta)$ by

$$(\varphi(s,\beta)f)(t) = \varphi(s,t)f(t), \quad f \in \mathcal{L}^2(\beta)$$
.

Then $s \mapsto \varphi(s, \beta) f$ is Lusin measurable for each $f \in L^2(\beta)$.

PROOF. It is enough to observe that if K is a compact subset of S and L is a compact subset of T, then there exists a bounded sequence $(\varphi_n)_{n\in\mathbb{N}}$ of functions in $\mathcal{K}(S\times T)$ tending to φ almost everywhere on $K\times L$. (We owe this simple proof to C. Berg).

A projective representation of H on h is a continuous homomorphism: $H \to U(h)/T$ (with quotient topology).

When v is an ω -representation, $h \mapsto v(h)\mathsf{T}$ is a projective representation, see [16] Theorem 3. For completeness we sketch a proof.

It is enough to show that to any $\xi \in h(v)$ there exists a set $A \subseteq G$ with positive essential measure, such that v maps $A^{-1}A$ into $\{\eta \in h(v) \mid \|\eta - \mathsf{T}\xi\| < 1\}$; choose a compact set $K \subseteq G$ with positive measure, such that $g \mapsto v(g)\xi$ is continuous on K, and a sequence $(g_i)_{i \in \mathbb{N}}$ of elements in K with $\{g_i\xi \mid i \in \mathbb{N}\}$ dense in $K\xi$; define

$$A = \{ y \in G \mid \exists t \in T : ||v(g)\xi - t\xi|| < \frac{1}{2} \};$$

then A is measurable, and has positive essential measure because $K \subseteq \bigcup_{i \in \mathbb{N}} g_i A$; and if $a, b \in A$, $s, t \in \mathbb{T}$ then

$$\|\dot{v}(a^{-1}b)\xi - t^{-1}s\omega(a^{-1},b)^{-1}\omega(a,a^{-1})\xi\|$$

$$\leq \|v(b)\xi - s\xi\| + \|t\xi - v(a)\xi\|.$$

When w is a projective representation, $\tilde{H} = \{(h, u) \in H \times U \mid w(h) = u\mathsf{T}\}$ is a closed subgroup of $H \times U$; $(h, u) \mapsto h$ is a continuous homomorphism of \tilde{H} onto H with kernel $\{(e, t) \mid t \in \mathsf{T}\}$, open since the image of $(V \times W) \cap \tilde{H}$ is $V \cap w^{-1}(W)$, so \tilde{H} is an extension of T by H, cf. [15]. The homomorphism $\tilde{w}: (h, u) \mapsto u$ restricts to $t \mapsto t1$ on (the copy in \tilde{H} of) T , and $\tilde{w}(\tilde{h})\mathsf{T} = w(\tilde{h}\mathsf{T})$, $\tilde{h} \in \tilde{H}$. \tilde{H} is locally compact by [22, p. 52].

When \tilde{H} is an extension of T by H there exists a Lusin measurable cross section $c: H \to \tilde{H}$ with c(e) = e, by Corollary 3 of Theorem 1, cf. [16]. We give a direct proof, related to the proof by Takesaki and Tatsuuma of Theorem 1 (a). Choose a function $f \in \mathcal{K}(G)$ with f(t) = t, $t \in T$; define

$$d(g) = \int_{\mathsf{T}} f(gt)t^{-1} dt;$$

then $g \mapsto g(\operatorname{sign} d(g))^{-1}$ defines a continuous cross section in a neighbourhood of T; from this it is easy to construct a Lusin measurable cross section.

When c is a Lusin measurable cross section with c(e) = e, then $(h_1, h_2) \mapsto c(h_1)c(h_2)c(h_1h_2)^{-1}$ defines a multiplier ω_c .

If v is an ω -representation and \widetilde{H} and \widetilde{v} are the extension and the representation corresponding to $h \mapsto v(h)\mathsf{T}$, and c is a Lusin measurable cross section $H \to \widetilde{H}$ with c(e) = e, then $\widetilde{v}(c(h))\mathsf{T} = v(h)\mathsf{T}$, and $h \mapsto d(h) = c(h)\widetilde{v}(c(h))^{-1}v(h)$ defines a new Lusin measurable cross section with $\omega_d = \omega$ and $\widetilde{v} \circ d = v$.

