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s-RINGS AND MODULAR REPRESENTATIONS

J. BRZEZINSKI

0. Introduction.

If A=@®,20A4, is a graded ring and N is the set of non-negative integers,
then to every element a= (a,) € 4 corresponds a subset of N consisting of all n
such that a, 0. This set may be considered as a support of a. There are natural
relations between the supports of elements of 4, and the supports of their sums
and products. A generalization of this situation leads to a kind of graded rings
over arbitrary partially ordered sets which are called here s-rings (see
Definition 1). We want to apply this generalization to the theory of modular
representations of finite groups. We show that if F is a field of characteristic p
>0 and G is a finite group, then the defect groups of conjugacy classes of G and
the vertices of indecomposable (left) F(G)-modules can be considered as
supports (in the sense of Definition 1) for elements of well known rings
corresponding to the group G (see Examples 3 and 4).

Sections 1 and 2 contain some basic definitions and examples. In Section 3
we discuss the notion of normal supports corresponding to the notion of
normal defect groups. In Section 4 we generalize the notion of defect groups of
a block and we prove an analogue of Brauer’s first main theorem on blocks
(Theorem 1). The proof of Brauer’s theorem, given at the end of the paper,
needs only one very elementary result on groups which is not contained in the
general theory of s-rings.

1. Definitions and examples. ‘
Let (X, =) be a partially ordered set. If A, B< X, define

[4,B] = {x e X : there are a € 4 and b € B such that x>a and x>b} .
Note that if x=y in X means x=y, then [4, B]=A4NB.
DEerINITION 1. We say that (4, X) is an s-ring if A4 is an associative ring with

an identity, X is a partially ordered set, and to every element ae A4
corresponds a subset s(a)< X, called the support of a, such that
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10 J. BRZEZINSKI

(@) s(a+b)ss(@Us(b),

(b) s(ab)<[s(a),s(b)],
(c) if a € A and x € s(a), then there are b,c € 4 such that

a=b+c, sk ={x}, xé¢sccs@,
(d) s(a)=¢ if and only if a=0.

ExampLEs. 1. Let A= @, >0 A, be a graded ring (4;4;S 4;, j), and X the set
of non-negative integers ordered by the usual relation 2. If a=(a,) € 4, define
s@={ne X :a,+0}.

2. Let (4, X)) fori=1,...,n be s-rings, A= @ A, the direct sum of the rings
A, and X =[] X, the disjoint sum of the sets X ;. Define x >x’ if and only if X, x'
belong to the same X; and x>x' in X;. If a= (a;) € 4, define s(a)=Us(a)).

If, for example, (4,, X)) is an s-ring such that X;={x;} and s(a)=x; for all
a; € A, a;+0 (we often write s(a)=x if the support of a has only one element),
then s(a) for a € @ A; can be identified with the set of indices of non-zero
coordinates of a.

3. (see [2, § 3]). Let G be a finite group, H a subgroup of G, F a field of
characteristic p>0 and F(G) the group algebra of G over F. Let

ZF(G:H) = {x e F(G): h™!'xh=x for all he H} .

ZF(G:H) is a subalgebra of F(G) generated over F (as a linear space) by the
sums of H-conjugacy classes of G, that is, the sums > g, g € C, where C is a
subset of G such that g,g’ € Cif and only if g¢'=h""'gh for some h € H. Let S(H)
be the set of conjugacy classes of p-subgroups of H. If x, and x, are classes of
D, and D,, define a partial ordering of S(H) by:

X; = x, <> D, is contained in a subgroup conjugate to D, .

The element of S(H) corresponding to a p-subgroup D of H will be denoted by
Xp.

Let C be an H-conjugacy class of G, c=3 g, g € C its sum, and D a defect
group of C, that is, D is a Sylow p-subgroup of the centralizer Cy(g), where g is
an element of C. Since all the defect groups of C are conjugate, they define an
element x, € S(H). Let s(c)={x.} and if a=3%_,ric, r;%0, r; € F, then

s(a) = {xcn‘ . "x(.'k} .
(ZF(G:H),S(H)) is an s-ring. Conditions (a), (c) and (d) are evident. To prove
(b), it suffices to prove that

s(cc’) g [s(0),s(c)],
for arbitrary H-conjugacy classes C and C’ of G. This inclusion follows directly
from [2, Lemma 3.2a] or [1, Lemma 54.2].
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ReMARK. If H=G, then ZF(G: H) is the center ZF(G) of the group algebra
F(G) and we get the s-ring (ZF(G),S(G)).

