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THE HILBERT SERIES OF SOME GRADED
ALGEBRAS AND THE POINCARE SERIES OF
SOME LOCAL RINGS

YUJI KOBAYASHI

1. Introduction.

Let R be a ring (not necessarily commutative) and let X,,...,X, be
indeterminates. R<{X,...,X,)> denotes the non-commutative polynomial
ring in X,...,X, over R. Let k be a (commutative) field and let A=
k(X,,...,X,>/I, where I is a finitely generated homogeneous ideal of
k(X,,...,X,>. A, denotes the homogeneous component of 4 of degree n.
Let us consider the following two formal series:

(L1) H{(Z) = Y (dim4,)Z",
nz0
(1.2) PY(2) = Y (dim, (Tory (k,k))Z".
n=0

The former is called the Hilbert series of A and the latter is called the Poincare
series of A. It has been conjectured by Govorov [4] that H{(Z) is a rational
function. It is well-known that the conjecture is true if A is commutative.
However, the conjecture has been proved in few cases when A4 is non-
commutative ([1], [3], [4]). We do not know how the study has been made on
the rationality of P4(Z), but it seems probable that P4(Z) is rational if A is
commutative. In connection with this, there is a conjecture that the Poincaré
series of local rings are rational. Let R be a local ring and m its maximal ideal.
The Poincaré series PR(Z) of R is defined as

(1.3) PR(Z) = ¥ (dim,(TorR (k,k))z",
n20

where k=R/m. Many studies have been made on this conjecture in the last
twenty years (see [5], [6] for example). Most of the results may be described as
that the Poincaré series of a local ring close to a regular local ring in a sense is
rational. Recently Froberg [2] gave an interesting result that the Poincaré
series of a quotient ring of a regular local ring modulo an ideal generated by
any set of monomials of degree 2 in a regular system of parameters is rational.
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He constructed the minimal resolution of a local ring of the type sbove in a
special way.

In this paper we will generalize Froberg’s method and calculate the Hilbert
series of some type of graded algebras, which are quotient rings of
k{X,,...,X,> modulo ideals generated by some elements of degree 2, and the
Poincaré series of some type of local rings, which are quotient rings of regular
local rings modulo ideals generated by some monomials and binomials of
degree 2 in regular systems of parameters. In section 2 we construct a
complex which includes Froberg’s complex as a special case. In section 3 we
show that the minimal resolution of a local ring of the type above is connected
with our complex by means of the spectral sequence. In sections 4 and 5 we give
some conditions under which the complex is acyclic, that is applied to
calculating the Hilbert series and the Poincaré series in sections 6 and 7. As to
the Hilbert series we reached the same conclusion as in [1] as a special case. All
Poincaré series obtained in this paper are included in one of the following
forms:

1

R -

(14) P@=1zrz
(L5) PR(2) = — 2

1-(r—1)Z—-uz?’

where r is the embedding dimension of R and 0<u<r.
The author acknowledges with gratitude that this work was motivated by a
question posed by Professor Hiroshi Okuyama.

2. Construction of the complex.

We set a situation as follows: 1={1,...,r} is the set of r numbers. The
product set 1x 1 is a disjoint union of subsets %,...,%, and f. For every
(j)eayU...Ua, an element c;; of k*=k\ {0} is given.

We consider the following relations among 2r indeterminates X » Y (ie):

(2.1) {Cinl'Xj = clele for (lsj)9 (k’l) €a, V= la‘ c U,
X X; =0 for (i,j)ep,
22 Y ¢i'Y,Y; =0 for v=1,...,u.

@, jea,

Let A (respectively B) be the quotient ring k<(X,,...,X,> (respectively
k{Y,...,Y,>) modulo relation (2.1) (respectively (2.2)). Let C be the quotient
ring of k{(X,...,.X,>(Y,,...,Y,> modulo relations (2.1) and (2.2). Clearly

23 C=AQ®,B.
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The images of X; and Y, in A, B or C are denoted by x; and y; respectively.
A (respectively B) is a graded k-algebra by the degree with respect to x;
(respectively y,). C is a left graded A-module by the degree with respect to y;
(elements of A are considered to be of degree 0 in this case). A, (respectively B,,
C,) denotes the homogeneous component of degree n of A (respectively B, C).
C, is a free left A-module due to (2.3).

A differential mapping d of C is defined by the right multiplication by
-1 X;y; that is,

(2.4) dc)=c ) xy, ceC.
i=1

d is a homomorphism of left graded A-modules of degree 1. The following is
proved by an easy calculation.

