A NOTE ON FREE DIRECT SUMMANDS

ISTVÁN BECK and PETER J. TROSBORG

1. Introduction.

In the paper [1] Bass demonstrated a useful technique for dealing with big projective modules (i.e. non-finitely generated projective modules). By the so-called "Eilenberg-swindle" he proved: Let P be a big projective module which is a quotient of a big free module F; if P has a direct summand isomorphic to F then P is isomorphic to F. With this result at hand the problem of showing that a given projective module is free naturally leads on to look for free direct summands in modules.

In the paper [2] we proved a theorem of this kind. Let R be a ring with Jacobson-radical N, and let F be a free module. If F' is a submodule of F such that F = F' + NF then F' has a direct summand isomorphic to F. Theorem 2 of the present paper is an improvement of this earlier result. In theorem 3 we give a necessary and sufficient condition for a module M to have a direct summand isomorphic to $R^{(I)}$, where I is an infinite set, and we give some applications.

In the following rings are associative with identity and modules are left unitary modules. For a free R-module F with basis $\{e_i\}_{i\in I}$ we set the support of an element $x \in F$, $x = \sum r_i e_i$, to be

$$supp (x) = \{i \in I \mid r_i \neq 0\}.$$

2. Free direct summands.

To simplify the proof of Theorem 2 we first prove a set-theoretic lemma.

LEMMA 1. Let A be a set and let X be a subset of the cartesian product $A \times A$. There exists a subset B of A satisfying:

- (i) B has a (non-reflexive) well-ordering such that if $b_1, b_2 \in B$ and $b_1 < b_2$ then $(b_1, b_2) \in X$.
- (ii) If $a \in A$ and $(b, a) \in X$ for all $b \in B$, then $a \in B$.

PROOF. Let A be non-empty and let Ω be the set of all pairs $(C, <_c)$ where $C \subseteq A$ and $<_c$ is a well-ordering of C such that if $c_1, c_2 \in C$ and $c_1 <_c c_2$ then

 $(c_1,c_2) \in X$. Ω is partially ordered by $(C,<_C) \le (D,<_D)$ if $C \subseteq D$ and the restriction of $<_D$ to C is $<_C$ and $c <_D d$ whenever $c \in C$ and $d \in D \setminus C$. The set Ω is not empty and inductively ordered. It is then straightforward to verify that a maximal member (B,<) of Ω satisfies conditions (i) and (ii) of Lemma 1.

For a free R-module F with basis $\{e_i\}_{i\in I}$ let $\pi_i(x) = r_i$ $(i \in I)$ when $x = \sum r_i e_i$ is an element of F. These coordinate-projections are surjective R-homomorphisms from F to R.

THEOREM 2. Let F be a free R-module with basis $\{e_i\}_{i\in I}$ where I is an infinite index-set. If $\{x_i\}_{i\in I}$ is a set of elements of F such that $\pi_i(x_i)=1$ for every $i\in I$, then there exists a set $J\subseteq I$ of the same cardinality as I such that $\{x_j\}_{j\in J}\cup\{e_i\}_{i\in I\setminus J}$ is a basis for F.

PROOF. Let X be the following subset of $I \times I$:

$$X = \{(i, j) \in I \times I \mid j \notin \text{Supp}(x_i)\}.$$

According to Lemma 1 there exists a set $J \subseteq I$, well-ordered by <, such that

- (i) If $j_1, j_2 \in J$ and $j_1 < j_2$ then $j_2 \notin \text{Supp}(x_{j_1})$
- (ii) $(\bigcup_J \operatorname{Supp}(x_i)) \cup J = I$.

