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A NON-SEPARABLE
MEASURABLE CHOICE PRINCIPLE
RELATED TO INDUCED REPRESENTATIONS

ESBEN T. KEHLET

1. Introduction.

Let G be a locally compact group, H a closed subgroup, K a topological
group, and u a continuous homomorphism of H into K. We shall call a map P
of G into K a g-extension of u, if it is an extension of u satisfying

Vge GVYhe H: P(gh) = P(gu(h).

If T is a transversal containing the identity for the quotient map n: G — G/H,
then any identity preserving map of T into K is the restriction of a unique g-
extension, and conversely, if P is'a o-extension of an isomorphism, then the
counter image of the identity is a transversal.

In some cases g-extensions with useful continuity or measurability
properties are known to exist, e.g. if G has countable basis for the topology, see
[19, p. 104] and [20, p. 289], or if G is abelian and K=T or K =]0, oo, cf. also
[9]. The main result of the paper is an existence theorem of this type in the case
where K is the unitary group of a von Neumann algebra with the ultraweak
topology, and in the case where K is a closed subgroup of the unitary group of
a von Neumann algebra with separable predual.

In some cases we can deduce the existence of measurable cross sections; and
g-extensions can be utilized in the theory of induced representations in much
the same way as Borel cross sections are used in the case of second countable
groups, cf. [19], [20]. We give some examples, among these a generalization of
Theorem 8.2 of [20], cf. [2] Theorem 2.3, dropping the condition of countable
basis on the groups but keeping it on the Hilbert space. This combined with
results of Blattner [3] makes the little group method, [20] Theorem 8.4, work
for o-compact groups.

In a following paper we shall give another proof of the Mackey-Blattner—
Nielsen theorem [24], cf. [25].

Most of our methods are borrowed from 1. Segal’s proof of the imprimitivity
theorem [26, pp. 441-447], used here on an induced representation, and some
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of our results are implicitly given there. We also use the Aumann—von
Neumann measurable choice principle [1], used in similar contexts in [14],
[28] and [12]. We use freely [6], [7], [8], [10], and [11]. For the definition of
induced representations in the non-separable case, see e.g. [24] section 2.

Professor Tatsuuma has kindly informed me that Takesaki and he has
obtained (unpublished) Theorem 1 (a) of this paper some years ago, utilizing
approximate cross sections, and not using the Aumann-von Neumann
theorem.

2. Preliminaries.

If T is a locally compact space, u a positive Radon measure on T, and S a
topological space, we call a map f of Tinto S Lusin measurable if for any ¢>0
any compact subset of T is the union of a compact set on which fis continuous
and a set with measure less than ¢, cf. [6]. If S is metrizable with countable
basis, we usually just write measurable. If h is a Hilbert space and S =% (h), we
call fa measurable field when ¢t — £ ()¢ is Lusin measurable for each & € h. If A
is a measurable subset of T, the essential measure of A is the supremum of the
measures of the compact subsets of A4, cf. [7]; we call 4 essential, if any non-
empty relatively open subset has positive essential measure.

An essential value of a Lusin measurable map f of Tinto S is a point s € S
such that the counter image of any open neighbourhood of s has positive
essential measure. The set. of essential values of f is the closure of the set of
values of f on essential compact (or measurable) sets on which f'is continuous.
Locally equivalent maps have the same essential values, and any Lusin
measurable map is locally equivalent to a map taking essential values only. As
in [6] Z*(u) denotes the set of measurable complex functions on T with a
bounded set of essential values, and L*(u) denotes the C*-algebra of classes
with respect to equality locally almost everywhere (l.a.e.) of functions in £* (u).

Now assume given a locally compact group G with left Haar measure dg and
module 4, and a closed subgroup H with left Haar measure dh and module
Ay. Let © denote the quotient map of G onto G/H.