When \tilde{H} is an extension of T by H and c is a Lusin measurable cross section with c(e)=e, then $\tilde{h}\mapsto c(\tilde{h}\mathsf{T})^{-1}\tilde{h}$ is measurable $\tilde{H}\to\mathsf{T}$ (see remark after Corollary 3 of Theorem 1), and for any ω_c -representation v of H the map $\tilde{h}\mapsto v(\tilde{h}\mathsf{T})c(\tilde{h}\mathsf{T})^{-1}\tilde{h}$ defines a representation \tilde{v} of \tilde{H} with $\tilde{v}(t)=t\cdot 1$, $t\in\mathsf{T}$, and $\tilde{v}\circ c=v$. Thus $x\mapsto x\circ c$ is a bijection of the set of representations of \tilde{H} restricting to $t\mapsto t\cdot 1$ on T onto the set of ω_c -representations of H. E.g. γ_{ω_c} corresponds to the representation of \tilde{H} induced from the representation $t\mapsto t$ of T on C.

PROPOSITION 3. Let H be locally compact group, N a closed normal subgroup, and v an irreducible representation of N on a separable Hilbert space h(v). Assume that the class of v is invariant under H, i.e.

$$\forall h \in H \exists u(h) \subset U(h(v)) \forall n \in N: \quad v(hnh^{-1}) = u(h)v(n)u(h)^{-1}.$$

Then there exists a multiplier representation w of H, which is also a ϱ -extension of v; the corresponding multiplier is constant on $N \times N$ cosets.

PROOF. Choose a sequence $(n_i)_{i \in \mathbb{N}}$ of elements in N such that $\{v(n_i) \mid i \in \mathbb{N}\}$ is dense in v(N). Define

$$\varphi_i(h, u) = v(hn_ih^{-1})uv(n_i)^{-1}u^{-1}, \quad h \in H, u \in U,$$

and let φ denote the continuous map $(h, u) \mapsto (\varphi_i(h, u))_{i \in \mathbb{N}}$ of $H \times U$ into the product of countably many copies of U. Since $\{v(n_i) \mid i \in \mathbb{N}\}$ is dense in v(N) and the class of v is invariant,

$$\varphi^{-1}(1) = \{(h, u) \in H \times U \mid \forall n \in N : v(hnh^{-1}) = uv(n)u^{-1}\}.$$

By Lemma 2 there exists a measurable map $a: H \to U$, such that $(h, a(h)) \in \varphi^{-1}(1)$, $h \in H$; we may assume $a \mid N = v$, because N is open or a local null set in H. Since v is irreducible, $h \mapsto a(h)T$ is a projective representation and $\varphi^{-1}(1)$ is the corresponding extension \tilde{H} of T by H.

Let \tilde{N} denote the counter image of N in \tilde{H} ; i.e.

$$\tilde{N} = \{(n, v(n)t) \mid n \in \mathbb{N}, t \in \mathsf{T}\}.$$

Then $(n, v(n)t) \mapsto t$ is a continuous homomorphism: $\widetilde{N} \to T$; let $q: \widetilde{H} \to T$ be a measurable ϱ -extension (Corollary 2 of Theorem 1). Define $W: \widetilde{H} \to U$ by $W(h, u) = q(h, u)^{-1}u$. W is measurable and constant on T cosets, and thus defines a measurable map $w: H \to U$. Then $w(h) = q(h, a(h))^{-1}a(h)$, $h \in H$, and straight forward computations show that w has the wanted properties.

Now let M be a closed subgroup of H. We shall say that a multiplier ω on $H \times H$ is adapted to M, if $\omega \mid M \times H$ is measurable with respect to Haar measure on $M \times H$.

LEMMA 4. Let ω be a multiplier on $H \times H$. There exists a measurable function $a: H \to T$, such that the multiplier

$$(h_1, h_2) \mapsto a(h_1)a(h_2)a(h_1h_2)^{-1}\omega(h_1, h_2)$$

on $H \times H$ is adapted to M. There exists an ω -representation v of H such that $v \mid M$ is a measurable field on M, if and only if ω is adapted to M. If ω is adapted to M, then $\omega \mid M \times M$ is a multiplier on $M \times M$, and the restriction to M of any ω -representation of H is an $\omega \mid M \times M$ -representation of M.

