THE IVERSEN THEOREM IN A POLYDISC

C. L. CHILDRESS and G. L. CSORDAS

1. Introduction.

One of the fundamental results in the study of the boundary behavior of meromorphic functions of a single complex variable is the Iversen Theorem [5]. This result, which may be viewed as an extended form of a local maximum principle, states that the boundary of the cluster set is contained in the radial boundary cluster set modulo a set of measure zero. An excellent account of the extensions of the Iversen Theorem and its significance in the theory of functions may be found in Collingwood and Lohwater [2, Chapter 5] (cf. also Lohwater [6, Chapter 5] and the references contained therein).

The purpose of this paper is to provide a direct and geometric proof of the Iversen Theorem for meromorphic functions defined on a polydisc. Our proof is based on a result which is of independent interest in itself. Theorem 2 is an extension of a result of Carathéodory [1] to the polydisc. This theorem asserts that the cluster set of a bounded analytic function f at a point P on the distinguished boundary of the polydisc is contained in the closure of the convex hull of the set of radial limit values of f in a vicinity of P.

For the sake of simplicity, we shall present our theorems in the unit polydisc in \mathbb{C}^2. We remark, however, that our results remain valid for a polydisc in \mathbb{C}^n, where $n \geq 2$.

2.

Throughout this paper, U^2 will denote the unit polydisc in \mathbb{C}^2, T^2 will denote the distinguished boundary of U^2, and m_2 will denote the normalized Lebesgue measure on T^2, i.e., $m_2(T^2) = 1$.

Received May 20, 1977.
We begin with a lemma.

Lemma 1. Let \(f(z, w) \) be analytic and bounded, \(|f| < M \), in \(U^2 \), and let \(\varepsilon > 0 \). Let \(G \) be a subset of \(T^2 \), with \(m_2(G) < \varepsilon \), such that the radial limit
\[
f^*(e^{i\theta}, e^{i\phi}) = \lim_{r \to 1} f(re^{i\theta}, re^{i\phi})
\]
exists for \((e^{i\theta}, e^{i\phi}) \in G^c = T^2 - G\). Then \(f(0, 0) = \xi_1 + \xi_2 \), where \(\xi_1 \) lies in \(\bar{S} \), the closure of the convex hull of
\[
S = \{ f^*(e^{i\theta}, e^{i\phi}) \mid (e^{i\theta}, e^{i\phi}) \in G^c \},
\]
and where \(|\xi_2| < 2\varepsilon M \).

Proof. We shall prove the lemma with the aid of an auxiliary function \(g \) on \(T^2 \) defined by
\[
g = \begin{cases}
 f^* & \text{on } G^c, \\
 f^*(1, 1) & \text{on } G,
\end{cases}
\]
where we have tacitly assumed that the point \((1, 1)\) lies in \(G^c \). Since \(f(z, w) \) is analytic and bounded in \(U^2 \), it follows that
\[
f(0, 0) = \int_{T^2} f^* \, dm_2
\]
\[
= \int_{T^2} g \, dm_2 + \int_{T^2} (f^* - g) \, dm_2
\]
\[
= \int_{T^2} g \, dm_2 + \int_{G} (f^* - g) \, dm_2.
\]
Next we set \(f(0, 0) = \xi_1 + \xi_2 \), where
\[
\xi_1 = \int_{T^2} g \, dm_2 \quad \text{and} \quad \xi_2 = \int_{G} (f^* - g) \, dm_2.
\]
Then the assumptions \(|f| < M \) and \(m_2(G) < \varepsilon \) imply that \(|\xi_2| < 2\varepsilon M \). Thus, in order to complete the proof of the lemma, it suffices to show that \(\xi_1 \) lies in \(\bar{S} \), the closure of the convex hull of \(S \).

Consider a closed half-plane \(H \) which contains \(\bar{S} \). It suffices to show that \(\xi_1 \) lies in \(H \). We may choose real numbers \(\theta_0 \) and \(\alpha \) such that \(e^{i\theta_0}H + i\alpha \) is the closed upper half-plane. Since the range of \(g \) lies in \(S \subseteq H \), \(h = e^{i\theta_0}g + i\alpha \) satisfies \(\text{Im} \, h \geq 0 \). Since \(m_2 \) is a probability measure,
\[0 \leq \int_{T^2} (\text{Im } h) \, dm_2 \]
\[= \text{Im} \int_{T^2} h \, dm_2 \]
\[= \text{Im} \left(e^{i\theta_0} \int_{T^2} g \, dm_2 + i\alpha \right). \]

It follows that \(\xi_1 = \int_{T^2} g \, dm_2 \) lies in \(H \), and so the lemma is proved.