Choose a continuous g-extension @:G — ]0,00[ of h s dgx(h)Ag(h)~?,
h € H; define a continuous function x: G x G/H — ]0,00[ by

x(g, (k) = o(gke(k)™!, gkeG,

and define a Radon measure A on G/H by

f f S(gh)dhdA(n(g)) =f f(@l(@)dg, feH(G).
G/H JH G

The measure A is quasi-invariant and
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j @(g™'x)dA(x) = J o (x)x(g,x)dA(x), @€ X (G/H), geGC,
G/H G/H

cf. [9], [17], or [8].
Let u be a strongly continuous unitary representation of H on the non-zero
Hilbert space h(u).
Let #(u) denote the space of Lusin measurable functions f: G — h(u)
satisfying
VgeGVheH: f(gh) = u(h)™'f(g)
and

J I/ (g)lI* dA(m(g)) < oo
G/H

Let h(indu) denote the Hilbert space of classes modulo equality la.e. of
functions in & (u). We use the same notation for operators on & (u) respecting
the equivalence classes and the corresponding operators on h(ind u).

The induced representation indy_,gu=U is defined by

U@k = %(g L, nk)f(g™'k), feF(u), gkeG.
Define

(98)(g) = L @(ghu(h)dh, ¢ € A (G), &€ hu).

Then (¢@&)" is continuous and belongs to & (u), the corresponding elements in
h(ind u) span h(ind u), and for each g € G the values (¢&)*(g) span h(u) [19], [S].

LemMA 1. Let A be a bounded measurable field: G — £ (h(u)) with the
property
YgeG, VheH: A(gh) = u(h)"*A(guh).

1 f A(g)f(g)=0 La.e. for every f € F (u), A(g)¢ =0 La.e. for every ¢ € h(u), and
A(g)=0 lae. if also h(u) is separable.

Proor. For ¢ € X' (G), ¢ € h(u) and F continuous in & (u) we have

»

0= (A(@)(9)'(8)| F(g)) dA(n(g))
G/H

r

= J @ (gh)(u(h)A(gh)¢ | F(g))dhdA(n(g)) ,
G/H JH

SO
"

0= . 0(g8)(A(®)¢ | F(g)e(g)dg .
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Since g — (A(g)¢|F(g))e(g) is locally integrable, the last formula holds for
any ¢ € £*(G) with compact support. So A(g)¢é =0 on any essential compact
set K, on which g — A(g)¢ is continuous.

Define

p(@)f = (¢om)f, @€ L), feh(indu).

Then p,(¢)=0 if and, by Lemma 1, only if ¢ =0 4 lLa.e.

Thus p, defines an isomorphism and isometry (also denoted p,) of L*(A)
onto a subalgebra & of £ (h(ind u)). Since p,, is continuous from a(L> (1), L* (1))
to weak operator topology, the unit sphere in & is strongly closed and </ is a
von Neumann algebra.

Since U(g)e/ U(g)"'=4, ge G, and since the only U(g) invariant
projections in & are 0 and 1, because 4 is ergodic, &' is homogeneous, say of
type I,. It follows from Segal’s proof of the imprimitivity theorem [26]
combined with the Mackey-Blattner theorem [20], [4] that the multiplicity n
of &/ is equal to the dimension of h(u). We obtain it here as a corollary of
Theorem 1.

Let h, denote some Hilbert space with dimension n; there exists a unitary
map D of L%(A,h,) onto h(ind u) intertwining the representation of L®(4) as
multiplication operators on L?(4,h,) and p,, that is

D(¢f) = (pomDf, @ eL™(), feL*(4h,).

To any operator A4 in the commutant u(H) of u(H) we define an operator
A e #(h(indu) by (Af)(g)=A(f(g), f€ F(u). Then A€ UGy N, and
A A is an injective *-homomorphism, onto U(G) N.«#' by the Mackey—
Blattner theorem [20], [4]. We sketch a proof. It is enough to show that to any
closed U(G)U o/-invariant subspace L of h(ind u) there exists a projection
E € u(HY, such that E is the projection on L.