CLAIM 1. dod =0.

Thus C is a free complex of left A-modules. Now we take the dual complex
C* of C:

’

(2.5 C*=@Cry C¥=Hom,(C,A).

n20
C* is a free complex of right A-modules with the differential mapping d* of
degree — 1. The nth component of d* is denoted by d¥. From (2.4) we have

26) dxf(m) = f(m 5 xiy.~> = 3 xfmy),

i=1 i=1

where fe C¥ and m is a monic monomial in y; of degree n—1.

Since A is a graded algebra and C, is a finitely generated left graded A-
module by the degree with respect to x; (monic monomials in y, are considered
to be of degree 0), C} is a right graded A-module in the usual way. The
homogeneous component of degree p of C¥ is denoted by C¥ :

C¥,={feC¥| f(m e A, for any monic monomial m € C, in y,}.

We know from (2.6) that d is a homomorphism of right graded A-modules of
degree 1. The pth component of d* is denoted by d* ;

n,p>
(2-7) drtp: C:.p - C:-l,pﬂ .

The nth homology group H,(C*) of C* is also a right graded A-module and its
homogeneous component of degree p is denoted by H,(C*),. In view of (2.7)
C* is the direct product of the complexes

C*g= @ Cr, @=012,...).
q=n+p
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Let H,(C*(q)) be the nth homology group of C*(g). Then we have
H,(C*, = H,(C*(n+p)) .

CLAIM 2.

k if p=0,
Ho(C), = {0 if p%0.

Proor. Let fe C¥ and f(y;)=a; € 4 (i €1). By (2.6)

a* (1) = Z x.f(y) = Z Xa; .
i=1 i=1
Since we can choose q; arbitrarily in A, the image of d* is the right ideal of A
generated by x,,...,x,. Therefore

Ho(C¥ = A/(.E': x,-A> =k.

Thus, C* is a free complex of right A-modules over k. C* is not always
acyclic, but it is acyclic in some cases as we state later. In the rest of this
section, we proceed our argment under the hypothesis that C* is acyclic. Then
the complex C*(q) is exact for g>0, hence its Euler-Poincaré characteristic is
0:

2(C*(q)

I

Y (=1)dim, Ck,

q=n+p

]

Y, (—1yrank,C, dim,4,

g=n+p

Z (“‘l)ndikan'dimkAp

g=n+p
=0.
When ¢=0, we have
dimk Bo'dimk Ao = 1 .

It follows from these that

I

H(-Z) HAZ) = 1.

Moreover if A4 is commutative, we obtain from (2.6)

ds(Cy) = CF_ M,
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where M=@,.,A, is the irrelevant maximal ideal of 4. In this case the
complex C* is called minimal and we have
Tord (k,k) = C*®4k.
Hence the nth Betti number dim, (TorZ (k,k)) of A is equal to
dim, (C} ® 4 k) = rank,C} = rank,C, = dim;B, .

Therefore the Poincaré series P4(Z) of A coincides with the Hilbert series
H2(Z) of B. Summarizing the preceding argument, we obtain

THEOREM 1. If the complex C* is acyclic, we have
(2.8) H{(Z) = 1/H{(-2),
and moreover if A is commutative,

29) P4(2) = H}(Z) = H{(-2Z)
and therefore PA(Z)=H2(Z) is rational.

ReMARK 1. (2.9) is called Froberg’s formula. Since it does not always hold,
C* is not always acyclic (see Froberg [2]).

3. Minimal resolutions of local rings.

Let R be a regular local ring of dimension r. Let m be the maximal ideal of R
and let x,,...,x, be a regular system of parameters of R. Let k=R/m and
assume kcR. Let I be an ideal of R generated by some monomials and
binomials of degree 2 in x,,. .., x, with coefficients in k. Then R'=R/I is the
quotient ring of R modulo some relations in x;,. . ., x, of type (2.1) in section 2.
Let B (respectively C’) be the quotient ring of k(Y,,...,Y,> (respectively
R'(Y,,...,Y,>) modulo the relations in Y,,..., Y, of type (2.2) corresponding
to the relations in x,,. . .,x,. Then C'~R’' ®,B. A differential mapping d of C'
is defined in the same way as that of C is defined in section 2. Then C’ is a free
complex of R’-modules and the dual complex

C'* = @ Homg (C,,R)
nz0
of C' is a free complex of R’-modules over k.
Let 4 be a quotient ring of k(X,,. .., X,) modulo the same relations in X;

as in x; above and let C=A4 ®, B. It is not difficult to observe

(31) A =~ Gr (R') —_ @) (mm/mm+l) ,
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where m’ is the maximal ideal of R’. We concider the m’-adic filtration on C'*.
There is the spectral sequence associated with the filtered complex C'* (see
Serre [7, Chapitre II]). We can show through a simple calculation using (3.1)
that E] ,=C, this is expressed as

(3.2 CY,= H,(C*).

