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THE IVERSEN THEOREM IN A POLYDISC
C. L. CHILDRESS and G. L. CSORDAS

1. Introduction.

One of the fundamental results in the study of the boundary behavior of
meromorphic functions of a single complex variable is the Iversen Theorem
[5]. This result, which may be viewed as an extended form of a local maximum
principle, states that the boundary of the cluster set is contained in the radial
boundary cluster set modulo a set of measure zero. An excellent account of the
extensions of the Iversen Theorem and its significance in the theory of
functions may be found in Collingwood and Lohwater [2, Chapter 5] (cf. also
Lohwater [6, Chapter 5] and the references contained therein).

It was Max Weiss [7] who first pointed out the relationship between the
Iversen Theorem and its analogue in the algebra of bounded analytic functions
of a single complex variable. Recently, T. W. Gamelin [3] studied the
connection between the Iversen Theorem and its abstract analogues in a
function algebraic setting. In particular, in [3] Gamelin proved the Iversen
Theorem for bounded analytic functions defined on polydomains.
Subsequently, J. B. Garnett [4] used the Vitushkin localization operator in
order to simplify Gamelin’s proof.

The purpose of this paper is to provide a direct and geometric proof of the
Iversen Theorem for meromorphic functions defined on a polydisc. Our proof
is based on a result which is of independent interest in itself. Theorem 2 is an
extension of a result of Carathéodory [1] to the polydisc. This theorem asserts
that the cluster set of a bounded analytic function f at a point P on the
distinguished boundary of the polydisc is contained in the closure of the
convex hull of the set of radial limit values of f in a vicinity of P.

For the sake of simplicity, we shall present our theorems in the unit polydisc
in C2. We remark, however, that our results remain valid for a polydisc in C”,
where n=2.

2

Throughout this paper, U? will denote the unit polydisc in C2, T2 will
denote the distinguished boundary of U?, and m, will denote the normalized
Lebesgue measure on T2, ie., my(T?)=1.
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We begin with a lemma.

LemMa 1. Let f(z, w) be analytic and bounded, | f| <M, in U2, and let £>0. Let

G be a subset of T?, with m,(G)<e, such that the radial limit
f*(€%e*) = lim f(re®, re')
r—1
exists for (¢%,e'%) € G°=T*—G. Then f(0,0)=¢&, +&,, where &, lies in S, the
closure of the convex hull of
S = {f*@*e*) | (% e%) e G},

and where |,| <2eM.

Proor. We shall prove the lemma with the aid of an auxiliary function g on

T? defined by
_ * on G¢
E=1*L1) onG’

where we have tacitly assumed that the point (1,1) lies in G°. Since f(z,w) is
analytic and bounded in U?, it follows that -

r

f*dm,
TZ

f(0,0)

= gdmﬁj (f*—g)dm,
T? T?

"

= gdm2+J (f*—g)dm, .
T G

Next we set f(0,0)=¢, +¢,, where

¢ = f gdm, and ¢, = J (f*—gydm, .
12 G

Then the assumptions |f|<M and m,(G)<¢ imply that |£,|<2eM. Thus, in
order to complete the proof of the lemma, it suffices to show that &, lies in S,
the closure of the convex hull of S.

Corsider a closed half-plane H which contains 8. It suffices to show that &,
lies in H. We may choose real numbers 6, and « such that ¢ H +ix is the
closed upper half-plane. Since the range of g lies in S H, h=e'%g + ia satisfies
Imh2=0. Since m, is a probability measure,

Math. Scand. 42 — 5



66 C. L. CHILDRESS AND G. L. CSORDAS

0< f (Im h) dm,
TZ

= Imf hdm,
T2

= Im (e“’o f gdm2+ioc) .
TZ

It follows that &, = [r2gdm, lies in H, and so the lemma is proved.

Let {=f(z,w) be an extended complex-valued function defined on the
polydisc UZ, and let P be a point on dU?, the boundary of U2. The cluster set
C(f, P) of f at the point P is the set of all values { in the extended complex plane
such that there exists a sequence {(z,w,)} in U? with the properties that
(zown) = P and f(z,,w,) = (.

Preliminaries aside, we shall now apply our lemma to prove the following
extension of a theorem of Carathéodory [1] (cf. also Collingwood and
Lohwater [2, p. 96]).