If K is a u(H)-invariant closed subspace of h(u), let K~ denote the set of
classes of functions in & (u) with all essential values in K. If f € # (u) and Lis a
compact set on which f is continuous, then f is continuous on LH; if L is
essential then so is LH, since if O is open any compact subset of OHNL is
covered by finitely many translates of O N LH, so OH N L has essential measure
zero if ONLH-has. Thus any function in & (u) is locally equivalent to a
function in & (u) taking essential values only. This implies that if F € &£ (h(u)) is
the projection on K, then F is the projection on K. If L is a U(G)U o/~
invariant closed subspace of h(ind u) let L™ denote the closed subspace of h(u)
spanned by the essential values of functions in # (u) with equivalence classes in
L. Then L’ is u(H)-invariant and LS L™. To show equality it is enough to show
that any essential value of any function h € & (u) with class orthogonal to L is
orthogonal to L". So assume that there exists f € # (u) with class in L, and
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essential values x of fand y of h, with (x| y)#0; then there exist compact sets K
and M with positive measure, such that (f(k)|h(m))==0 when k™! € K and
m e M; since ||1,,*1k]; #0 there exists a € G such that N=aK 'NM has
positive measure, but this contradicts

L/H @on(g)((U(a)f)(g) | h(g)di(n(g) = O,

if @ € #£>(4) is chosen such that

pon(g) = sign ((U(a)f)(g) | h(g)1n(n(g)) -

3. The choice principle.

THEOREM 1. Let G be a locally compact group, H a closed subgroup, and u a
strongly continuous unitary representation of H on a Hilbert space h(u).

(a) There exists a g-extension P of u with values in u(H)", and with g — P(g)¢
and g — P(g)*¢ Lusin measurable for each & € h(u).

(b) If h(u) is separable, or if H is o-compact and the center of u(H)" is of
countable type, then P can be chosen as a Lusin measurable map into the
ultraweak closure u(H) of u(H) in u(HY".

ReEMARK. We can obtain P with the following measurability property:

To each compact K <G there exists a family (h);.; of pairwise orthogonal,
separable closed subspaces of h(u), each invariant under P(K) and P(K)*, with
sum h(u), and such that each map k — P(k)|h; is measurable.

Before the proof of Theorem 1 we mention some consequences.

CoroLLARY 1. (Pf)(n(g)) = P(g)(f (g)) defines a map of F (u) onto L*(1, h(u))
and a unitary map of h(indu) on L*(A,h(u)), transforming p, into the
representation of L* () as multiplication operators on L*(4,h(u)), and for each
A € u(Hy transforming the operator A given by (Af)(g)=A(f(g)), into the
operator on L?(4, h(u)) corresponding to the constant field x — A on G/H. The
multiplicity n of p,(L*(4)) is equal to the dimension of h(u).

Proor. Straight forward verification on basis on Theorem 1(a).

COROLLARY 2. Assume given a continuous homomorphism  of H into a locally
compact group K with countable basis. Y has a measurable g-extension.

Proor. Let @ be a homeomorphism and isomorphism of K with a closed
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subgroup of the unitary group on a separable Hilbert space, e.g. the left regular
representation. Choose a measurable g-extension P of ®oy and use & !oP,

CoRrOLLARY 3. Let N be a closed normal subgroup of H, and assume H/N has
countable basis. There exists a measurable transversal and a Lusin measurable
cross section for the natural map G/N — G/H.

Proor. Let ¢ denote the natural map G — G/N. Choose a measurable g-
extension P: G — H/N of ¢|H. Then P~ !(eN) has the form ¢~ *(T) with T
measurable in G/N; ¢(n~!(x)) intersects T in a unique point c(x) for each
x € G/H. As g — gP(g)~! is continuous where P is, and constant on H cosets,
it defines a Lusin measurable cross section G/H — G/N.

ReMaRrk. Conversely, given a Lusin measurable cross section ¢ with c(n(e))
=¢(e), g+ [g 'c(n(g)] ! defines a Lusin measurable g-extension. (To K
compact in G we can choose a compact subset L of n(K) such that z"!(L)N K
has almost the same measure as K and c¢|L is continuous, so com is
measurable.).