For later use, let us note a fact, whose proof is trivial:

Lemma 1. If C is a conjugacy class of G and D a p-subgroup of G, then
x, < xp if and only if C N Cgz(D) + &,

where Cg(D) is the centralizer of D in G.

4. (See [3]). Let G be a finite group, and F a field of characteristic p>0. Let
M (F(G)) be the abelian group with generators [M], where M is a finitely
generated left F(G)-module, and relations [M]=[M']+[M"] if M=M'®&M".

Since the Krull-Schmidt theorem is valid for fintely generated F(G)-
modules, .#(F(G)) is a free abelian group with base [M], where M represent
the isomorphism classes of indecomposable F(G)-modules. The G-action on
M®pM' given by g(m®@m')=gm®gm'’ defines a ring structure on # (F(G)) if

M][M] = [M®FM'] .

If M is an indecomposable F(G)-module, then a vertex of M (see [1, § 53]) is
a p-subgroup D of G such that M is D-projective, and if M is H-projective for
some subgroup H of G, then H contains a p-subgroup G-conjugate to D. This
shows that the vertices of M, which are determined up to conjugacy in G,
define an element of S(G). We shall denote this element by vx (M). If
X € #(F(G)), X=X, r[M,], where r; are non-zero integers and M, are non-
isomorphic indecomposables, define

s(X) = {vx (M,),...,vx (M)} .
(# (F(G)),S(G)) is an s-ring. Conditions (a), (c) and (d) of Definition 1 are
evident. Condition (b) is satisfied for arbitrary elements if
s(IMIIM]) < [s([M]), s([M'])]
for any indecomposable F(G)-modules M and M. Let
MM = @ M;,
where M; are indecomposable F(G)-modules. Since M@ M’ is vx (M)-pro-

jective (we mean an arbitrary representant of vx (M) — see [1, Lemma 60.2]),

all the direct summands M, are also vx (M)-projective. Hence vx (M;)>vx (M)..
Similarly, vx (M;)=vx (M’), so we get vx (M,) € [s({M]),s([M']].
We shall prove some easy consequences of Definition 1.
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ProrosiTiON 1. If (A4, X) is an s-ring, then

(@) s(@)=s(—a),
(b) if a=b+c and s(b)<s(a), then s(c)=s(a),
(c) if s(a)Ns(b)=, then s(a+b)=s(a)Us(b).

Proor. (a) If s(a)=x, then x € s(a)c[s(—1),s(—a)], so there is y € s(—a)
such that x>y. Since y € s(—a)<S[s(—1),s(a)], we get y>x. Hence y=x. Thus
s(a)=x implies x € s(—a). Now if s(a) is arbitrary and x € s(a), then a=a’ +a;,
where s(a’)=x and x ¢ s(a;)<s(a). Hence

s(—a) = s(—a+a,) € s(—a) Us(a,).
Since x € s(—a’) and x ¢ s(a,), so x € s(—a). Thus s(a)=s(—a).

(b) and (c) are trivial.

ProposiTION 2. If (A, X) is an s-ring and s(a)={x,,...,X,}, then a=a; + . ..
+a,, where s(a)=x; and a; are unique.

ProoF. Existence. We have a=a, +ad’, where s(a;)=x, and x, ¢ s(d')=s(a).
By Proposition 1 (c), s(a’)={x,,...,x,}, so we can proceed by induction.

Uniqueness. Let a=a +a,=da"+a,, where s(a)=s(a’)=x and
x & s(a)cs(a) for i=1,2. We have

s(@—a’) € s(@)Us(@) = {x}.

But s(a' —a")=s(a, —a,)=s(a;)Us(a,), so x ¢ s(a;) gives s(a' —a")= &, that is,
a=da'

2. Homomorphisms of s-rings.
Let (4, X) be an s-ring and x, € X. Define:

A, = {aeAd: xes(a = x<x},
A% = {ae A: s(s{x}},

I, ={aeAd: xes(@ = x=>x,},
Jo ={a€eA: xesa) = xtx,} .

