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A MAXIMAL ABELIAN SUBALGEBRA OF
THE CALKIN ALGEBRA.
WITH THE EXTENSION PROPERTY

JOEL ANDERSON

Introduction.

A C*-subalgebra o of a C*-algebra & has the extension property relative to
2 if each pure state on ./ has a unique (hence pure) state extension to %. In
[9] Kadison and Singer showed that if .# is a masa (a maximal abelian self-
adjoint subalgebra) in #(#) (the bounded linear operators on a complex
separable Hilbert space #) that is nonatomic in the sense that it is isomorphic
to L*(0,1), then .# does not have the extension property relative to % ().
Kadison and Singer inclined to the view that if 2 is a masa in #(s) that is
atomic in the sense that it is isomorphic to [, then 2 also does not have the
extension property relative to 4£()#) However, evidence has been
accumulating [3, 4, 11] that suggests that perhaps in fact atomic masas do have
the extension property relative to #(2#). Our purpose here is to present further
evidence along these lines.

It is proved in [3, (3.6)] (although not stated in this generality) that if o is a
masa in a C*-algebra # and o is generated (as a C*-algebra) by its
projections, then o/ has the extension property relative'to # if and only if

A+[AY, B = B,
where + denotes direct sum and [&/*,#]~ =the norm closure of

{AX-XA: Aes, A20, X € &} .

(Because of is generated by its projections [/ *, #] "~ is a subspace of #.) This
observation motivates the following definition. We say that a C*-subalgebra &/
of a C*-algebra # splits & if

A +[AY B = B,

where &’ is the commutant of & in # and [&/*,#]  is as before. In gen-
eral [o/*, %]~ is no longer a subspace but the sum is still direct in the sense
that &' N[/, B8]~ ={0}. This can be seen as follows. Fix a=a* in &', a, >0
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in & and x in 4. Choose a state f on # such that f(a)=|lal| and fis a
homomorphism on C*(a,a,), the C*-algebra generated by a, a; and the
identity. (We shall only consider C*-algebras with identity.) Then by the
Cauchy-Schwartz inequality fis C*(a, a,)-multiplicative on # in the sense that
flazy)=f(a))f(y)=f(yay) for a, in C*(a,a,) and y in #. Hence

lal = f(a) = |f(@a—[ay,x]| = lla—[ay,x]Il .

Thus, the atomic masa 2 has the extension property relative to £ () if and
only if 2 splits () and by Kadison and Singer’s result nonatomic masas do
not split 8 (). On the other hand, 8 () splits itself [1, 5] and it is trivial that
CI splits (). The first result to be proved here is that 3@ # () acting on
HDHD...splits B(HFDHD...) This fact is then used to construct (with
the aid of the continuum hypothesis) a masa &/ in the Calkin algebra & (#(5¢)
modulo the compact operators X =J()) that is generated by its
projections, splits & and so has the extension property relative to &.
Furthermore, it is shown that if & has “enough” inner automorphisms that
preserve &/, then each atomic masa 2 splits £ (5#). Finally, the technique used
to construct & is employed to construct an infinite compact subset of
homomorphisms on 2 that have unique state extensions to #(5).

The results.

It is convenient to set some notation. If {e,} is an orthonormal sequence in a
Hilbert space and ¢ is a subset of w={1,2,...}, P, shall denote the projection
onto the span of {e,: n € o}. The canonical map of #(s#) onto & shall be
denoted by =.

LeMMaA 1. If T € B(K), {e,} is an orthonormal basis for # and {6,};>, are
infinite disjoint subsets of w, then there are infinite subsets t, of 6,, k=1,2,...
and a bounded complex sequence {b,} such that P,(T—B)P, € X', where t=Ur1,
and B=3% b,P,,.