Since $i \in \operatorname{Supp}(x_i)$ we have $\bigcup_J \operatorname{Supp}(x_j) = I$ and as $\operatorname{Supp}(x_j)$ is a finite set for every $j \in J$ we obtain that $\operatorname{card}(J) = \operatorname{card}(I)$. It remains to prove that $\{x_j\}_{j \in J} \cup \{e_i\}_{i \in I \setminus J}$ is a basis for F. Let $\varphi \colon F \to \sum_J Re_j$ be the projection, that is, $\varphi(e_j) = e_j$ for $j \in J$ and $\varphi(e_i) = 0$ for $i \in I \setminus J$. Set $y_j = \varphi(x_j)$ for $j \in J$. Due to (i) we have

$$x_j = e_j + \sum_{k \in J, k < j} r_k e_k + \sum_{t \notin J} s_t e_t$$

hence

$$y_j = e_j + \sum_{k \in J, k < j} r_k e_k.$$

Assume that

$$u_i y_{j_1} + \ldots + u_n y_{j_n} = 0$$
, where $u_i \in R$, and $j_1 < \ldots < j_n$.

Since e_{j_n} occurs only in the representation of y_{j_n} and with coefficient 1 it follows that $u_n = 0$. By induction we get all the u_i 's to be zero. Thus: if $u_1 x_{j_1} + \ldots + u_n x_{j_n} \in \text{Ker } \varphi$ then $u_1 = \ldots = u_n = 0$, implying that $\{x_j\}_{j \in J}$ is a basis for the free module $\sum_{J} Rx_{j_n}$ and

$$\sum_{i} Rx_{j} \cap \operatorname{Ker} \varphi = \{0\} .$$

To prove that $\sum_{J} Rx_{j} + \text{Ker } \varphi = F$ it suffices to show that $\sum_{J} Ry_{j} = \sum_{J} Re_{j}$.

Obviously $\sum_{J} R y_j \subseteq \sum_{J} R e_j$. Suppose that $e_j \notin \sum_{J} R y_j$ for some $j \in J$. Let j_0 be the smallest $j \in J$ with this property. But as $y_{j_0} = e_{j_0} + \sum_{k} r_k e_k$ where the summation is taken over values of $k \in J$ with $k < j_0$ we have a contradiction. As Ker $\varphi = \sum_{I \setminus J} R e_i$ the proof is complete.

DEFINITION. Let $\{\pi_i\}_{i\in I}$ be a family of R-homomorphisms between R-modules M and N. We shall say that the family is *locally finite* if for each $m \in M$, $\pi_i(m) = 0$ for all but a finite number of i's.

THEOREM 3. Let M be an R-module and let I be an infinite set. The following conditions are equivalent.

- 1° M has a direct summand isomorphic to $R^{(l)}$
- 2° There exists a locally finite family of surjective R-homomorphisms $\{\pi_i\}_{i\in I}$ from M to R.

PROOF. It is enough to prove $2^{\circ} \Rightarrow 1^{\circ}$. Let $\{e_i\}_{i \in I}$ be a basis for $R^{(I)}$ and define $f: M \to R^{(I)}$ by

$$f(m) = \sum_{i} \pi_{i}(m)e_{i}.$$

For every $i \in I$ there exists an element $m_i \in M$ with $\pi_i(m_i) = 1$; letting $x_i = f(m_i)$ the family $\{x_i\}_{i \in I}$ satisfies the condition in Theorem 2. Let $J \subseteq I$ be such that card $J = \operatorname{card} I$ and $\{x_j\}_{j \in J} \cup \{e_i\}_{i \in I \setminus J}$ is a basis for $R^{(I)}$. Let $F = \sum_J Rx_j$. Then $F \subseteq f(M)$ and F is a direct summand of $R^{(I)}$. Hence F is also a direct summand of $R^{(I)}$, and consequently $R^{(I)}$ has a surjection onto a module isomorphic to $R^{(I)}$.

Let N denote the Jacobson-radical of a ring R and let F be a free module. If F' is a submodule of F such that F = F' + NF, then we proved in [2] that F' has a surjection onto F. This was the keyresult in establishing that $P/NP \cong F/NF$ implies $P \cong F$ whenever P is projective and F is free.