A, and A3, are subgroups of the additive group of 4, while I, and J, are two-
sided ideals of 4. Call (4, X) s-finite if s(a) is finite for every a € A. In this case,

A= @ A2 and A= A4,@J,
xeX

(direct sums of abelian groups).



s-RINGS AND MODULAR REPRESENTATIONS 13

PropoSITION 3. If (A4, X) is an s-ring, then (A/J ., X) is an s-ring if

s*¥(@*) = {xes(a): x<x,}.
Proor. Obvious.
DErInITION 2. We say that (f, f°): (4, X) — (B, Y) is a homomorphism of s-
rings if f: A — B is a homomorphism of rings, f*: X — Y is a morphism of
partially ordered sets, that is, x; > x, implies f*(x,)>f*(x,), and

s(f(@) g f*(s@) if a%0.

If there exists a homomorphism of s-rings (g, g°): (B, Y) — (4, X) such that g
=f"1 then (f, f*) is an isomorphism of s-rings.

REMARK. Let X (A4) be the set of x € X such that x € s(a) for some a € A.
Define similarly Y(B) for (Y,B). It is easy to prove that if (f, f°) is an
isomorphism, then f* is a one-to-one mapping of X(A4) onto Y(B).

ExampLEs. 5. If (4, X) is an s-ring and x, € X, then
(n,n%): (A4, X) » (A/J,,, X),

where n is the natural surjection, and »® the identity, is a homomorphism of s-
rings.

6. Let G be a finite group, D, an arbitrary normal subgroup of G, and F a
field of characteristic p>0. The natural surjection of G onto G/D, induces a
homomorphism of rings

1: ZF(G) — ZF(G),

where G=G/D,. If C is a conjugacy class of G and g € C, then t(c)=né, where
C is the conjugacy class of §=1(g), and

n = (G:Cs(@)/(G:Cs(@)) -

Define 7°:S(G) — S(G) by t°(xp)=xp, where D is a p-subgroup of G and
D=DD,/D,. It is easy to check that (t,7%) is an s-homomorphism.

7. Let G be a finite group, F a field of characteristic p>0, and (ZF(G), S(G))
the corresponding s-ring defined in Example 3. If D, is a p-subgroup of G and
H=Ng;(D,) the normalizer of D, in G, then the Brauer homomorphism

o: ZF(G) —» ZF(H)

is defined by (see [1, § 56] or [4, p. 211]): a(c)=Y g, g € CNCqz(D,) and
a(c)=0 if CNCyz(Dy)=F. Note that by Lemma 1, a(c)#0 if and only if
X.<Xp,, SO

(1) Kero = J,, .
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In the general case, it is not possible to define a morphism ¢°: S(G) — S(H)
such that (o, ¢°) is a homomorphism of s-rings (e.g. G=S, and D, generated by
(1,2)(3,4))). If, however, D, is a normal p-subgroup of G, then, of course, ¢° can
be defined as the identity on S(G)=S(H).

Brauer’s first main theorem on blocks and some generalizations of this
theorem can be considered as theorems on such subrings or quotient rings of
ZF(G) that for the homomorphism induced by ¢ a good mapping of supports
can be defined. We shall discuss this problem later in Theorem 1 and in the
proof of Brauer’s theorem.

Let us assemble some simple observations.

ProrosiTioN 4. Let (f, f%): (4, X) — (B, Y) be a homomorphism of s-rings and
(A, X) be s-finite. Then

(a) (Im £, Y) is an s-subring of (B, Y),
(b) if Kerf=J,,, then

(f*f): (Al 4, X) = (B, Y),

where f*(a*)=f(a), is a homomorphism of s-rings.

PropoSITION 5. If (A, X) is s-finite and x, € X, then the s-homomorphism
(n,n°): (4, X) — (A/J,, X) induces an isomorphism of abelian groups A2, and
(AN o)

ProOF. If a € A2, a+0, then s*(n(a))=x,, so n(a) € (4/J,,)%, and n(a)=+0.
Thus n induces an injection. If n(a) € (4/J,,), and n(a)+0, then s*(n(a)) = x,.
Hence a=a, +a,, where s(a,)=x, and a, € J,,. Therefore a, € A% and n(a,)
=n(a). Thus n induces a surjection.

3. Normal supports.
If (A, X) is an s-finite ring, then there are some special elements of X which
in the case of s-rings (ZF (G), S(G)) correspond to the normal p-subgroups of G.

DeriniTiON 3. We say that an element x € X is normal if in the
decomposition

A=A®J,,

A, is a subring of A4, and J, is a nilpotent ideal of A, that is, 4 is a split
extension of its subring A, with nilpotent kernel J,.
Note that if x is normal, then A2 is a subring of A.
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ExampLEs. 8. If for an s-ring (4, X), there is an element x, € X such that
x<x, for every x € X(A), then x, is normal. In this case A, =A4 and J, =0.
Thus x, is normal for (4/J,,, X).