Let \(\zeta = f(z, w) \) be an extended complex-valued function defined on the polydisc \(U^2 \), and let \(P \) be a point on \(\partial U^2 \), the boundary of \(U^2 \). The \textit{cluster set} \(C(f, P) \) of \(f \) at the point \(P \) is the set of all values \(\zeta \) in the extended complex plane such that there exists a sequence \(\{(z_n, w_n)\} \) in \(U^2 \) with the properties that \((z_n, w_n) \to P \) and \(f(z_n, w_n) \to \zeta \).

Preliminaries aside, we shall now apply our lemma to prove the following extension of a theorem of Carathéodory [1] (cf. also Collingwood and Lohwater [2, p. 96]).

Theorem 2. Let \(f(z, w) \) be analytic and bounded, \(|f| < M\), in \(U^2 \). Let \(A \) denote the set

\[\{(e^{i\theta}, e^{i\varphi}) \mid \theta_1 < \theta < \theta_2, \varphi_1 < \varphi < \varphi_2\} . \]

If for every point \((e^{i\theta}, e^{i\varphi}) \in A - E\), where \(m_2(E) = 0\), the radial limit

\[f^*(e^{i\theta}, e^{i\varphi}) = \lim_{r \to 1} f(re^{i\theta}, re^{i\varphi}) \]

exists and lies in a set \(V \), then, for every point \(P \in A \), the cluster set \(C(f, P) \) is contained in \(\bar{V} \), the closure of the convex hull of \(V \).

Proof. Since \(f \) is analytic and bounded in \(U^2 \), it follows from a theorem of Marcinkiewicz and Zygmund [8, p. 316] that there is a set \(E_1 \subseteq T^2 \) of measure zero such that \(f(z, w) \to f^*(e^{i\theta}, e^{i\varphi}) \) uniformly, whenever \((z, w) \to (e^{i\theta}, e^{i\varphi})\) from inside any fixed Stolz domain whose vertex is at the point \((e^{i\theta}, e^{i\varphi}) \in E_1\). We shall assume, without any circumlocution, that the negligible set \(E, m_2(E) = 0 \), mentioned in the theorem includes the set \(E_1 \).

For a suitable choice of the point \((z_0, w_0) \) in \(U^2 \), the map

\[(\zeta, \eta) = \Phi(z, w) = \begin{pmatrix} z_0 - z \\ w_0 - w \\ 1 - z_0 \bar{z} \\ 1 - \bar{w}_0 w \end{pmatrix} \]

transforms the set \(A \) into a product set \(B \subseteq T^2 \), whose area we may write as
1 - \varepsilon/2. Moreover, \(\Phi \) takes the set \(E, m_2(E) = 0 \), into a set \(\tilde{F} \subseteq T^2 \) whose measure is also zero.

We shall next cover the set \(F \cup (T^2 - B) \) with an open set \(G \) such that \(m_2(G) < \varepsilon \), and consider the function

\[
g(\zeta, \eta) = f \circ \Phi^{-1}(\zeta, \eta) = f \left(\frac{z_0 - \zeta}{1 - \overline{z}_0 \zeta}, \frac{w_0 - \eta}{1 - \overline{w}_0 \eta} \right).
\]

Lemma 1 allows us to write

\[f(z_0, w_0) = g(0, 0) = \xi_1 + \xi_2, \]

where \(|\xi_2| < 2\varepsilon M\), and where \(\xi_1 \) lies in the closure of the convex hull of the set

\[S = \{ g^*(e^{i\alpha}, e^{i\beta}) \mid (e^{i\alpha}, e^{i\beta}) \in G^c \} . \]

We will show that \(S \subseteq V \). Then \(\xi_1 \in \tilde{V} \). The proof will then be complete, because \(\epsilon \) tends to zero with \(|P - (z_0, w_0)|\).

If \((e^{i\alpha}, e^{i\beta}) \in G^c\), then the point \((e^{i\theta}, e^{i\varphi}) = \Phi^{-1}(e^{i\alpha}, e^{i\beta})\) is an element of \(A - E\). Moreover, \(g(re^{i\alpha}, re^{i\beta}) = f(r_1 e^{i\theta}, r_2 e^{i\varphi}) \), where \(r_1 \) and \(r_2 \) tend to 1 as \(r \) tends to 1. Now it follows from the result of Marcinkiewicz and Zygmund, cited at the beginning of this proof, that

\[
g^*(e^{i\alpha}, e^{i\beta}) = \lim_{r \to 1} g(re^{i\alpha}, re^{i\beta}) = f^*(e^{i\theta}, e^{i\varphi}).
\]

Since \(f^*(e^{i\theta}, e^{i\varphi}) \) lies in \(V \) by hypothesis, \(S \subseteq V \), and the proof of the theorem is complete.