The case N ={e} should be compared with [23] and [13].

CoROLLARY 4. If H has countable basis, any continuous homomorphism y of H
into a topological group allows a Lusin measurable g-extension.

Proor. Choose a Lusin measurable g-extension P of h +— h and use Yo P.

Proor oF THEOREM 1. We split the proof in 7 steps.

StEP 1. We prove, after I. Segal [26, p. 445], that if G is a-compact and h(u) is
separable, then the multiplicity n of & is <N,.

By the Mackey-Blattner theorem &’ N U (G)' is of countable type, and so has
a separating sequence (x;);,cn Of vectors. Then {U(g)x; I geG,ieN} is o-
compact and metric and so contains a dense sequence (y;)jcnN.

Let T be a projection in &', and assume Ty;=0, je N. Define S e
&' NU(G) by

S =supU(g)TU(g)™";
geG

since U(g)TU (g™ !)x;=0for each g € G and i € N, Sx;=0 for each i, S=0, and
T=0. Thus &' is of countable type, and n<N,.

StEP 2. If h(u) is separable and n<N,, then n=dim h(u) and u has a Lusin
measurable g-extension with values in u(H).
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The operator D: L?*(4,h,) — h(indu) introduced in Section 2 can be
disintegrated. We follow the proof in [10, pp. 167-168], making all the choices
of functions in the start of the proof in # (), making all exceptional local null
sets counter images under 7 of local 4 null sets, and using the axiom of choice to
get cross sections over these. This way we obtain a bounded measurable map
D: G — Z(h,, h(u)) with the properties: if f € £2(4,h,), then g — D(g)(fom(g))
is a function G — h(u), whose class is the image under D of the class of f, and

Vge GYhe H: D(gh) = u(h)"'D(g).

Then g — D(g)* is a bounded measurable map D*:G — £ (h(u),h,); if fe
F (u), then n(g) — D*(g)(f(g)) is a well-defined function in £2(4, h,) whose
class in the image under D* of the class of f[10, p. 161]. Now g — D*(g)D(g) is
a disintegration of 1 € £(h,), so D(g) is an isometry La.e. [10, p. 160] and
g — D(g)D*(g) is a disintegration of 1 € £ (h(u)), satisfying

Vge GVYhe H: D(gh)D*(gh) = u(h)™'D(g)D*(g)u(h) .

Subtracting the constant field g — 1, and using Lemma 1 we see that D(g) is
unitary outside the counter image of a local 4 null set, which we may assume
empty. J

This proves n =dim h(u), when both are <N, and so by Step 1 when h(u) is
separable and G is g-compact.

Define C(g)=D(e)D(g)!; then C is a measurable unitary g-extension of u.

LEMMA 2. Let S be a locally compact space and v a Radon measure on S. Let T
be a topolngical space homeomorphic to a Borel set in a Polish space. Let M be a
metrizable space, F a Borel set in M, and f a map: Sx T — M. Assume that

VseS 3teT: f(s,t)e F, and
Vse€S: t f(s,t) is continuous, and
VteT: s f(s,t) is measurable .
Then there exists a measurable map @: S — T, with the property

VseS: f(s,po(s) e F.

Proor. By a result of Mackey [19, Lemma 9.2] f~'(F) is Borel in the
product Borel structure on Sx T, where we use the Borel structure of
measurable sets on S. Choose a local null set N and a locally countable family
(K;);es of pairwise disjoint compact sets in S, with S=U,_; K;UN, and choose
¢ on each K; by the Aumann-von Neumann measurable choice principle [1],
and on N by the axiom of choice.
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Now let T denote the unitary group on h(u), and let f: G/H x T — T/u(H) be
defined by f(n(g),Q)=QC(g)u(H), g€ G, Q € T. The lemma ensures the
existence of a map A: G/H — T, such that A(n(g))C(g)u(H)=u(H) for all
g € G, and A(rn(e))=1.