9. If D is a normal p-subgroup of a finite group G, then xp € S(G) is normal
for (ZF(G),S(G)). To prove that J, is nilpotent, let us note (see e.g. [4, Lemma
4.2]) that the kernel of the natural homomorphism

t: ZF(G) - ZF(G/D)

is nilpotent, and if C is a conjugacy class of G such that CN Cg; (D)=, then
c € Kerr.

If we translate this fact to the language of s-rings, we get by Lemma 1 that
x. % xp implies ¢ € Kert. Hence J, is nilpotent.

To prove that 4, is a subring of 4=ZF(G), we have to show that if
¢c,c’ € A,, are sums of conjugacy classes C and C’ of G, then cc’ € 4,. Let cc’
=3.ric; r;#0, and let ¢; be the sum of the conjugacy class C; of gg', where
ge Cand g’ e C'. Since x,<xp and x. <xp each of the centralizers Cg;(g) and
Cg{g') contains a subgroup conjugate to D. But D is normal, so we get
DcCg(g)NCg(g). Therefore gg' € C;NCq(D). By Lemma 1, x,<Xxp, so
¢, € Ay,

In the next section we shall use the following simple fact.

LEMMA 2. Let A= Ay+J, where A is a commutative ring, A, a subring of A,
and J a nilpotent ideal of A. If AoNJ = (0), then the idempotents of A are in A,.

ProOF. Let e € 4 be an idempotent and e=e, +j, where e, € Ay and j € J.
Let r be the least natural number such that j"=0. Assume r>2. e* =e gives €}
=e¢, and 2e,j+j*=j. Multiplying the last equality by j*~2 and e,j" 2, we get
2eoj" '=j"1 and 2e,/""!=e,j "'. Hence ey’ ! =0, that is, j~'=0. This
contradiction shows that r=1, so e=¢y € A,.

4. Commutative Artinian s-rings.
If A is a commutative Artinian ring with an identity, then
1l =e+...+e,,

where ¢; are the primitive idempotents of 4. A4 is a direct sum of the local rings
A, = Ae;. Denote by A, the natural homomorphism 4 — A, — A4,/m,, where e
is a -primitive idempotent, and m, is the maximal ideal of the local ring A,.

LeMMA 3. Let I be an ideal of a commutative Artinian ring A, and e a primitive
idempotent of A. Then A,(I)=* (0) if and only if e € L.
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PROOF. 4,(I)#0 <> eI=A, <> ecelcl.

PROPOSITION 6. Let (A, X) be an s-finite commutative Artinianringande € Aa
primitive idempotent. Then there is a uniquely determined element x, € s(e) such
that e I,

PRrOOF. Let s(¢)={x,,. . .,x,} and e=Y a; s(a)=x;. Since 4,(e)*0, there is i
such that 4,(a;)+0. Hence 4,(I,)#0, that is, e € I,, by Lemma 3. Thus x>x;
for every x € s(e). Denote x; by x,. x, is unique as the least element of s(e).

The element x,, defined in Proposition 6, will be called the s-defect of e.
Now we are ready to prove an analogue of Brauer’s first main theorem on

blocks.

TueoreM 1. (a) Let (A,X) be an s-finite commutative Artinian ring and
Xo € X. The s-homomorphism (n,n): (A, X) — (A/J,, X) induces a one-to-one
correspondence between the primitive idempotents e € A with s-defect x,= X,
and the primitive idempotents e* € A/J,, with s-defect X =X,.

(b) If x, is normal for (A, X), then all the primitive idempotents e € A with s-
defect x,=x, belong to the ring A% and n induces an isomorphism of rings A2,
and (A/J,)%.

ProoF. (a) Since A is a commutative Artinian ring and J,, is an ideal of 4,
every primitive idempotent e* of A/J, can be uniquely lifted to a primitive
idempotent e of A. Therefore, we have to prove that if e € A and x,=x,, then
n(e)+0, and x,=x, if and only if x,,,=x,.

If x,=Xx,, then x € s(e) implies x> x,. Hence s*(n(e))=x, by Proposition 3.
Thus n(e)#0 and x,,,=x,.

If X, =Xo, then x, € s(e), s0 x,>x,. Hence x, € s*(n(e)), that is, x, =X,
=x,. Thus x,=x,.

