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A NOTE ON FREE DIRECT SUMMANDS
ISTVAN BECK and PETER J. TROSBORG

1. Introduction.

In the paper [1] Bass demonstrated a useful technique for dealing with big
projective modules (i.e. non-finitely generated projective modules). By the so-
called “Eilenberg-swindle” he proved: Let P be a big projective module which
is a quotient of a big free module F; if P has a direct summand isomorphic to
F then P is isomorphic to F. With this result at hand the problem of showing
that a given projective module is free naturally leads on to look for free direct
summands in modules.

In the paper [2] we proved a theorem of this kind. Let R be a ring with
Jacobson-radical N, and let F be a free module. If F’ is a submodule of F such
that F=F'+ NF then F' has a direct summand isomorphic to F. Theorem 2 of
the present paper is an improvement of this earlier result. In theorem 3 we give
a necessary and sufficient condition for a module M to have a direct summand
isomorphic to R, where I is an infinite set, and we give some applications.

In the following rings are associative with identity and modules are left
unitary modules. For a free R-module F with basis {e;};.; we set the support of
an element x € F, x=3 re,, to be

supp (x) = {iel| r;+0}.

2. Free direct summands.
To simplify the proof of Theorem 2 we first prove a set-theoretic lemma.

LEMMA 1. Let A be a set and let X be a subset of the cartesian product A x A.
There exists a subset B of A satisfying:

(i) B has a (non-reflexive) well-ordering such that if b,,b, € B and b, <b, then
(by,by) € X.
(i) Ifae A and (b,a) € X for all b € B, then a € B.

PROOF. Let 4 be non-empty and let Q be the set of all pairs (C, <, where
CcAand <, is a well-ordering of C such that if ¢,,c, € C and ¢y <., then
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(c1,c3) € X. Q is partially ordered by (C, <)< (D, <p) if CD and the
restriction of <p to Cis < and ¢ <pd whenever ¢ € C and d € D\C. The set
Qis not empty and inductively ordered. It is then straightforward to verify that
a maximal member (B, <) of Q satisfies conditions (i) and (ii) of Lemma 1.

For a free R-module F with basis {e;};.; let n;(x)=r; (i € I) when x=Y r.e; is
an element of F. These coordinate-projections are surjective R-
homomorphisms from F to R.

THEOREM 2. Let F be a free R-module with basis {e;};.; where I is an infinite
index-set. If {x;};c; is a set of elements of F such that n,(x;)=1 for every i € I,
then there exists a set JSI of the same cardinality as 1 such that
{x;};jesU{ei}icry is a basis for F.

Proor. Let X be the following subset of I x I:
X = {G.)elIxI]| jéSupp(x)}.

According to Lemma 1 there exists a set J < I, well-ordered by <, such that

’

(i) If ji,j, € J and j; <j, then j, ¢ Supp (x;,)
(i) (U, Supp (x))UJ=1.

Since i € Supp (x;) we have U, Supp (x;)=1I and as Supp (x;) is a finite set for
every jeJ we obtain that card(J)=card (I). It remains to prove that
{x;}jesU{e}icry is a basis for F. Let ¢: F — 3, Re; be the projection, that is,
@(e)=e;forje Jand g(e)=0fori e I\J.Set y;=¢(x)) for j € J. Due to (i) we
have

Xj= e+ Y net+ )y se
keJ, k<j t¢J

hence

yj = el+ Z rkek .
kel k<j

Assume that
uy,+...+u,y, =0, where y;€R, and j; <...<j,.

Since ¢; occurs only in the representation of y; and with coefficient 1 it follows
that u,=0. By induction we get all the u;s to be zero. Thus: if u;x; + ...
+u,x; € Kero then u;=...=u,=0, implying that {x;},.; is a basis for the
free module ¥, Rx;.and

Y Rx; N Kerg = {0} .
]

To prove that 3, Rx;+Kerg=F it suffices to show that 3; Ry;=3; Re;.
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Obviously 3y Ry;S ¥ Re;. Suppose that ¢; ¢ 3.5 Ry; for some j € J. Let j, be
the smallest jeJ with this property. But as y, =e; +2 r.e, where the
summation is taken over values of k € J with k <j, we have a contradiction. As
Ker =3 \; Re; the proof is complete.