Therefore, if C* is acyclic, so is C'* and C'* becomes the minimal resolution of
k. Hence the nth Betti number of R’ is equal to

dim, (C;* ®g k) = rankg C,;* = rankg C, = dim, B, .

Thus we obtain

THEOREM 2. If C* is acyclic, then C'* is the minimal resolution of k and
(3.3) PR(z) = H}(Z) = YH}(-2) = YHT®)(-2Z),
and therefore PR (Z) is rational.

4. General analysis of the complex C*.

Let A, B and C be the same as in section 2. Let M =@ >, M, be a finitely
generated left graded module over the graded algebra A. We define a complex
C*(M) of graded k-modules by

C*(M) = (—ZB Cr(M), C¥(M) = Hom,(C, M).
nz20
The differential mapping of C*(M) is induced from the differential mapping d

of C and is denoted by d*(M) or simply by d* if M is fixed. Cx (M), denotes the
homogeneous component of C*(M) of degree p:

CX(M),={fe CX(M) | J(m) € M, for any monic monomial m € C, in y;}.
The nth component d}¥ (M) of d*(M) is a homomorphism of graded k-modules
of degree — 1. The nth homology group H,(C*(M)) of C*(M) is also a graded
k-module and its homogeneous component of degree p is denoted by
H,(C*(M)),.

CLaM 3. Hy(C*(M))= M/MM.

Proor. Similar to the proof of Claim 2 in section 2.

For an integer 420 we define a complex C*(M)(q) by

C*M)g = D Crm,.
q=n+tp
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The Euler-Poincaré characteristic of C*(M)(g) is denoted by ry(q) and we
define Ry (Z)=3;>07m(q)Z% Then

(@ = Y (=1)"dim, C}H(M),

g=n+p

= Y (-1ydimB, dimM,.

q=n+p
Hence we get
4.1) H{(-2)-H{(2) = Ry(2).
In particular,
(4.2) H{(-2)-H{(2) = R4(2) .

Let 0> M, - M, » M; — 0 be an exact sequence of left graded A-
modules. We clearly have

HY'(2)+H{2(2) = BY:(2) .

’

Hence by (4.1) we obtain
4.3) Ry, (Z2)+ Ry, (Z) = Ry, (2) .

Moreover, since C is a free complex, we have an exact sequence of the com-
plexes:

0— C*(M,) > C*(M;) > C*(M;3) —» 0.
This derives the long exact sequence:
cee T Hn(C*(Ml))p - Hn(C*(MZ))p - Hn(C*(M3))p

4.4)
- Hn—l(C*(Ml))p+1 - Hn—l(C*(MZ))p+1 AEREE

Hereafter we use the following notations: For I=(i,,...,i,)€", X
(respectively y;) denotes the monomial x;...x; (respectively y;...y;).
Moreover, for J=(j,...,j.) €1, IJ means (i;,...,inj1--->jm) €1"T™ In
particular, for ie1, Ii (rexpectively i) means (iy,...,i,i) (respectively
(yigy. . .,0p) € 1"HL

Let i’ be a subset of 1. Let # (respectively #) be the left ideal of A generated
by x;, i € 1’ (respectively i € 1\ ') and let #' (respectively #’) be the left ideal
of B generated by y,, i € ' (respectively i € 1\ 1'). Let X; denote the image of

x;in A/ #.

CrLamm 4. H,(C*(4/#))o = Hom, (B,/5,, k).
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Proor. The claim is true in case n=0 by Claim 3. Let n>0 and
fe C¥A/F) Let f(y;)=a; € k for I € 1" and assume that d*f=0. Then for all
I' e 1""* we have

d*f(y;) = Z ap;x; =0,

iel’
this shows a;;=0 for all I' € 1"~ and i e 1. Therefore, f is naturally identified
with an element of Hom, ((B/.#"),,k), this proves the claim.
CoroLLARY 1. H,(C*)y = 0 for n > 0.