The map g — P(g)=A(n(g))C(g) is a Lusin measurable g-extension of u with
values in u(H).

Step 3. If G is o-compact, there exists a g-extension P of u with values in
u(H)’, and with g+ P(g)¢ and g+ P(g)*¢ Lusin measurable for each

& € h(u).

First note that H is o-compact.

If u(H)" has separable predual, u is quasi-equivalent to a representation on a
separable Hilbert space k, i.e. there exists an isomorphism & of u(H)" with a
sub von Neumann algebra of # (k). By Step 1 and Step 2 there exists a
measurable g-extension R of ®ou with values in ®ou(H); then & 'oR is a
measurable g-extension of u with values in u(H).

If the center of u(H) is of countable type then u(H) contains a projection E
of countable type with central carrier 1 [10, Lemme 7, p. 236]; Eh(u) is
separable since cyclic subspaces under u(H) are, so A — A|Eh(u) defines a
quasi-equivalence as wanted.

In any case there exists a family (E));.; of pairwise orthogonal projections of
countable type in the center of u(H) with sum 1. The direct sums P(g) of the
corresponding unitary operators P;(g) on Ei(u) define a g-extension P of u
with values in u(H)”, such that g+ P(g)¢é and g+ P(g)*¢ are Lusin
measurable for each ¢ € h(u).

Step 4. Completion of the proof of Theorem 1 (a).

Let K be a compact set in G/H. Choose an open g-compact subgroup G, of
G with n(Gy)2K. Let Hy,=G,N H and u,=u| H,. Choose a g-extension P, of
uo with values in ug(H,)' cu(H)”, such that g — Py (g)¢ and g — Py(g)*¢ are
Lusin measurable on G, for each & € h(u).

Then gh + Py(g)u(h) is a well-defined map P: G,H — u(H)", and P(ghk)
= P(gh)u(k) when k € H. Let & € h(u) and a compact set L< G H be given;
choose L, compact in G, with LoH=LH, and put M = (Ly 'L)N H; choose a
dense sequence (x);n in u(M)¢ and a compact set Qo< L, such that Q
= (QoH) N L has almost the same measure as L and g +— P, (g)x; is continuous
on Q, for each i; then g — Py (g)u(h)¢ is continuous on Q, for each h € M,
(g, h) — P(gh)¢ is continuous on Q, x M, and gh — P(gh)¢ is continuous on Q.
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So g+ P(g)¢ and (similarly) g+ P(g)*¢( are Lusin measurable on
G,H2n"'(K) for each ¢ € h(u).

Now write G/H as U,_; K;UN, where (K});.; is a locally countable family of
pairwise disjoint compact sets and N is a local 4 null set. Define a map Q as P
above on ! (K,) for each i € I, and by choice of an arbitrary cross section on
n~*(N). Finally define P=Q(e) " !Q.

Step 5. n=dim h(u).

This is contained in Corollary 1, which is an immediate consequence of
Theorem 1 (a).

Step 6. If h(u) is separable, then u has a Lusin measurable g-extension with
values in u(H).
In fact n<NX, by Step 5, so Step 2 applies.

Step 7. Completion of the proof of Theorem 1 (b).

Assume H is g-compact and the center of u(H)” is of countable type. As in
Step 3 there exists an isomorphism @ of u(H)" with a von Neumann algebra on
some separable Hilbert space. By Step 6 there exists a measurable g-extension
R of ®-u with values in ®@-u(H); then ™! R is a measurable g-extension of u
with values in u(H).

4. The groupoid viewpoint. Some commutants.

Let the locally compact group G, the closed subgroup H, and the
representation u of H be given as above. Let a g-extension P of u be given with
values in u(H)"” and such that P and P* are measurable fields.

It is wellknown that products of measurable fields are medsurable fields (cf.
the proof in the beginning of Step 4 of the proof of Theorem 1). Also if Q is any
Lusin measurable map on G, then (g, k) — Q(gk) is Lusin measurable on
GxG.