DerFINITION. Let {m;};; be a family of R-homomorphisms between R-
modules M and N. We shall say that the family is locally finite if for each
m e M, n,(m)=0 for all but a finite number of i’s.

THEOREM 3. Let M be an R-module and let I be an infinite set. The following
conditions are equivalent.

1° M has a direct summand isomorphic to RV
2° There exists a locally finite family of surjective R-homomorphisms {m};
from M to R.

ProoF. It is enough to prove 2° = 1°. Let {e;};.; be a basis for RY and
define f: M — RY by
fim) = Z n;(m)e; .

I

For every i € I there exists an element m; € M with n;(m;)=1; letting x;=f(m,)
the family {x;};.; satisfies the condition in Theorem 2. Let J<I be such that
cardJ=card I and {x;};.;U{e};p,s is a basis for R®. Let F=3,Rx; Then
F<f(M) and F is a direct summand of R, Hence F is also a direct summand
of If (M), and consequently M has a surjection onto a module isomorphic to
RY.

Let N denote the Jacobson-radical of a ring R and let F be a free module. If
F’ is a submodule of F such that F=F' + NF, then we proved in [2] that F’ has
a surjection onto F. This was the keyresult in establishing that P/NP~F/NF
implies P~ F whenever P is projective and F is free.

COROLLARY 4. Let F be a free module and F'<F a submodule such that
F'+NF=F. Then F has a direct summand F’",F'<F' and F'~F.

PRroOF. Let {e;};; be a basis for F. If I is finite it follows from Nakayama’s
lemma that F'=F. So assume that [ is infinite. Writing e,;=y,+z, y; € F,
z; € NF, we get that y, can be written Y, r;;e; where r;; is a unit in R. Letting x;
=r;'y; we get a family {x:};c1 as in Theorem 2 and we are done.

DEFINITION. Let P be a projective module. A dual basis for P is a family
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{n;,qi}ier Where ;€ Hom (P,R) and ¢;€ P such that for all xeP,
x=Ym(x)q; ({n;} locally finite).

THEOREM 5. Let P be a big projective module of type a (the type is the smallest
cardinal of a set of generators). The following conditions are equivalent:

1° P is free

2° P has a dual basis {n;,q;};.; where all the s are surjective.

3° P has a dual basis {m;,q;};.; such that ; is surjective for all j in a subset J 1
with card J=card I =o.

4° There exists a locally finite family {rn.};.;, where n; € Hom (P, R) is surjective
for alliel and card I =a.

ProoOF. 1° = 2° = 3° = 4° are all evident.
4° = 1°. It follows from Theorem 3 that P has a surjection to R"), and using
the result of Bass mentioned in the introduction it follows that P is free.

ProBLEM. Let P be finitely generated prdjective with dual basis {n;q;};
i=1,2,...,n such that all the =;’s are surjective. Is P a free module? This is
true if R is commutative or left noetherian.

Elements of the form x;=¢;+3 ;. ,7;e; often arise as generators of kernels in
free modules. Let Q be an R-module with the property that any finitely
generated homomorphic image of Q is zero. If R is an integral domain with
field of quotients K, K #R, then K has this property. It is easily seen that a
module Q has this property if and only if Q has no maximal submodules. We
close this paper with an application of Theorem 2, which shows that the
relations of such a module are “big”.

THEOREM 6. Let Q be an R-module with no maximal submodule. Let ¢: F — Q
be surjective with F free. Then Ker ¢ has a direct summand isomorphic to F.

ProOF. Let {e;};.; be a basis for F and set ¢;= ¢(e;) (notice that I must be
infinite). Then for every i € 1, ¢; € ¥;,; Rq;. It follows that for every i € I there
exists x; € Ker ¢ such that

x;—e; € Y Re;.
j*i

Now the proof is easily completed by Theorem 2.
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