CoroLLARY 2. H,(C*(k))x~B,.

Next we consider the following situation:
4.5) For any v=1,...,u either ¢, c1x1’ or a, N (1 x)=F .

Renumbering «,, we may assume that «,,. . .,a, are all «, such that a,c1x 1.

Cram 5. Under the situtation above

H,(C*(4/#), = 0.

Proor. The claim is true in case n=0 by Claim 3. Let n>0 and
feCXA/#),. Let f(y)=%;er a{ii for I € 1", where af € k. Assume that d*f=0.
Then for all I' e 1"},

d*f(yr) Z xifyry) = Z z a{'ififj

iet iel jer

u

= Z Z ai'icigl(cijxiij) =0.

« v=1 (i, jea,
It follows from this that
(4.6) 2 afici' =0
G, j)ea,

for all I'e1"~" and v=1,...,u. We define fe Ck..(A/#), by

_fof ifjer,
]()’I,‘) = {0 ifjer,

for Ij € "**. Then f is well-defined by (4.6) and d*f= f.

CoRroLLARY. H,(C*), =0 (without situation (4.5)).
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CLAIM 6. Under situation (4.5) the following two statements are equivalent:
4.7 H,(C*(4/#), =0 for n>0 and p=2,
4.8) H,(C*(#), =0 for n>0 and p=2.
Proor. The proof is immediate from the long exact sequence (4.4) induced
from the exact sequence:
0> F—>A/f—>k—0.

If the statements in Claim 6 are satisfied (we will prove this in some cases in
the following section), we have by Claim 4 and Claim 5

Ta5(@) = (—1)*dim (H,(C*(A4/.#))o)
= (—1)*dim, (B,/.#) .
Hence by (4.1)
49 HY(Z)-H{? (-2) = H}”'(2) .

’

5. Several cases where C* is acyclic.
We postulate situation (4.5). We consider the following condition:

(5.1) There exist i,j € 1’ such that (i,j), (j,i) € f and
a, N('x) + F, a,N('x)j) @ forall v=1,...,u".
Let '={1,...,r"} (¥=r) and put d,=dim, (4,/7,)

CLAIM 7. On condition (5.1) we have

(5.2) dy=1,d,=1,d, =v and d, = 0 for n=3.

THEOREM 3. On condition (5.1)

H,(C*(4/#), =0 for p>0.

Proor. It suffices to prove that H,(C*(4/#)),=0 for n>0. Due to the
assumption we can choose elements i,,j, in 1’ for each v=1,...,u’ such that
(i»i) Uy Jj)€a,. Let fe CHALF), and f(y)=2i-,af %, % (af € k) for
I er. Since A,/ #5=0, we see d*f=0. Hence we must find fe C¥,,(4/9),
such that d*f=f. We define f as follows:

’

For I ei" and v=1,...,u,

](J’n,,) = aj" X;,
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for I' e """ 1(0<s<[(n—2)/2]) and w=1,...,u

*. qu(s+1) ¥
](.Wj.,jij...ij) == Z *apin | kdeksrr Xi s
" f (k. .m)E”»(’x Juwg1)) € %o
ij repeats s times (kz ”2')61“““ s jw(l)eavll)
(kr 'I‘(II) € Lyis=1p “r]w(s))e d,.(,,
(Kot gty + 1) € Xy
where
C* — Civ(l)l" N 'civ(s)icjwlc.iw(l)j' 4 'cjw(s)j
- ’

ck;i,,m' . 'Cksnin(sﬂ)chjwm‘ : 'c’sjw(s)

for I" e ""#(1<s<[(n—1)/2]) and v=1,...,u

%k, ) B
](}’1".'.,.';....'1) = Z c**afi. e %
('l ]_,“,)61 (ky 'un)ea‘wu)
(21 Jw2) € Xeiapy (kz Ty2)) € Ywiz)

sy Jrwisr) € Aogs = 110 (Kga Fogs)) € Ay

where

* Cis=1)iCiwnyi * * Clwis)i
b

C; iC

C** = vl (1)l *

cklivtl}' . 'cksl'u(s)clljw(l}' . 'c'sjw(S)

and for other J € 1"*!, f(y,)=0.
It is not difficult to observe that f is well-defined and d*f=f, we leave it to

the reader.

REMARK 2. As a special case of condition (5.1) we have

(5.1) there exists i € ' such that (i,i) € f and
a,N('xi) + @ forall v=1,...,u .