PROOF. Choose an extension \tilde{H} of T by H and a cross section $d: H \to \tilde{H}$ with $\omega_d = \omega$. Let \tilde{M} be the counter image of M in \tilde{H} ; then $\tilde{m} \mapsto \tilde{m} T$ is an open mapping of \tilde{M} onto M. Choose a Lusin measurable cross section $c: M \to \tilde{M}$ with c(e) = e, and define c(h) = d(h), $h \in H \setminus M$, and define $a = d^{-1}c$. Then c is Lusin measurable, and $(m, h) \mapsto c(mh)$ is Lusin measurable on $M \times H$ by a well known argument based on the homeomorphism $(m, h) \mapsto (m, mh)$, so ω_c is adapted to M.

Assume there exists an ω -representation v of H such that $v \mid M$ is a measurable field on M. Then $(m,h) \mapsto v(mh)$ is a measurable field on $M \times H$, and ω is adapted to M.

Now assume ω is adapted to M. Then $\gamma_{\omega} | M$ is a measurable field on M by Lemma 3, and $\omega | M \times M$ is measurable. In this case the cross section c can be chosen such that $\omega_{c|M} = \omega | M \times M$. Any ω -representation w of H has the form $\tilde{w} \circ c$ for some representation \tilde{w} of \tilde{H} ; hence $w | M = \tilde{w} \circ (c | M)$ is a measurable field on M.

Theorem 2. (cf. [20], [2]). Let H be a locally compact group, N a closed normal subgroup, ω a multiplier on $H \times H$ adapted to N, and v an irreducible $\omega \mid N \times N$ -representation of N on a separable Hilbert space h(v). Assume

$$\forall h \in H \ \exists u(h) \in U(h(v)) \ \forall n \in N$$
:

$$\omega(h,n)\omega(hn,h^{-1})\omega(h^{-1},h)^{-1}v(hnh^{-1}) = u(h)v(n)u(h)^{-1}.$$

Then there exist a multiplier ω_1 on $H \times H$ constant on $N \times N$ cosets and an $\omega \overline{\omega_1}$ -representation w of H extending v.

PROOF. Let \tilde{H} be an extension of T by H and c a cross section $H \to \tilde{H}$ with $\omega_c = \omega$ and c and $c \mid N$ Lusin measurable. Let \tilde{N} be the counter image of N in \tilde{H} , and let $\tilde{v} : \tilde{n} \mapsto v(\tilde{n}\mathsf{T})c(\tilde{n}\mathsf{T})^{-1}\tilde{n}$ be the representation of \tilde{N} corresponding to v. The class of \tilde{v} is invariant under \tilde{H} , $\tilde{v}(\tilde{h}\tilde{n}\tilde{h}^{-1}) = \tilde{u}(\tilde{h})\tilde{v}(\tilde{n})\tilde{u}(\tilde{h})^{-1}$, where $\tilde{u}(\tilde{h}) = u(\tilde{h}\mathsf{T})c(\tilde{h}\mathsf{T})^{-1}\tilde{h}$. So by Proposition 3 there exists a multiplier $\tilde{\omega}$ on $\tilde{H} \times \tilde{H}$ constant on $\tilde{N} \times \tilde{N}$ cosets and an $\tilde{\omega}$ -representation \tilde{w} of \tilde{H} extending \tilde{v} .

From $\tilde{w}(\tilde{h}\tilde{n}) = \tilde{w}(\tilde{h})\tilde{v}(\tilde{n})$ we get that $\tilde{h} \mapsto \tilde{w}(c(\tilde{h}\mathsf{T})) = \tilde{w}(\tilde{h})\tilde{h}^{-1}c(\tilde{h}\mathsf{T})$ is measurable and constant on T cosets, so $w = \tilde{w} \circ c$ is measurable on H; also $w(n) = \tilde{v}(c(n)) = v(n)$ when $n \in N$.

Define $\omega_1(h_1, h_2) = \tilde{\omega}(c(h_1), c(h_2))$, $h_1, h_2 \in H$; then ω_1 is measurable and constant on $N \times N$ cosets, and w is an $\omega \omega_1$ -representation.

As noted in [2] Theorem 8.3 of [20] is easily extended. Concerning Theorem 8.1 of [20], see [3] and [2]. Combination gives a generalization of Theorem 8.4 of [20] valid (in the case of ordinary representations) for a locally compact group G and a closed normal subgroup N of type I with \hat{N}/G almost Hausdorff, provided that for any $\psi \in \hat{N}$ the Hilbert space of ψ is separable and the coset space G/H of G over the isotropy group $H = G_{\psi}$ of ψ is σ -compact.