Proor. Fix a map ¢ of w onto w such that ¢~ (n) is infinite for all n. Choose

a subsequence of w as follows. Pick n, in g, Suppose n,,...,n; have been
selected. Choose n;,, € ,;41y—{ny,...,n;} so that

i

Jj
I(Tey,, e+ Y. |(Te, e, )> < 276D,
1 =1

i= i

This choice is possible because 6;, ()~ {n,,...,n;} is infinite and the Fourier
coefficients of a vector with respect to an orthonormal sequence converge to
zero. This procedure determines a subsequence {n;} of w such that {j : n; € ,}
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is infinite for k=1,2,... and
1) 2 [(Te,,e,)l* < 00,
i*j
Relabel the sequence as ny so that for each fixed k, nj € g, j=1,2,.... By
passing to subsequences of each {n;}52, if necessary, we may assume that

2) lim (Te,,,e
j

Write B=3 b,P,,, t,={n;}%,, and t=Ur,. Then by (1) and (2) P,(T— B)P, is

a compact operator (in fact it is even Hilbert-Schmidt).

Nyk.

)=b, and Y |(Te,,e,)—bl* <27*.
i

THEOREM 2. If # @ H ,@® . . . is a decomposition of the Hilbert space H# into
orthogonal infinite dimensional subspaces, then o =3 @ B(H#,) splits B(H).

Proor. Let P, denote the projection of s# onto ,, n=1,2,.... Then &
={P,} and

&' = {Y a,P,: {a,} is a bounded complex sequence} .

Fix T in #(5) and apply Lemma 1 to obtain projections Q,<P, and a
bounded complex sequence {b,} such that Q(T—B)Q is compact, where Q
=>Q, and B=Y b,P,. Choose isometries V, in #(s#,) such that V,¢,
=Q,#, and write

A, = V,+V*+2P, A=Y® A, and V=3@YV,.
Then A>0 and
[4,V] =3 [4,V,] =% (P,=Q) =1-Q = R.
Since A>0, 4 is a d-symmetric operator in the sense of [6] and so by [6, (3.2)]
[4,28(#)]” 2 RB(H)+B(HK)R .

Also, since A has no reducing eigenvalues [4, 2 ()]~ contains the compact
operators [6, (2.6)]. Therefore

T—B = R(T—B)R+R(T—-B)Q+Q(T—B)R+Q(T—B)Q
[A,B(H)] +H = [A,B(H)]

in

and Te o' +[A*,B(H)]".

Note that we have actually proved the stronger fact that T=B+lim [4, X},
Ae A*, Be o', X, € B(K).
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THEOREM 3. Assuming the continuum hypothesis, there is a masa « in the
Calkin algebra & that is generated by its projections and splits & (and so has the
extension property relative to 8).

Proor. Well-order () as {T,},«x, -2 and suppose T,=1I. Choose C*-
algebras in #(J¢) by transfinite induction as follows. Write #, =CI + ¢ and
suppose that for some ordinal « <N, and all ordinals f<a, C*-algebras %,
have been selected such that

() If y<B, B, %B,.
(i) m(4B,) is generated by a countable family of commuting projections.
(iii) There are Ay, B, in &, and X,; in #(5) such that
lim, | Ts— Bg—[Ap, X511l =0.

We use Theorem 2 and an argument of Brown, Douglas and Fillmore [7, (5.3)]
to choose #,. Write 8=C*({By};,). Since a is a countable ordinal, 7(%) is
generated by a countable family of commuting projections and hence (%) is
singly generated [12, p. 293] by =n(A4) for some A=A* in B. (If n(B) is
generated by {p,}, n(4)=3 37 "(2p,—1).) By the Weyl-von Neumann theorem
we may perturb 4 by a compact operator and assume that A is diagonal. In
fact we may assume that A=Y a,P,, where {P,} is a sequence of mutually
orthogonal infinite dimensional projections with Y P,=I [2, p. 249]. By
Theorem 2 there is an operator B,=Y b,P, and a positive operator 4, in {4}
such that T,— B, € [A4,, #(#)] . Choose sequences {E,} and {F,} of spectral
projections of B, and A, respectively so that

{4, B} g C*({E,}{F.}).

Then {E,}, {F,}, and A pairwise commute and #,=C*(4,{E,}, {F,})+ X has
the desired properties. This completes the induction.

Clearly, the C*-algebra /=U{n(®,):a<N,} is generated by its
projections and & + [« *,8]™ =&. To complete the proof, we must show that
&/ is a masa in &. To this end we show &/ has the extension property relative to
&. Fix a complex homomorphism h on < and states f and g on & that extend h.
Then as noted in the introduction f and g are «/-multiplicative on & and so

f@(T)) =f (R(Ba))+1i:n f([n(4.), m(X,0)])

= h(n(B)) = g(n(B,) = g(n(T)).