Next we assume in (4.5) that u'=1, that is, there is only one a, (=a,) such
that a, <1 x 1. Moreover we assume that a, N (' x ')+ . We say in this case
that the relation (2.1) is simple on 1. Let again '={1,...0r'}, ¥ <r and put
d,=dim, (4,/5,).

CLaIM 8. If the relation is simple on ', then
(5.2) do = dz = 1 and dl = r’,

(5.3)  either (i) d, = 1 for all n22, or (ii) there is no 22 such that
d, = 1for 2<n<ny and d, = 0 for n>n, .
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In (ii) above we refer to n, as the order of the relation on 1. In case (i) we say
the order is infinite. When the relation is simple on ¢, condition (5.1) turns to

(5.4) there exist i,j,k,[ € ' such that (i,j), (j,i) € p and (k,i), (L)) € a,,
and condition (5.1) turns to
(5.4) there exists i,j € 1’ such that (i,i) € f and (j,i) € «, .

In this case the order is 2 by Claim 7 and H,(C*(4/#)),=0 for p>0 by
Theorem 3. In the proof of the following theorem x;=x; means x;=cx; for
some c € k*.

THEOREM 4. If the relation is simple and of infinite order on I, then

H,(C*(4/9)), = 0 for p>0.

Proor. It suffices to prove that H,(C*(4/#)),=0 for n>0, p=2. Let
(i,j)) e ¢, N (' x1') and let I € 1 x1 x 1" such that x;+0. Then there is k € 1 such
that x; =x,;;. Since (k,i) € «,, it follows that x,;;=x;;; +0, this implies (j,j) € a;.
Now assume (1,1) € «,. Then X;=x% for all I €1 such that x;#+0. Let
fe CX(A/#),and f(y)=a;x} (a; € k) for I €1". Assume d*f=0, that is, for all
I'ei" !

d*f(yr) = Z xf(yr) = Z ap; X;x§ = Z al'i"i—llcnff“ =0.
iel i€l @, ea;
Thus we conclude that

Y apei' =0 forall I'ert.

(i,ea;
We define fe C¥,,(A/#),-, as follows: For J e 1"*!

_ faxz=t if J=I1 for I e,
T = {0 otherwise.

It is easy to observe that fis well-defined and d*f=f. This completes the proof.

THEOREM 5. Let 1 be a disjoint union of subsets 1,,. . .,1,. Assume that for every
v=1,...,u there is s (1<s<t) such that a,c1x1,. If for each s=1,...,t the
relation either satisfies condition (5.1) with " =1, or is simple and of infinite order
on 1, then C* is acyclic.

Proor. Immediate from Claim 6, Theorem 3, Theorem 4 and the long exact
sequence (4.4) induced from the exact sequence:
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0-4,0..0F5>A—-k—>0,

where £, is the ideal of A generated by x;, i €1,

ReMARK 3. There is another extreme case; every «, consists of either one
element or two elements (i,j) and (j,i). In this case C* is isomorphic to
Froberg’s complex [2]. He proved the acyclicity of the complex in this case
under a little more assumption. There are other cases where C* is acyclic (see
the following example), but we do not know the general condition for that.

ExampLE 1. We consider the following situation: i is a disjoint union of non-
empty subsets 1,,. . .,1,. a, is defined inductively by a, =1, x1, and

av = { U (lu’XIu”)}\an-l (v=2,...,u) .

v,v"'Sv

EL]

a;

The relations in X,, Y; are
XX; = X, X, for (ij), (k) e€a,,
(5.5)
Y Yy, =0
@i,j)ea,
In this case C* is acyclic. In fact, let f € C¥*, (n,p>0) and d*f=0. For each v

we choose an element i, in 1,, so that for any K € i? there is v such that
xg=xP. Let

w=1,...,u.

f) =) ajxt,al ek for I e 1".
v=1

Then for I' e 1"~!

d*f(yl') Z a;)','xixﬁ
iel, 1SvSu

Y apxRtt =0,

(1)
v=1 (i,iy)ea,
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Hence we find that for all v=1,...,u

a;)’,. = 0 .
@i,i,)ea,

Define fe C}¥,y, -1 by

700 = ayx?~' if J = Ii, for some I € 1" and v,
=70 otherwise.

Then [ is well-defined and d*f=/, this proves the acyclicity of C*.