REFERENCES

- R. J. Aumann, Measurable utility and the measurable choice theorem, in La Décision, 2: Agrégation et Dynamique des Ordres de Préférence (Actes Colloq. Int. Aix-en-Provence, 1967), 15-26, Éditions du C.N.R.S., Paris, 1969.
- L. Baggett and A. Kleppner, Multiplier representations of Abelian groups, J. Functional Analysis 14 (1973), 299-324.
- 3. R. J. Blattner, Group extension representations and the structure space, Pacific J. Math. 15 (1965), 1101-1113.
- 4. R. J. Blattner, On a theorem of G. W. Mackey, Bull. Amer. Math. Soc. 68 (1962), 585-587.
- 5. R. J. Blattner, On induced representations, Amer. J. Math. 83 (1961), 79-98.
- 6. N. Bourbaki, Intégration, Chap. 1-4, 2. ed. (Act. Sci. Ind. 1175), Hermann, Paris, 1965.
- 7. N. Bourbaki, Intégration, Chap. 5, (Act. Sci. Ind. 1244), Hermann, Paris, 1956.
- 8. N. Bourbaki, Intégration, Chap. 7-8, (Act. Sci. Ind. 1306), Hermann, Paris, 1963.
- 9. F. Bruhat, Sur les représentations induites des groupes de Lie, Bull. Soc. Math. France 84 (1956), 97-205.
- 10. J. Dixmier, Les algèbres d'opérateurs dans l'espace Hilbertien (Algèbres de von Neuman) (Cahier Scientifiques 25), Gauthier-Villars, Paris, 1957.
- J. Dixmier, Les C*-algèbres et leurs représentations (Cahier Scientifiques 29), Gauthier-Villars, Paris, 1964.
- 12. G. A. Elliott, An extension of some results of Takesaki in the reduction theory of von Neumann algebras, Pacific J. Math. 39 (1971), 145-148.
- 13. J. Feldman and F. P. Greenleaf, Existence of Borel transversals in groups, Pacific J. Math. 25 (1968), 455-461.
- 14. M. Flensted-Jensen, A note on desintegration, type and global type of von Neumann algebras, Math. Scand. 24 (1969), 232-238.
- 15. F. Hansen, Inner one-parameter groups acting on a factor, Math. Scand. 41 (1977), 113-116.
- A. Kleppner, Continuity and measurability of multiplier and projective representations, J. Functional Analysis 17 (1974), 214-226.
- L. H. Loomis, Positive definite functions and induced representations, Duke Math. J. 27 (1960), 569-579.
- 18. G. W. Mackey, Ergodic theory and virtual groups, Math. Ann. 166 (1966), 187-207.
- 19. G. W. Mackey, Induced representations of locally compact groups, I, Ann. Math. 55 (1952), 101-139.
- 20. G. W. Mackey, Unitary representations of group extensions, I, Acta. Math. 99 (1958), 265-311.
- O. Maréchal, Opérateurs décomposables dans les champs mesurables d'espaces Hilbertiens, C. R. Acad. Sci. Paris Sér. A 266 (1968), 710-713.
- D. Montgomery and L. Zippin, Topological transformation groups (Interscience Tracts in Pure and Applied Mathematics 1), Interscience Publ. Inc., New York, 1955.
- 23. H. Nagao, The extensions of topological groups, Osaka Math. J. 1 (1949), 36-42.
- 24. O. A. Nielsen, The Mackey-Blattner theorem and Takesaki's generalized commutation relation for locally compact groups, Duke Math. J. 40 (1973), 105-117.
- 25. M. A. Rieffel, Strong Morita equivalence of certain transformation group C*-algebras, Math. Ann. 222 (1976), 7-22.
- 26. I. Segal, Algebraic integration theory, Bull. Amer. Math. Soc. 71 (1965), 419-489.
- M. Takesaki, Duality for crossed products and the structure of von Neumann algebras of type III, Acta Math. 131 (1973), 249–310.

- 28. M. Takesaki, Remarks on the reduction theory of von Neumann algebras, Proc. Amer. Math. Soc. 20 (1969), 434–438.
- J. Vesterstrøm and W. Wils, Direct integrals of Hilbert spaces, II, Math. Scand. 26 (1970), 89– 102.

MATEMATISK INSTITUT KØBENHAVNS UNIVERSITET UNIVERSITETSPARKEN 5 2100 KØBENHAVN K DANMARK