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THE NUMBER OF REPRESENTATIONS OF A GROUP
INDUCED FROM THE IRREDUCIBLE
REPRESENTATIONS OF A NORMAL SUBGROUP

G. KARPILOVSKY

Let G be a finite group and let K be an arbitrary field of characteristic p=0.
The well-known result of Berman and Witt [1] states that the number of
irreducible representations of G over K is equal to the number of K-conjugacy
classes of p’-elements in G.

The aim of this paper is to prove the following application of the mentioned
result.

THEOREM. Let H be a normal subgroup of the finite group G, and let K be an
arbitrary field of characteristic p=0. Then the number of non-isomorphic KG-
modules induced from the irreducible KH-modules is equal to the number of K-
conjugacy classes of p'-elements of G which are in H.

1. Preliminaries.
All groups in this paper are assumed to be finite.

NOTATIONS AND DEFINITIONS. K is any field of characteristic p=0.

A K-character is a character of a linear representation of a group G over K.

Let L be a left KH-module where H is a normal subgroup of G. For a fixed
g € G, let g®L=L9 be the left KH-module whose underlying vector space is
L and on which H acts according to the rule h*xl=g 'hgl, | € L, where hxl
denotes the module operation in L? and hl the operation in L. Two KH-
modules L, and L, are called G-conjugate if L, ~ L4 for some g € G. Similarly
two K-characters o and f of the group H are called G-conjugate if f=0of for
some g € G where a?(h)=a(g 'hg) for all h e H.
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Let n be the least common multiple of the orders of the p’-elements in G and
let ¢ be a primitive nth root of unity over K. Let further I, be the multiplicative
group consisting of those integers r, taken modulo n, Tor which ¢ — ¢ defines
an automorphism of K(¢) over K. Two p’-elements a,b € G are called K-
conjugate if x " 'bx=a" for some x € G and some r € I,. Thus a K-conjugacy
class is a union of ordinary conjugacy classes.

LemMaA 1. Let y,,. .., ¥, be all irreducible K-characters of G. Then

1) x1,...,Xs are linearly independent over K;
2) Two irreducible KG-modules are isomorphic if and only if they have the
same characters.

Proor. Straightforward by applying (30.12), (30.15) and (29.7) of [3].

LEMMA 2. Let HAG and let T,(K,) be the K-conjugacy class of p'-elements of
the group G(H) with representative h € H. Then

T, = U Ky

geG

Proor. Let m be the least common multiple of the orders of the p’-elements
in H, so that n=mk for some natural number k and §=¢* is the primitive mth
root of unity over K. Suppose s € T,. Then s=a~'h*a for some a € G and some
pel, If uy=r(modm), 0Sr<m-—1, then s=a 'ha. The automorphism ¢
— & of K(¢g) over K induces the automorphism é — §*=35" of K(8) over K.
Hence r € I,, and s € K,-1,,. As

Gal (K (¢)/K) = Gal (K(5)/K)

it follows that if two elements of H are K-conjugate in H, then they are K-
conjugate in G, from which the other inclusion follows.

LEMMA 3. Let H be a normal subgroup of G and let L(M) be the irreducible
KH-module with the character a(P). Then the induced KG-modules I¢ and M®
are isomorphic if and only if o and B are G-conjugate.

Proor. Let G=g,H+...+gH be the left coset decomposition of G with
respect to H. Then
LG =g, ®L+...+8 QL (M§ =g, ®M+...+g,@M)

is the decomposition of the KH-module L (M) into the direct sum of the
irreducible submodules. If y: LY — MY is a KG-isomorphism then
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M§ = Y(g,®L)+... +y(g,®L)

is another decomposition of M into the direct sum of the irreducible
submodules and it follows from the Jordan-Holder theorem that L and M are
G-conjugate. Conversely, let y: L —» g® M be the KH-isomorphism, g € G. If

x=g,®L+...8®l, (,eL;15i5s)
is an arbitrary element in L then

Y(x) = g [vU)l+. .. +glv)]

is the KG-isomorphism between L¢ and MC. Hence I°2MC if and only if L
and M are G-conjugate. Now apply the second part of the lemma 1. This
proves the lemma.

LeMMA 4. {2, p.934]. Let M be a nonsingular matrix of degree m, and let A
and B be two permutation groups of degree m which are both homomorphic to the
same group G. If for every g € G, the corresponding element a, of A, applied to
the rows of M, and the corresponding element b, of B, applied to the columns of
M, both carry M into the same matrix, then the number of systems of transitivity
is the same for A and for B.

2. Proof of the theorem.

Let T={yx,,...,x} (S={K,,...,K,}) be the set of irreducible K-characters
of H (the set of K-conjugacy classes of p'-elements in H, |<i<t). Consider the
matrix M = ||x,(K )| (I£i,j<t). By Lemma 1 x,,. . .,, are linearly independent
over K and hence the matrix M is invertible. The formulae

Xi Kj )
(@) (Mm) o te) (Kj(g)

(1=ij,i@J@R)St tig=1% Kig=8""K;8)

are the representations of G by the permutations of the sets T and S
respectively if the product a,a, (8,8,) of a pair of permutations in 4(G) (B(G))
is defined by (a;a,)x =0, (a,x), x € T ((B,82)y=B,(B1y), y € S). Moreover, for
every g e G the permutation A(g) applied to the rows of M and the
permutation B(g) applied to the columns of M both carry M into the same
matrix |x/(Kj)| (I<i,j<t). Thus the matrix M and the groups A=A(G), B
= B(G), G satisfy the conditions of lemma 4. It follows from lemma 4 that the
groups A and B have the same number of systems of transitivity. Now applying
lemma 3 we obtain that the number of systems of transitivity in A is the same
as the number of the nonisomorphic KG-modules induced from the irreducible
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KH-modules. On the other hand it follows from lemma 2 that the number of
systems of transitivity in B is the same as the number of K-conjugacy classes of
p'-elements of G which are in H. This completes the proof of the theorem.

The author wishes to thank the referee for his valuable remarks.
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