Theorem 3. Let \(f(z, w) \) be analytic and bounded in \(U^2 \), let \((e^{i\alpha_0}, e^{i\varphi_0}) \) be an arbitrary point on \(T^2 \), and let \(E \) be an any subset of \(T^2 \) with \(m_2(E) = 0 \). Then

\[
\lim_{(z, w) \to (e^{i\alpha_0}, e^{i\varphi_0})} |f(z, w)| \leq \lim_{(\theta, \varphi) \to (\theta_0, \varphi_0)} \lim_{(z, w) \to (e^{i\theta}, e^{i\varphi}) \notin E} |f(z, w)|.
\]

Proof. Let \(E_1 \) denote the set of measure zero on \(T^2 \) for which

\[
f^*(e^{i\theta}, e^{i\varphi}) = \lim_{r \to 1} f(re^{i\theta}, re^{i\varphi})
\]

fails to exist. If \(E_2 = E \cup E_1 \), then

\[
\lim_{(\theta, \varphi) \to (\theta_0, \varphi_0)} \left(\lim_{(z, w) \to (e^{i\theta}, e^{i\varphi}) \notin E} |f(z, w)| \right) \geq \lim_{(\theta, \varphi) \to (\theta_0, \varphi_0)} \left(\lim_{(z, w) \to (e^{i\theta}, e^{i\varphi}) \notin E_2} |f(z, w)| \right) \geq \lim_{(\theta, \varphi) \to (\theta_0, \varphi_0)} \left| f^*(e^{i\theta}, e^{i\varphi}) \right| .
\]
Let \(\delta > 0 \), and let \(A_\delta \) denote the set
\[
\{ (e^{i\theta}, e^{i\varphi}) \mid \theta_0 - \delta < \theta < \theta_0 + \delta, \varphi_0 - \delta < \varphi < \varphi_0 + \delta \}.
\]

By Theorem 2, the cluster set \(C(f, (e^{i\theta_0}, e^{i\varphi_0})) \) is contained in the closure of the convex hull of the set
\[
V_\delta = \{ f^*(e^{i\theta}, e^{i\varphi}) \mid (e^{i\theta}, e^{i\varphi}) \in A_\delta - E_2 \}.
\]

Since \(\delta > 0 \) is arbitrary, it follows that
\[
\lim_{(\theta, \varphi) \to (\theta_0, \varphi_0), (e^{i\theta}, e^{i\varphi}) \notin E_2} |f^*(e^{i\theta}, e^{i\varphi})| \geq \lim_{(z, w) \to (e^{i\theta_0}, e^{i\varphi_0})} |f(z, w)|,
\]
and thus the proof of Theorem 3 is complete.

Alternatively, Theorem 3 may be stated as

Theorem 4. Let \(f(z, w) \) be analytic and bounded in \(U^2 \), let \((e^{i\theta_0}, e^{i\varphi_0})\) be any point on \(T^2 \), and let \(E \) be an arbitrary set of measure zero on \(T^2 \). Then
\[
\lim_{(z, w) \to (e^{i\theta_0}, e^{i\varphi_0})} |f(z, w)| \leq \lim_{(\theta, \varphi) \to (\theta_0, \varphi_0), (e^{i\theta}, e^{i\varphi}) \notin E} |f^*(e^{i\theta}, e^{i\varphi})|.
\]

In order to prove our main result, the Iversen Theorem for meromorphic functions in the polydisc \(U^2 \), we introduce some additional terminology and definitions.

Let \(\zeta = f(z, w) \) be an extended complex-valued function defined on the polydisc \(U^2 \). The **radial cluster set of \(f \) at the point** \((e^{i\theta}, e^{i\varphi})\) on \(T^2 \) is denoted by \(C_{\text{rad}}(f, (e^{i\theta}, e^{i\varphi})) \), and is defined as the set of all limiting values of \(f(z, w) \) when the defining sequences \(\{ (z_n, w_n) \} \) satisfy \((z_n, w_n)^{1/n} = (e^{i\theta}, e^{i\varphi}) \) for all \(n \). We define the **radial boundary cluster set modulo \(E \)**, \(E \subseteq T^2 \), of \(f \) at the point \((e^{i\theta_0}, e^{i\varphi_0})\) to be the set
\[
C_{R \setminus \bar{E}}(f, (e^{i\theta_0}, e^{i\varphi_0})) = \bigcap_{n > 0} \left\{ \bigcup_{|((\theta, \varphi) - (\theta_0, \varphi_0)| < \eta} C_{\text{rad}}(f, (e^{i\theta}, e^{i\varphi})) \right\},
\]
where the union is taken over all \((e^{i\theta}, e^{i\varphi})\) such that \(0 < |(\theta, \varphi) - (\theta_0, \varphi_0)| < \eta \) and \((e^{i\theta}, e^{i\varphi}) \notin E \), and where the bar denotes the closure operator.

