THE NUMBER OF REPRESENTATIONS OF A GROUP INDUCED FROM THE IRREDUCIBLE REPRESENTATIONS OF A NORMAL SUBGROUP

G. KARPILOVSKY

Let G be a finite group and let K be an arbitrary field of characteristic $p \ge 0$. The well-known result of Berman and Witt [1] states that the number of irreducible representations of G over K is equal to the number of K-conjugacy classes of p'-elements in G.

The aim of this paper is to prove the following application of the mentioned result.

THEOREM. Let H be a normal subgroup of the finite group G, and let K be an arbitrary field of characteristic $p \ge 0$. Then the number of non-isomorphic $K\widehat{G}$ -modules induced from the irreducible KH-modules is equal to the number of K-conjugacy classes of p'-elements of G which are in H.

1. Preliminaries.

All groups in this paper are assumed to be finite.

Notations and definitions. K is any field of characteristic $p \ge 0$.

A K-character is a character of a linear representation of a group G over K. Let L be a left KH-module where H is a normal subgroup of G. For a fixed $g \in G$, let $g \otimes L = L^g$ be the left KH-module whose underlying vector space is L and on which H acts according to the rule $h * l = g^{-1}hgl$, $l \in L$, where h * l denotes the module operation in L^g and hl the operation in L. Two KH-modules L_1 and L_2 are called G-conjugate if $L_2 \cong L_1^g$ for some $g \in G$. Similarly two K-characters α and β of the group H are called G-conjugate if $\beta = \alpha^g$ for some $g \in G$ where $\alpha^g(h) = \alpha(g^{-1}hg)$ for all $h \in H$.

Let n be the least common multiple of the orders of the p'-elements in G and let ε be a primitive nth root of unity over K. Let further I_n be the multiplicative group consisting of those integers r, taken modulo n, for which $\varepsilon \to \varepsilon'$ defines an automorphism of $K(\varepsilon)$ over K. Two p'-elements $a, b \in G$ are called K-conjugate if $x^{-1}bx = a'$ for some $x \in G$ and some $r \in I_n$. Thus a K-conjugacy class is a union of ordinary conjugacy classes.

LEMMA 1. Let χ_1, \ldots, χ_s be all irreducible K-characters of G. Then

- 1) χ_1, \ldots, χ_s are linearly independent over K;
- 2) Two irreducible KG-modules are isomorphic if and only if they have the same characters.

PROOF. Straightforward by applying (30.12), (30.15) and (29.7) of [3].

LEMMA 2. Let $H \triangle G$ and let $T_h(K_h)$ be the K-conjugacy class of p'-elements of the group G(H) with representative $h \in H$. Then

$$T_h = \bigcup_{g \in G} K_{g^{-1}hg}.$$

PROOF. Let m be the least common multiple of the orders of the p'-elements in H, so that n=mk for some natural number k and $\delta = \varepsilon^k$ is the primitive mth root of unity over K. Suppose $s \in T_h$. Then $s = a^{-1}h^{\mu}a$ for some $a \in G$ and some $\mu \in I_n$. If $\mu \equiv r \pmod{m}$, $0 \le r \le m-1$, then $s = a^{-1}h^ra$. The automorphism $\varepsilon \to \varepsilon^{\mu}$ of $K(\varepsilon)$ over K induces the automorphism $\delta \to \delta^{\mu} = \delta^r$ of $K(\delta)$ over K. Hence $r \in I_m$ and $s \in K_{a^{-1}ha}$. As

$$Gal(K(\varepsilon)/K) \ge Gal(K(\delta)/K)$$

it follows that if two elements of H are K-conjugate in H, then they are K-conjugate in G, from which the other inclusion follows.

LEMMA 3. Let H be a normal subgroup of G and let L(M) be the irreducible KH-module with the character $\alpha(\beta)$. Then the induced KG-modules L^G and M^G are isomorphic if and only if α and β are G-conjugate.