So (g;,8;) — P(g,8,)P(g;)~ ! is a measurable field on G x G, constant on
{e} x H cosets, and defines a measurable field K on G x G/H with values in
u(H)", also measurable in the variables separately. K satisfies:

Vg,8,€GVYxeG/H: K(g,8,x) = K(g,8,%)K(g,x),

ie. K is a representation of the associated groupoid, cf. [18].
Define the operator K(g,4) on L*(4, h(u)) by

(K(gNf)x) = K(g,x)f(x), fe L*(Lhw), g€G, xe G/H,
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and define V(g) on L*(4, h(u)) by
(V(@f)x) = (g™ 0t f (g™ 'x).

Then just as in the second countable case

V(g)K(g, ) = Pindu(g)P~'.

ProPOSITION 1. The von Neumann algebra generated by indu(G) and
pu(L>®(4)) is spatially isomorphic to the von Neumann tensor product

Z(L*(A)@u(HY".

Proor. By Corollary 1 of Theorem 1, and the Mackey-Blattner Theorem (ef.
Section 2) P takes ind u(G) Np,(L®(4)) onto 1®@u(HY.

A special case of this is [27, Lemma 10.1].

PROPOSITION 2. (cf. [27], [24]). To any operator A € £ (h(ind u)) commuting
with p,(L®(4)) there exists a bounded measurable field a: G — £ (h(u)), such
that for each f € & (u) the function g — a(g)(f(g)) is a function in’F (u) the class
of which is the image under A of the class of f, and such that

Vge G Yhe H: a(gh) = u(h)™'a(gu(h) .

Proor. By [21] or [29] any operator on L?(4,h(u)) commuting with all
multiplication operators can be disintegrated. Transformation with P gives the
proposition.

S. Mackey’s Theorem 8.2.

In this section H is a locally compact group; U=U(h) will denote the
unitary group on a Hilbert space h, with ultraweak topology; T= U(C) will be
identified with the center of U (h).

By a multiplier on H x H we understand a map w: H x H — T measurable
with respect to Haar measure on H x H, and satisfying

Vhy,hyhy € H: w(hy, hy)w(hihy, hy) = w(hy, hyhs)w(hy, hs)
and
wlee) = 1.

We review some known facts, cf. [20], [16].
From w(h,e)w(h, k)=w(h,k)w(e,k) we see that w(h,e)=w(e,h)=1 for all
he H.
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The map k — w(h, k) is measurable on H for each h € H. Without lack of
generality we assume, to show this, that H is o-compact. Let H, denote the set

Hy={heH | k v w(h, k) is measurable} .

Since w(h h,, k)=w(hy, hy) " w(h,, hk)w(h,, k), and w(h™!,k)
=w(h,h™ k)" 'w(h,h~1), Hy is a subgroup of H. By the Fubini theorem the
complement of H, in H is a local null set, so Hy,=H.

An w-representation on a Hilbert space h=h(u) is a map u: H —» U(h)
satisfying ¥V h,k € H: u(h)u(k)= w(h, k)u(hk), and V & € h(u): h — u(h)¢ is Lusin
measurable.

When o is a multiplier on H x H, y,, defined by

(oM f)k) = whh™k)f(h7'k), hkeH, fe L*(H),

is an w-representation of H. The Lusin measurability of h — y,(h)f follows
from

LemMa 3. Let S and T be locally compact spaces with Radon measures a and
respectively. Let ¢ be a bounded measurable complex function on Sx T, and
assume that t — @(s,t) is measurable for each s € S. Define the operator ¢(s, f)
on L*(B) by '

(BN = @s,0f(@), fe L*P).
Then s +— (s, B)f is Lusin measurable for each f e L*(p).

Proor. It is enough to observe that if K is a compact subset of S and Lis a
compact subset of 7, then there exists a bounded sequence (¢,),.n Of functions
in ) (S x T) tending to ¢ almost everywhere on K x L. (We owe this simple
proof to C. Berg). ) .

A projective representation of H on h is a continuous homomorphism:
H — U(h)/T (with quotient topology).