THEOREM 2. Let f(z,w) be analytic and bounded, | f| <M, in U%. Let A denote
the set

{(€%e*) | 0,<0<0,0,<p<@,}.
If for every point (€, e'%) e A—E, where my(E)=0, the radial limit

f*(ee%) = lim f(re, re')
r—1
exists and lies in a set V, then, for every point P € A, the cluster set C(f,P) is
contained in V, the closure of the convex hull of V.

PRrOOF. Since f is analytic and bounded in U?, it follows from a theorem of
Marcinkiewicz and Zygmund [8, p. 316] that there is a set E; < T* of measure
zero such that f(z,w) — f*(e', ") uniformly, whenever (z,w) — (€%, €'®) from
inside any fixed Stolz domain whose vertex is at the point (e”,¢*) € ES. We
shall assume, without any circumlocution, that the negligible set E, m,(E)=0,
mentioned in the theorem includes the set E,.

For a suitable choice of the point (z4, w,) in U2, the map

&) = Plz,w) = (ZO“’ 1”3.2".)

= ki -
1—-22" 1 —wow

transforms the set 4 into a product set B< T2, whose area we may write as
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1 —¢/2. Moreover, @ takes the set E, m,(E)=0, into a set F < T? whose measure
is also zero.

We shall next cover the set F U (T2 — B) with an open set G such that m,(G)
<¢, and consider the function

gln) = fo07 (¢ =f<20—¢ wo_")‘

1"'20{’1_“"‘.)0"

Lemma 1 allows us to write
S(z0,w0) = 8(0,0) = &, +¢,,
where |£,| <2eM, and where &, lies in the closure of the convex hull of the set
S = {g*(e" ") | (e%e®)eG).

We will show that S V. Then &, € V. The proof will then be complete, because
¢ tends to zero with |P — (zq, wy))-

If (€, e') € G°, then the point (€', €)=~ ! (e, ¢®) is an element of 4 —E.
Moreover, g(re'®, re')=f(r,e",r,e'%), where r, and r, tend to 1 as r tends to 1.
Now it follows from the result of Marcinkiewicz and Zygmund, cited at the
beginning of this proof, that

.

g* (e e?) = lim g(re™, re’) = f*(ee) .
r—1

Since f*(e', %) lies in ¥ by hypothesis, S V, and the proof of the theorem is
complete.

THEOREM 3. Let f(z,w) be analytic and bounded in U?, let (e'%,e'%) be an
arbitrary point on T?, and let E be an any subset of T? with m,(E)=0. Then

lim  |fEwl £ Lm  ( lim  |fGw).

(2, w) = (eifo, e1w0) (8,0)=(8,, 05) (2, W)~ (ei9, eiv)
(e, ein)§ E
ProoF. Let E; denote the set of measure zero on T? for which
f*(€%e?) = lim f(re®, re'?)

r—1

fails to exist. If E,=EUE,, then
lim  ( lm  |f(zw)

0, 9)(6y,0,) (2, w)=>(ei®, eiv)
(ei%, eiv) ¢ E

1\

im  ( lim [fGEw)
0, 9)=(8y, 0,) (z, w)—>(e?, eiv)
(ei0, eie) ¢ E;

v

lim  |f*(e°e) .
(6, 0)~(8,, 9,)
(e, ei0) ¢ E,

~
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Let 6>0, and let A; denote the set
{(€%6°) | 0,—5<0<0,+6, po—6<p<@o+5} .

By Theorem 2, the cluster set C(f, (¢'%, ¢'%0)) is contained in the closure of the
convex hull of the set

Vs = {f*(e%e?) | (% e%) e 4;,—E,} .

Since 6> 0 is arbitrary, it follows that

im  |f*(%e*) 2 lim  |f(z,w),
6, 9)=(6,, ¢) (z, w) = (eifo, eivo)
(@, eie) ¢ E,

and thus the proof of Theorem 3 is complete.
Alternatively, Theorem 3 may be stated as

THEOREM 4. Let f(z,w) be analytic and bounded in U?, let (e'%,e'?) be any
point on T?, and let E be an arbitrary set of measure zero on T>. Then

lim [f(z,w) = lim  |f*(e"€) .
(z, w)— (eif, eivo) 8, 9)— (0, 9,)
(eif, eiv)¢ E

In order to prove our main result, the Iversen Theorem for meromorphic
functions in the polydisc U?, we introduce some additional terminology and
definitions.