PROOF. Let $G = g_1H + ... + g_sH$ be the left coset decomposition of G with respect to H. Then

$$L_H^G = g_1 \otimes L + \ldots + g_s \otimes L \quad (M_H^G = g_1 \otimes M + \ldots + g_s \otimes M)$$

is the decomposition of the KH-module L_H^G (M_H^G) into the direct sum of the irreducible submodules. If $\psi \colon L^G \to M^G$ is a KG-isomorphism then

$$M_H^G = \psi(g_1 \otimes L) + \ldots + \psi(g_s \otimes L)$$

is another decomposition of M_H^G into the direct sum of the irreducible submodules and it follows from the Jordan-Hölder theorem that L and M are G-conjugate. Conversely, let $\psi \colon L \to g \otimes M$ be the KH-isomorphism, $g \in G$. If

$$x = g_1 \otimes l_1 + \dots + g_s \otimes l_s \quad (l_i \in L; 1 \leq i \leq s)$$

is an arbitrary element in L^G then

$$\psi(x) = g_1[\psi(l_1)] + \ldots + g_s[\psi(l_s)]$$

is the KG-isomorphism between L^G and M^G . Hence $L^G \cong M^G$ if and only if L and M are G-conjugate. Now apply the second part of the lemma 1. This proves the lemma.

LEMMA 4. $\{2, p. 934\}$. Let M be a nonsingular matrix of degree m, and let A and B be two permutation groups of degree m which are both homomorphic to the same group G. If for every $g \in G$, the corresponding element a_g of A, applied to the rows of M, and the corresponding element b_g of B, applied to the columns of M, both carry M into the same matrix, then the number of systems of transitivity is the same for A and for B.

2. Proof of the theorem.

Let $T = \{\chi_1, \ldots, \chi_l\}$ $(S = \{K_1, \ldots, K_l\})$ be the set of irreducible K-characters of H (the set of K-conjugacy classes of p'-elements in $H, l \le i \le t$). Consider the matrix $M = \|\chi_i(K_j)\|$ $(l \le i, j \le t)$. By Lemma 1 χ_1, \ldots, χ_t are linearly independent over K and hence the matrix M is invertible. The formulae

$$A(g) = \begin{pmatrix} \chi_i \\ \chi_{i(g)} \end{pmatrix}$$
 and $B(g) = \begin{pmatrix} K_j \\ K_{j(g)} \end{pmatrix}$

$$(l \le i, j, i(g), j(g) \le t; \ \chi_{i(g)} = \chi_i^g, \ K_{i(g)} = g^{-1}K_ig)$$

are the representations of G by the permutations of the sets T and S respectively if the product $\alpha_1\alpha_2$ ($\beta_1\beta_2$) of a pair of permutations in A(G) (B(G)) is defined by $(\alpha_1\alpha_2)x = \alpha_1(\alpha_2x)$, $x \in T$ ($(\beta_1\beta_2)y = \beta_2(\beta_1y)$, $y \in S$). Moreover, for every $g \in G$ the permutation A(g) applied to the rows of M and the permutation B(g) applied to the columns of M both carry M into the same matrix $\|\chi_i^g(K_j)\|$ ($l \le i, j \le t$). Thus the matrix M and the groups A = A(G), B = B(G), G satisfy the conditions of lemma 4. It follows from lemma 4 that the groups A and B have the same number of systems of transitivity. Now applying lemma 3 we obtain that the number of systems of transitivity in A is the same as the number of the nonisomorphic KG-modules induced from the irreducible

KH-modules. On the other hand it follows from lemma 2 that the number of systems of transitivity in B is the same as the number of K-conjugacy classes of p'-elements of G which are in H. This completes the proof of the theorem.

The author wishes to thank the referee for his valuable remarks.

REFERENCES

- S. D. Berman, The number of irreducible representations of a finite group over an arbitrary field, Dokl. Akad. Nauk. SSSR(N.S.) 106 (1956), 767-769.
- R. Brauer, On the connection between the ordinary and the modular characters of groups of finite order, Ann. of Math. 142 (1941), 926-935.
- 3. C. W. Curtis and I. Reiner, Representation theory of finite groups and associative algebras, Interscience Publ., New York, London, 1962.

THE UNIVERSITY OF NEW SOUTH WALES SCHOOL OF MATHEMATICS P.D. BOX 1 KENSINGTON, NEW SOUTH WALES AUSTRALIA 2033