When v is an w-representation, h — v(h)T is a projective representation, see
[16] Theorem 3. For completeness we sketch a proof.

It is enough to show that to any & € h(v) there exists a set 4 < G with positive
essential measure, such that v maps A~ '4 into {n e h(v) | In—TE&l <1}
choose a compact set K< G with positive measure, such that g +— v(g)¢ is
continuous on K, and a sequence (g);cn of elements in K with {g; | i e N}
dense in K¢; define

A={yeG| IreT: |v(gt—rt&l<i};
then A is measurable, and has positive essential measure because K €U, .\ g:4;

and if a,b € A, s,t € T then

Math. Scand. 42 — 9
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lo(a™*h)E—t~ sw(a™ !, b) " w(a,a )¢
< llo(b)é—sEl + ltE—v(a)é] .

When w is a projective representation, H={(h,u) € Hx U I wh)=uT} is a
closed subgroup of Hx U; (h,u) — h is a continnous homomorphism of A
onto H with kernel {(e,1) | t € T}, open since the image of (Vx W)NH is
VNw™ (W), so H is an extension of T by H, cf. [15]. The homomorphism
w: (h,u) > u restricts to t ~— t1 on (the copy in H of) T, and w(R)T =w(kT),
h e A. A is locally compact by [22, p. 52].

When H is an extension of T by H there exists a Lusin measurable cross
section ¢: H — H with c(e)=e, by Corollary 3 of Theorem 1, cf. [16]. We give
a direct proof, related to the proof by Takesaki and Tatsuuma of Theorem 1
(a). Choose a function f'e€ X (G) with f(t)=t, t € T; define

dg) = JT f(gne~tde;

then g — g(signd(g)) ™! defines a continuous cross section in a neighbourhood
of T; from this it is easy to construct a Lusin measurable cross section.

When ¢ is a Lusin measurable cross section with c(e)=e, then
(hy, hy) > c(hy)c(hy)c(hyhy) ™! defines a multiplier ..

If v is an w-representation and H and § are the extension and the
representation corresponding to h+— v(h)T, and ¢ is a Lusin measurable
cross section H — H with c(e)=e, then i#(c(h)T=v(W)T, and h > d(h)
=c(h)d(c(h))*v(h) defines a new Lusin measurable cross section with w,=w
and dod=v.

When H is an extension of T by H and c is a Lusin measurable cross section
with c(e)=e, then k> c(AT)"'h is measurable A — T (see remark after
Corollary 3 of Theorem 1), and for any w_-representation v of H the map
R v(AT)c(AT)~'h defines a representation & of A with d(t)=t-1, t € T, and
#oc=v. Thus x — xoc is a bijection of the set of representations of H restricting
tot > t-1 on T onto the set of w -representations of H. E.g. y,, corresponds to
the representation of A induced from the representation t — t of T on C.

ProposiTION 3. Let H be locally compact group, N a closed normal subgroup,
and v an irreducible representation of N on a separable Hilbert space h(v).
Assume that the class of v is invariant under H, i.e.

Vhe H3uh) < Uh@W)Vne N: ovhnh™") = u(ho(nuh)™* .

Then there exists a multiplier representation w of H, which is also a g-extension
of v; the corresponding multiplier is constant on N x N cosets.
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Proor. Choose a sequence (n;);.n of elements in N such that {v(n,) | ieN}is
dense in v(N). Define

o;(h,u) = v(hnhYuv(n) ™!, heH, uelU,

and let ¢ denote the continuous map (h,u) — (@;(h,u));.n of Hx U into the
product of countably many copies of U. Since {v(n;) | i € N} is dense in v(N)
and the class of v is invariant,

¢ (1) = {(huye HxU | Yne N:v(hnh™)=uv(nju™'} .

By Lemma 2 there exists a measurable map a: H— U, such that
(h,a(h)) € @~ 1(1), h € H; we may assume a| N =v, because N is open or a local
null set in H. Since v is irreducible, h — a(h)T is a projective representation and
@~ 1(1) is the corresponding extension H of T by H.