Thus f=g and it now follows from the Stone-Weierstrass theorem that o is
maximal abelian.

ReMARKS. (1) If @ is an atomic masa in #(5¢) and 2 has the extension
property relative to #(s¢) then since (%) is maximal abelian in & [8], n(@)
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splits &. Conversely, if n(2) splits &, then n(2) has the extension property
relative to & and since pure vector states on 2 have unique state extensions to
B (5¢), it would follow that & has the extension property relative to £ (). In
fact this is the case if the algebra &/ constructed in Theorem 3 lifts to an
abelian C*-algebra in #(#), ie., if n~ ! (#)=B+ A, where & is an abelian
C*-algebra. For then 4% can be taken to be maximal abelian and so % has the
form 2@ .#, where 2 is an atomic masa and .# is a nonatomic masa. But since
7 is injective on #, n(.#) does not have the extension property relative to &
and so this summand could not occur, ie., Z=9.

(2) The question “Does « lift to an abelian C*-algebra in Z(#)?” is
obviously a nonseparable version of a problem considered by Brown, Douglas
and Fillmore [7]. However, the techniques used by Brown, Douglas and
Fillmore to solve the problem in the separable case do not generalize. In
particular, if @ is an atomic masa in %(J), there is no trivial extension of
A (#) by n(@)=C(Bw \w), where Pw denotes the Stone-Cech com-
pactification of the integers [7, (5.12)].

(3) In addition to the fact that &/ and n(2) are each generated by their
projections, each of these algebras is the range of a unique norm one projection
from &. Indeed, there is a unique norm one projection from #(#) onto 2 that
maps ) onto 2 N ¢ [9] and so induces a norm one projection of & onto n(2)
that is easily seen to be unique. The projection for & is given by n(T,) — =n(B,)
(notation as in the proof of Theorem 3). This map is linear because [/ *, 8]~
is a subspace of & and it is the unique norm one projection because all such
maps vanish on [&/*, ] [14].

We now show that if & has “enough” inner automorphisms which preserve
&/, then each atomic masa 9 spl/its B (). Let us say that a C*-subalgebra o/
of a C*-algebra # is permutable in # if there are mutually orthogonal
projections pg, p;,... in & and unitaries u, in £ such that u,2/u¥= and
U,poU¥=p,, n=1,2,....

THEOREM 4. If there is a permutable masa o in & that splits &, then each
atomic masa D in B(H) splits B(H).

Proor. Fix an atomic masa 2 in (). Then for an orthonormal basis {e,}
in J#, an operator D is in 2 if and only if its associated matrix {(De,e,)} is
diagonal. If T is any operator, then [3, (8.2)] T=T,+M+K, where
T, € [2,8(5)], K is compact and M =3 @ M, is block diagonal with respect
to {e,} in the sense that the matrix associated with M is the direct sum of m, by
m, matrices (m,<oc). Since 2+[2,%(#)] " contains X, to show 2 splits
() it suffices to show that 2 + (2, #(s#)] ™ contains all operators that are
block diagonal with respect to the basis {e,}.
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Fix a block diagonal operator M =Y @ M, and suppose & is a permutable
masa in & that splits &. Let po,p,,... and uy,u,,... denote orthogonal
projections in &/ and unitaries in & such that u,&/u} = and u,pou¥=p,, n
=1,2,.... We shall construct a representation ¢ of & and diagonal operators D
and D, in a compression of ¢(&) such that

M = D+lim [D, X,]

for some operators X,. Choose a partition of w into finite subsets ¢, such that
each o, contains m, =dim M, elements and write gq,=3,.,, P.- Fix a pure state
Jfon & such that the restriction of f to & is a homomorphism and f(p,)=1. Let
0: & — B(H,) denote the GNS representation of & induced by f and let x,
denote the canonical cyclic vector in #,. Since fis a homomorphism on &/,
o(a)x,=f(a)x, for each a € . In particular, g(p,)x, = xo. Hence if x, =g (u,)x,,