COROLLARY 4. Let F be a free module and $F' \subseteq F$ a submodule such that F' + NF = F. Then F has a direct summand $F'', F'' \subseteq F'$ and $F'' \cong F$.

PROOF. Let $\{e_i\}_{i\in I}$ be a basis for F. If I is finite it follows from Nakayama's lemma that F' = F. So assume that I is infinite. Writing $e_i = y_i + z_i$, $y_i \in F'$, $z_i \in NF$, we get that y_i can be written $\sum_{I} r_{ij} e_j$ where r_{ii} is a unit in R. Letting $x_i = r_{ii}^{-1} y_i$ we get a family $\{x_i\}_{i \in I}$ as in Theorem 2 and we are done.

DEFINITION. Let P be a projective module. A dual basis for P is a family

 $\{\pi_i, q_i\}_{i \in I}$ where $\pi_i \in \text{Hom } (P, R)$ and $q_i \in P$ such that for all $x \in P$, $x = \sum_{I} \pi_i(x) q_i$ ($\{\pi_i\}$ locally finite).

THEOREM 5. Let P be a big projective module of type α (the type is the smallest cardinal of a set of generators). The following conditions are equivalent:

- 1° P is free
- 2° P has a dual basis $\{\pi_i, q_i\}_{i \in I}$ where all the π_i 's are surjective.
- 3° P has a dual basis $\{\pi_i, q_i\}_{i \in I}$ such that π_j is surjective for all j in a subset $J \subseteq I$ with card $J = \operatorname{card} I = \alpha$.
- 4° There exists a locally finite family $\{\pi_i\}_{i\in I}$, where $\pi_i \in \text{Hom }(P,R)$ is surjective for all $i \in I$ and card $I = \alpha$.

PROOF. $1^{\circ} \Rightarrow 2^{\circ} \Rightarrow 3^{\circ} \Rightarrow 4^{\circ}$ are all evident.

 $4^{\circ} \Rightarrow 1^{\circ}$. It follows from Theorem 3 that P has a surjection to $R^{(I)}$, and using the result of Bass mentioned in the introduction it follows that P is free.

PROBLEM. Let P be finitely generated projective with dual basis $\{\pi_i, q_i\}$; $i=1,2,\ldots,n$ such that all the π_i 's are surjective. Is P a free module? This is true if R is commutative or left noetherian.

Elements of the form $x_i = e_i + \sum_{j \neq i} r_{ij} e_j$ often arise as generators of kernels in free modules. Let Q be an R-module with the property that any finitely generated homomorphic image of Q is zero. If R is an integral domain with field of quotients K, $K \neq R$, then K has this property. It is easily seen that a module Q has this property if and only if Q has no maximal submodules. We close this paper with an application of Theorem 2, which shows that the relations of such a module are "big".

THEOREM 6. Let Q be an R-module with no maximal submodule. Let $\varphi \colon F \to Q$ be surjective with F free. Then $\operatorname{Ker} \varphi$ has a direct summand isomorphic to F.

PROOF. Let $\{e_i\}_{i\in I}$ be a basis for F and set $q_i = \varphi(e_i)$ (notice that I must be infinite). Then for every $i \in I$, $q_i \in \sum_{j \neq i} Rq_j$. It follows that for every $i \in I$ there exists $x_i \in \text{Ker } \varphi$ such that

$$x_i - e_i \in \sum_{j \neq i} Re_j$$
.

Now the proof is easily completed by Theorem 2.

REFERENCES

- 1. H. Bass, Big projective modules are free, Illinois J. Math. 7 (1963), 24-31.
- 2. I. Beck, Projective and free modules, Math. Z. 129 (1972), 231-234.
- 3. I. Kaplansky, Projective modules, Ann. of Math. 68 (1958), 372-377.

UNIVERSITY OF BERGEN NORWAY

AND

UNIVERSITY OF COPENHAGEN DENMARK