6. Determination of the Hilbert series.

Let assume the condition of Theorem 5. Moreover we suppose the following:
For s<t’ (¢ <t) the relation is simple and of infinite order on i, and for s>¢'
the relation satisfies condition (5.1) with 1 =1, and the number of a, contained
in 1x 1y is u,. In this case the Hilbert series of A is given by

vZ> 1+ (r—1)Z—(r—t—u%Z*—u*Z?

A = *72 =
H{(Z) = 1+rZ+u*Z +(1—Z) 7 =7 ,

where u*=u, ,,+ ... +u, Therefore, by Theorem 1 and Theorem 5 we have

REesuLT 1. In the situation above

1+Z
—(r=1DZ—(r—t —u*Z*+u*Z?

(6.1) H}(2) = I

Next we consider the more special case where u =1, that is, B is the quotient
ring of k{Yj,...,Y,> modulo the following single relation:

6.2) m= Y ¢;Y;Y;=0.
(i, jeay

To calculate the Hilbert series we may assume k is algebraically closed by
Backelin [1, Lemma 4]. Through a suitable change of a coordinate system,
relation (6.2) turns to a relation of type (5.4) unless m= (3, c;Y;)* for some
¢; € k ([1, Lemma 3]). If m= (3, c;Y;)? the relation in X, corresponding to
(6.2) is simple and of infinite order on i in terms of section 5. Hence we come to
the same conclusion as [1, Corollary of Theorem 2].

RESULT 2. Let B be a quotient ring of k(Y,,...,Y,> by an ideal generated by a
homogeneous element m of degree 2. If m is a square of a linear combination of Y;
over the algebraic closure of k, then



32 YUJI KOBAYASHI

142
r—0(Z+2)’

(6.3) H{(Z) = 1—
and otherwise

1
B -
(6.4) Hk (Z) - l_rZ+ZZ :

'

7. Determination of the Pdincareé series.

Let R be an equi-characteristic regular local ring of dimension r and let R’ be
a quotient ring of R by an ideal I of R. Since the Poincaré series of R’ is
invariant under the completion of R’, we do not lose the generality even if we
assume that R is the formal power series ring k[[X,,...,X,]]. Now we will
give the Poincaré series of R'=R/I when I is generated by some types of
monomials and binomials in X ,. . ., X, of degree 2. First we obtain by (6.3) in
Result 2.

RESULT 3. Let i be a non-empty subset of 1={1,...,r} and let
I = (XX;— X, X, X, X,;i,j,kler',mé,ne).
Then

1+Z
—r-1)(Z+2%)"

(7.1 PR(2) = N

A subset « of 1x1 is called symmetric if (i, ) € « implies (j,i) € a. If « is
symmetric and a+1 x1 for any /<1, we can find i, Jj-k,1 €1 such that
(,j), G,d) ¢ a and (k,i), (/,j) € . Thus by (6.4) in Result 2 we have

RESULT 4. Let « be a symmetric subset of 1 x 1 and assume a+1' x 1’ for any 1’ <1.
Suppose c;j=cj; € k* for all (i,j) € a. Let

I = (cinin"‘CuXqu XuXas (@), (kD)€ a, (mn) ¢ @) .
Then

. 1
7.2 R = —
(7.2) P@ 1-rz+2*

More generally Theorem 3 gives

RESULT 5. Let 1 x1 be a disjoint union of symmetric subsets ®ys...,4, and .



THE HILBERT SERIES OF SOME GRADED ALGEBRAS ... 33

Suppose c;;=cj; € k* for all (i,j) € a,, v=1,...,u. Assume that there are couples
(io»jo) € B and (k,,io), (I,5jo) € a,, v=1,...,u. Let

I = (X X;—cuXi Xy, XX, 5 G)), (kD) €a,, v=1,...,u (mn)ep).
Then

1
R, [ —
3) P& = 1-rZ+uz?’

ExampLE 2. We give two local rings of embedding dimension 3 of the type in
Result 5, whose Poincaré series is 1/(1 —3Z +2Z2).
(7.4) I = (Xf,XZX:,,Xle—X%,X1X3~X§).
(7.5) I = (X%9X1X2—X§9X1X3—X§’X1X3_X2X3)'

Lastly Example 1 in section 5 gives

RESULT 6. In the same situation as in Example 1, let
I = (XX;-X.X,; () kDéa,v=1,...,u).
Then

1+27
r—-1)Z-@r-wz?"’

(7.6) PR(2) = .
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