Q(a)xn = Q(unalu:)xn = f(al)xn

for a=u,a,uyf in & and n=1,2,.... In particular g(p,)x,=0(u,pouX)x,=x,,
n=1,2,.... Thus, the operators in g(<f) are diagonal with respect to the
orthonormal sequence {x,.x;,...} in #,. (Of course, {xo,x,,...} does not
form a basis since J#, is nonseparable.) Write E, for the projection of »#, onto
the span of {x, : n € ¢,} and put E=Y E,. Note that dim E,=m,=dim M, and

E, <olq) = e(Z p,.)-

Now choose a sequence {Q,} of mutually orthogonal projections in #(3#) such
that n(Q))=q, k=1,2,.... (This may be accomplished by arguing as in the
second paragraph of the proof of Theorem 3.) Let g, denote the representation
of #(Q, ) obtained by restricting gon. That is,

o = Q(qk)Q°7tle(qn).#,'

Since fis a pure state, gom is an irreducible representation of # () and so each
o, is irreducible. Therefore, by the Kadison transitivity theorem, there are
operators T in #(Q, ) such that g,(T,) has the matrix M, with respect to the
sequence {x, :ne€ g} If T=X@ T,, then

Ew(n(T)E,) = Ee(TJE,
and so
Y E(rm(T)Eilew, = YO My, = M .
Since o splits &, o(#) splits ¢(€) and so
e(n(T)) = ¢(b)+lim[e(a,), e(c)]
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for a,, b in & and ¢, in & Now

D = ) Ew(bE, lex, and D, = Y Ew(a,)E, £,

are diagonal with respect to the basis {x,x,,...} for E5#,. Therefore
M =3Y® M, =} E@(TElre, = D+lim[D, Y Exo(c)Elsx,)

and the theorem is proved.

COROLLARY 5. If the algebra o/ constructed in Theorem 3 assuming the
continuum hypothesis is permutable, then each atomic masa 2 in B(H) has the
extension property relative to #(#) even if the continuum hypothesis is false.

Proor. By Theorems 3 and 4, each atomic masa & splits #(5) if the
continuum hypothesis is true. However, the statement “2 splits #(#)” is a n2
statement and so by Platek’s absoluteness theorem [10], if a proof of the
statement exists which uses the continuum hypothesis, then there is a proof
that does not require the continuum hypothesis. As noted in the introduction,
2 splits #() if and only if 2 has the extension property relative to % ().

ReMARKS. (1) The author is grateful to A. Kechris and S. Simpson for helpful
discussions concerning absoluteness arguments.

(2) It seems to be generally felt by logicians that Platek’s absoluteness
theorem should be interpreted to mean that the continuum hypothesis is
usually of little use in proving n? statements. Since the continuum hypothesis
seems to play an essential role in the proof of Theorem 3, perhaps Corollary 5
should be interpreted to mean that a proof that o/ is permutable would itself
imply that 2 splits 8 (). This point of view is supported by the fact that there
does not appear to be any obvious way to alter the construction in Theorem 3
so as to make &/ permutable in £. On the other hand, absoluteness arguments
have been used occasionally in proving n? statements and it is tempting to try
to show that atomic masas have the extension property via this method.

In [11] Reid showed that certain homomorphisms on 2 do have unique
state extensions to #(J). The final result to be presented here is similar and in
fact may viewed as an extension of Reid’s work.

THEOREM 6. Let 9 denote an atomic masa in B (). Assuming the cantinuum
hypothesis, there is an infinite compact subset C in the maximal ideal space of 2
such that each homomorphism h in C has a unique state extension to B ().
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Proor. Fix an orthonormal basis {e,} for # such that an operator D is in 9
if and only if its associated matrix {(De,,e,)} is diagonal. We first define
collections {a,,} of subsets of w by transfinite induction. Well-order £ () as
{T.}2<x, =2%. Apply Lemma 1 to T, to obtain a sequence 6,,06,,. .. of infinite
disjoint subsets of w and an operator D, in @ such that P,(T,—D,)P, is
compact, where P, =3, P, (As in Lemma 1, P, denotes the projection of #
onto the span of {e, : n € }). Suppose that for some ordinal a<; and all
ordinals f <a infinite disjoint subsets {¢4,}s%; of w and operators D, in 2 have
been chosen such that

(i) For each n the collection {o4,}s<, has the property that finite
intersections of sets in the collection are infinite.
(ii) P4(Ty—Dy)Py4 is compact, where Py=3", Py,