(b) Let x, be normal and x,=x,. By Lemma 2, e € A,,. Hence x € s(e)
implies x < x,. But x> x,=x,, 50 we get x=x,. Thus s(e)=x,, that is, e € 42,.
Since x, is normal, A2 is a ring, and by Proposition 5, n induces an
isomorphism of rings A% and (4/J,)%.

If we apply Theorem 1 in the theory of modular representations of finite
groups, we get the situation considered in Brauer’s first main theorem on
blocks. We end the paper by showing what kind of additional facts about
groups we need to prove Brauer’s theorem.

Recall some notions. If G is a finite group, F a field of characteristic p>0 and
ZF(G) the center of the group algebra F(G), then we can consider the
commutative Artinian s-ring (ZF(G),S(G)). The primitive idempotens e of
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ZF(G) define the blocks F(G)e of F(G). Every p-subgroup D of G such that xp
=x, is called a defect group of the block F(G)e (see [1,§ 54] or [4, p. 211]). Let

2 o: ZF(G) — ZF(H)

be the Brauer homomorphism defined by a p-subgroup D, of G. The first main
theorem on blocks says (see [1, Theorem 58.3] or [4, Theorem 5.3]):

THEOREM 2. Let G be a finite group, D, a p-subgroup of G, and H = N;(D,) the
normalizer of Dy in G. If F is a field of characteristic p>0, then the Brauer
homomorphism ¢ of ZF(G) into ZF(H) induces a one-to-one correspondence
between the blocks of F(G) with s-defect xp_€ S(G), and the blocks of F(H) with
s-defect xp, € S(H).

Proor. Kerao=J,,, where xo=xp_ (see (1). By Theorem 1, there is a one-to-
one correspondence between the primitive idempotents (= blocks) e of the ring
ZF(G) with s-defect x,=x,, and the primitive idempotents e* of the ring
ZF(G)/J,, with s-defect x,«=x,, induced by

(n,n%):(ZF(G), S$(G)) — (ZF(G)/J ., S(G)) -

X0%

The Brauer homomorphism (2) induces the monomorphism
a*: ZF(G)/J,, —» ZF(H) .

We have to prove that ¢* induces a one-to-one correspondence between the
primitive idempotents with s-defect x, of the s-ring (ZF(G)/J,,, S(G)), and the
primitive idempotents with s-defect x, of the s-ring (ZF(H),S(H)) — we shall
write x, both in S(G) and S(H).

By Theorem 1, the idempotents e* € ZF(G)/J,, such that x,.=x, belong to
the ring (ZF(G)/J,,)2,, while the idempotents ¢ € ZF(H) such that x, =x,
belong to the ring (ZF(H))2,. To prove the Theorem, we have to show that o*
induces an isomorphism of the rings (ZF(G)/J, )%, and (ZF(H))2,. Only this
part of the proof needs some additional facts about groups, which are con-
tained in the following well-known lemma.

LEMMA 4. Let G be a finite group, D a p-subgroup of G, C;(D) the centralizer,
and Ng(D)=H the normalizer of D in G.

(@) If C is a conjugacy class of G such that D is a Sylow p-subgroup of C;(g)
for some g € C, then CNCg(D)=C' is a conjugacy class of H and D is a Sylow
p-subgroup of Cy(g) for (all) g e C'.

(b) If C' is a conjugacy class of H such that D is a Sylow p-sugroup of Cy(g)
for (all) g € C', then there is a conjugacy class of C of G such that CN Cg(D)=C'
and D is a Sylow p-subgroup of C;(g) for some g € C.

Math. Scand. 42 — 2
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Proor. See [1, Lemma 58.1] or [4, Lemma 3.4].

Now the proof of Brauer’s theorem is evident.

If c* € (ZF(G)/J,,)%, where C is a conjugacy class of G, then Dy, is a defect
group of C, so by the first part of the Lemma, a*(c*)=0(c) is the sum of a
conjugacy class of H with D, as a defect group. Thus the restriction of ¢* to
(ZF(G)/J,,)%, is an injection into (ZF (H))2,.

If ¢ € (ZF(H))?,, where C’ is a conjugacy class of H, then D, is a defect
group of C’, so by the second part of the Lemma, there is a conjugacy class C of
G, with D, as a defect group, such that ¢*(c*)=0(c)=c'. Hence c* belongs to
the ring (ZF(G)/J,)%,, and the restriction of ¢* to this ring is a surjection onto

X0?

(ZF(H))%,. The proof is completed.
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