We are now in a position to state and prove the principal result of this paper.

Theorem 5. If \(f(z, w) \) is a meromorphic function in \(U^2 \), and if \(E \subseteq T^2 \) is a set of measure zero, then at every point \((e^{i\theta_0}, e^{i\varphi_0}) \in T^2\),
\[
\partial C(f, (e^{i\theta_0}, e^{i\varphi_0})) \subseteq C_{R \setminus \bar{E}}(f, (e^{i\theta_0}, e^{i\varphi_0})),
\]
where \(\partial C \) denotes the boundary of \(C \).
THE IVERSEN THEOREM IN A POLYDISC

PROOF. If Theorem 5 were not true, there would be a point \(\zeta_0 \in \partial C(f, (e^{i\theta_0}, e^{i\phi_0})) \) not in \(C_{R-E}(f, (e^{i\theta_0}, e^{i\phi_0})) \). Thus, we would be able to find a \(\delta > 0 \) such that \(\zeta_0 \) is at a distance greater than \(\delta \) from all points of \(C_{R-E}(f, (e^{i\theta_0}, e^{i\phi_0})) \). Since \(\zeta_0 \) is a boundary point of \(C(f, (e^{i\theta_0}, e^{i\phi_0})) \), we can find a second point \(\zeta_1 \) not in \(C(f, (e^{i\theta_0}, e^{i\phi_0})) \) such that \(|\zeta_1 - \zeta_0| < \frac{1}{2}\delta \); this implies that the distance between \(\zeta_1 \) and any point of \(C_{R-E}(f, (e^{i\theta_0}, e^{i\phi_0})) \) is greater than \(\frac{1}{4}\delta \). Since the function \(g = (f - \zeta_1)^{-1} \) is bounded in a neighbourhood of \((e^{i\theta_0}, e^{i\phi_0}) \), we can apply Theorem 4 to \(g \) and obtain

\[
\frac{2}{\delta} < \frac{1}{|\zeta_0 - \zeta_1|} \leq \lim_{(z, w) \to (e^{i\theta_0}, e^{i\phi_0})} |g(z, w)| \leq \lim_{(\theta, \phi) \to (\theta_0, \phi_0)} |g^*(e^{i\theta}, e^{i\phi})| \leq \frac{2}{\delta}.
\]

This contradiction establishes the theorem.

Since \(C_{R-E}(f, (e^{i\theta}, e^{i\phi})) \) is a subset of \(C(f, (e^{i\theta}, e^{i\phi})) \), the inclusion relation in Theorem 5 is equivalent to the assertion that the difference set \(C(f, (e^{i\theta}, e^{i\phi})) - C_{R-E}(f, (e^{i\theta}, e^{i\phi})) \) is open.

We remark, in conclusion, that our proof of Theorem 5 yields the following stronger result:

\[
\partial C(f, (e^{i\theta_0}, e^{i\phi_0})) \subseteq \bigcap_{n > 0} \left\{ \bigcup_{0 < |(\theta, \phi) - (\theta_0, \phi_0)| < \frac{\delta}{n}} \bigcup_{(e^{i\theta}, e^{i\phi}) \notin E} C^{*}_{rad}(f, (e^{i\theta}, e^{i\phi})) \right\},
\]

where \(C^{*}_{rad}(f, (e^{i\theta}, e^{i\phi})) \) denotes the set of all points \(\zeta \) such that there is a sequence \(\{(z_n, w_n)\} \) in \(U^2 \) with the properties that \((z_n, w_n) = (r_n e^{i\theta}, r_n e^{i\phi}) \) for all \(n \), \(r_n \to 1 \), and \(f(z_n, w_n) \to \zeta \).

A more detailed treatment of the relations between the various cluster sets of a function defined on the polydisc will be provided by the authors in a forthcoming paper.

REFERENCES

CASE WESTERN UNIVERSITY
CLEVELAND, OHIO 44106, U.S.A.

AND

UNIVERSITY OF HAWAII
HONOLULU, HAWAII 96822, U.S.A.