Let N denote the counter image of N in H; ie.

N = {(no(m)y)| neN, teT}.

Then (n,v(n)t) - t is a continuous homomorphism: N — T;letq: A — Tbea
measurable g-extension (Corollary 2 of Theorem 1). Define W: H — U by
W(h,u)=q(h,u)"'u. W is medsurable and constant on T cosets, and thus
defines a measurable map w: H — U. Then w(h)=q(h,a(h)) 'a(h), h € H, and
straight forward computations show that w has the wanted properties.

Now let M be a closed subgroup of H. We shall say that a multiplier w on
Hx H is adapted to M, if w|M x H is measurable with respect to Haar
measure on M x H.

LEMMA 4. Let w be a multiplier on H x H. Fhere exists a measurable function
a: H — T, such that the multiplier

(hy, hy) = a(hy)a(hy)a(h hy)”™ lw(hp hy)

on H x H is adapted to M. There exists an w-representation v of H such that
v| M is a measurable field on M, if and only if w is adapted to M. If w is adapted
to M, then w| M x M is a multiplier on M x M, and the restriction to M of any
w-representation of H is an w|M x M-representation of M.

ProoF. Choose an extension A of T by H and a cross section d: H — H with
w;=w. Let M be the counter image of M in H; then m +— mT is an open
mapping of M onto M. Choose a Lusin measurable cross section c: M — M
with c(e)=e, and define c(h)=d(h), h € H\M, and define a=d~'c. Then c is
Lusin measurable, and (m, h) — c(mh) is Lusin measurable on M x H by a well
known argument based on the homeomorphism (m,h) — (m,mh), so w, is
adapted to M.
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Assume there exists an o-representation v of H such that v|M is a
measurable field on M. Then (m, h) — v(mh) is a measurable field on M x H,
and w is adapted to M.

Now assume w is adapted to M. Then y,| M is a measurable field on M by
Lemma 3, and w|M x M is measurable. In this case the cross section ¢ can be
chosen such that o,y =w|M x M. Any w-representation w of H has the form
wec for some representation w of H; hence w| M =wo (c| M) is a measurable
field on M.

THEOREM 2. (cf. [20], [2]). Let H be a locally compact group, N a closed
normal subgroup, @ a multiplier on H x H adapted to N, and v an irreducible
| N x N-representation of N on a separable Hilbert space h(v). Assume

Vhe H Juh)ye U(h(v)) Vne N:
w(h,nwn,h™ Yok, h) whnh™Y) = u(v(muh)~* .

Then there exist a multiplier w; on H x H constant on N x N cosets and an ow,-
representation w of H extending v.

Proor. Let A be an extension of T by H and ¢ a cross section H — H with
w,=w and c and ¢| N Lusin measurable. Let N be the counter image of N in H,
and let #: /i — v(AT)c(AT)~ /i be the representation of N corresponding to v.
The class of # is invariant under H, d(hith™")=da(h)s(A)ii(R)~*, where d(h)
=u(hT)c(hT)"'A. So by Proposition 3 there exists a multiplier @ on H x A
constant on N x N cosets and an &-representation w of H extending #.

From w (ki) =w(R)i (/i) we get that & s Ww(c(AT))=w(h)h~c(RT) is measur-
able and constant on T cosets, so w=Wwoc is measurable on H; also w(n)
={(c(n))=v(n) when n e N.

Define w, (hy, h,)=d(c(hy),c(hy)), hy,h, € H; then w,; is measurable and
constant on N x N cosets, and w is an ww,-representation.

As noted in [2] Theorem 8.3 of [20] is easily extended. Concerning Theorem
8.1 of [20], see [3] and [2]. Combination gives a generalization of Theorem 8.4
of [20] valid (in the case of ordinary representations) for a locally compact
group G and a closed normal subgroup N of type I with N/G almost
HausdorfT, provided that for any y € N the Hilbert space of  is separable and
the coset space G/H of G over the isotropy group H=G, of y is o-compact.
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