Choose a,,, n=1,2,... as follows. Since a« is a countable ordinal, the
collections {6,}<, are countable for n=1,2,... and so by (i) we may choose
infinite disjoint subsets ¢, such that all but a finite number of elements of a7,
lie in 64, f<a, n=1,2,.... Apply Lemma 1 to T, and {a,,} to obtain infinite
subsets a,, of g, and a diagonal operator D, such that P, (T,—D,)P, is
a compact operator, where P,=3Y, P, . The induction is complete. We now
define a sequence {h,} of homomorphisms on 2 by using the correspondence
between the maximal ideal space of 2 and fw, the Stone-Cech
compactification of w. Recall that fw may be thought of as the ultrafilters on w
with the hull-kernel topology and that each subset ¢ of w determines a clopen
subset

We)={%ePw: e}

in Bw [13]. Further, if h is a complex homomorphism on 2, then h is
determined by its action on the projections P, in 2 and

), = {ocw: h(P,)=1}

is an ultrafilter on w. Using these facts it is straightforward to show that the
map h — %, is a homeomorphism of the maximal ideal space of 2 onto fw.
So, choosing a complex homomorphism on 2 amounts to selecting an
ultrafilter on w. Also note that a homomorphism h vanishes on 2 N ¢ if and
only if the corresponding %, is a free ultrafilter. Now the compact subsets
{W(0.m)}a<n, corresponding to the a,,’s chosen above have the finite intersec-
tion property for each fixed n. Therefore ﬂ“Nl W+ forn=1,2,... and
we may choose ultrafilters #, in fw such that ¢,, € %,, a<¥,,'n=1,2,....
Furthermore, since finite intersections of {s,,} are infinite, we may assume each
%, is a free ultrafilter. Let h, denote the homomorphism on 2 corresponding to
%,. Note that h,(P,)=1 for a<¥,, n=1,2,.... To complete the proof, we



A MAXIMAL ABELIAN SUBALGEBRA OF THE CALKIN ALGEBRA... 109

show that each homomorphism in C, the weak*-closure of {h,}, has a unique
state extension to #(#). Fix h in C and a state f on #(5¢) that extends h.
Since each h, vanishes on 2 N X", h vanishes on 2 N ¥ and f vanishes on J.
If T=T, € #(s¢), then P, T,P,=PD,P,+K,, where K, X, D,€ 9 and
P,=Y P, . Since P, <P,, n=1,2,..., h,(P)=1, n=1,2,... and h(P,)=1
=f(P,). Furthermore, f is 2-multiplicative on & () so f(T,)=f(D,)=h(D,).
Therefore all state extensions of h to #() agree.

ReMARK. Recall that an ultrafilter  on w is called selective if for each
partition {g,} of w either o, € % for some k, or else there is a set ¢ in # such
that ¢ N 6, contains at most one point for k=1,2,.. .. In [11] Reid showed that
(among others) homomorphisms of 2 corresponding to selective ultrafilters
have unique state extensions to (). We remark that it can be shown using
arguments similar to those given in Lemma 1 and Theorem 6 that if {h,} is a
sequence of complex homomorphisms on 2 corresponding to selective
ultrafilters on w and the (unique) state extensions of the h,’s to #(5) are not
unitarily equivalent, then each h in the weak *-closure of {h,} has a unique state
extension to #().

Concluding remarks and questions.

In order to make further progress on the extension problem for atomic
masas in # () it appears that a clearer understanding of the structure of the
masas in the Calkin algebra would be useful.

If # is a masa in (), then n(%) is a masa in & [8] and n(A) is generated
by its projections. Brown, Douglas and Fillmore observed [7, p. 126] that there
are masas in the Calkin algebra that are not generated by their projections
(because they contain normal elements that do not lift to normal operators in
B(HK)). If o is a masa in & that is generated by its projections, does .« lift to a
masa in %#(s)? If so, then each atomic masa 2 in # () has the extension
property relative to Z().

If % is a masa in # (), then n(%) is permutable in &. If o/ is a masa in &
that is generated by its projections, is &/ permutable in &7 A positive answer
would again imply a positive answer to the extension problem for atomic
masas in %().
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