Let {=f(z,w) be an extended complex-valued function defined on the
polydisc U2. The radial cluster set of f at the point (e*%,e*?) on T? is denoted by
C.aa(f; (€% €'?), and is defined as the set of all limiting values of f(z, w) when
the defining sequences {(z,,w,)} satisfy (z,/|z,l, w,/|w.)= (¢*, ') for all n. We
define the radial boundary cluster set modulo E, ECT?, of f at the point
(€'%, e'®) to be the set

Cr-s(f @) = N TU CaalZ (@7} .

where the union is taken over all (e%, ¢*?) such that 0<|(6, ¢) — (0, @,)| <7 and
(¢ €') ¢ E, and where the bar denotes the closure operator.
We are now in a position to state and prove the principal result of this paper.

THEOREM 5. If f (z, w) is a meromorphic function in U2, and if ES T? is a set of
measure zero, then at every point (e'%,e'%) e T?,

0C(f, (e*,e™)) < Cr_g(f, (¢™,€%)),
where 0C denotes the boundary of C.
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Proor. If Theorem S were not true, there would be a point
o € OC(f, (€', €'%)) not in Cr_g(f; (¢'%, €'*)). Thus, we would be able to find
a 0>0 such that {, is at a distance greater than ¢ from all points of
Cr_g(f, (€%, €e'%)). Since {, is a boundary point of C(J,(e',e'™)), we can
find a second point {; not in C(f, (¢'%, €'%)) such that |{, —{,| <16; this implies
that the distance between {, and any point of Cg_g/(f; (€"%, e'%)) is greater than
16. Since the function g=[f—{,]~' is bounded in a neighbourhood of
("%, e'?0), we can apply Theorem 4 to g and obtain

2 1

5 < o0l

IIA

lim  g(zw)

(z, w)—(eifo, eivo)

lim  |g*(e, )
6, 9)= (6, 9,)
(e, ei0)¢ E

IIA

= 6 .
This contradiction establishes the theorem.

Since Cr_g(f; ("% €")) is a subset of C(f, (¢, €')), the inclusion relation in
Theorem 5 is equivalent to the assertion that the difference set C(f; (¢, €'))
—Cr_g(f, (€% ¢€9) is open.

We remark, in conclusion, that our proof of Theorem 5 yields the following
stronger result:

0C(f; (€%,e) = N { U Cha(fs (€%, )},
n>0 0<|(8,9) (85, 9,)| <n
(e, eiv)¢ E

where CX4(f, (% €'?) denotes the set of all points { such that there is a
sequence {(z,, w,)} in U? with the properties that (z,, w,) = (r,e", r,e*) for all n,
r,— 1, and f(z,,w,) — ¢

A more detailed treatment of the relations between the various cluster sets of
a function defined on the polydisc will be provided by the authors in a
forthcoming paper.

REFERENCES
1. C. Carathéodory, Zum Schwarzschen Spiegelungsprinzip, Comment. Math. Helv. 19 (1946), 263-
278.

2. E. F. Collingwood and A. J. Lohwater, The Theory of Cluster Sets, Cambridge Tracts in Math.
Physics 56, Cambridge University Press, Cambridge, 1966.



70 C. L. CHILDRESS AND G. L. CSORDAS

3. T. W. Gamelin, Iversen’s theorem and fiber algebras, Pacific J. Math. 46 (1973), 389-414.

4. J. B. Garnett, On the Iversen—Tsuji theorem, Indiana Univ. Math. J. 24 (1974/75), 285-290,

5. F. Iversen, Recherches sur les fonctions inverses des fonctions méromorphes, Thesis, Helsinki,
1914.

6. A. J. Lohwater, The Boundary Behaviour of Analytic Functions, (Russian), Itogi Nauki:
Mathematical Analysis, Vol. 10, Moscow, 1973.

7. Max L. Weiss, Cluster sets of bounded analytic functions from a Banach algebraic viewpoint, Ann.
Acad. Sci. Fenn. Ser. A I 367 (1965), 14 pp.

8. A. Zygmund, Trigonometric Series, 2nd ed., Vol. 2, Cambridge University Press, Cambridge,
1959.

CASE WESTERN UNIVERSITY
CLEVELAND, OHIO 44106, US.A.

AND

UNIVERSITY OF HAWAIl
HONOLULU, HAWAII 96822, US.A.



