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THE AREA OF ANALYTIC VARIETIES IN C”

LAWRENCE GRUMAN

In one complex variable, Jensen’s formula gives an upper bound to the
frequency with which a holomorphic function (in the disc or the plane) can
take on a given value in terms of the growth of the modulus of the function,
and in fact this remains valid for holomorphic functions of several complex
variables and quite general domains in C" (cf. Gruman [6] for a very general
setting). This suggested that one might be able to bound above the area of an
analytic variety by the growth of the modulii of the functions which define it.
Stoll [17] showed this to be possible when the defining functions are
polynomials. He showed that the projective area of an analytic variety in C" of
pure dimension is finite if and only if it is algebraic. This led Griffiths [5] to ask
if one could obtain similar bounds for analytic varieties defined by
transcendental functions. This became known as the transcendental Bezout
problem, in analogy with Bezout’s Theorem, which states that if X, and X, are
algebraic varieties of dimension p and g and of degree d, and d, respectively,
then if X, N X, is finite, it consists of d,d, points when each is counted with
respect to its multiplicity. Cornalba and Shiffman [3] constructed an example
which shows that in general no such estimate is possible. They showed that
there exist two entire functions in C? of order zero such that the intersection of
their zero sets can be made to grow arbitrarily fast.

We begin by developing an average Bezout estimate. Let D be a bounded
domain given by a %2 plurisubharmonic function ¢ and let

D, ={zeD: olzd<—-1/r},

or let D be a bounded pseudo convex domain with ¢* boundary and

~ 1 . ,
D, = {z eD: d(z) > —} where d(z) = inf |z—Z|
r Z’eCD

(here we use the Euclidean norm). If X is an analytic variety in D of pure
complex dimension p, we let oy (r) be the 2p-dimensional area of X in D,, and
for a holomorphic function f defined on X, we set M ((r)=supp nx | f|. We will
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say that a holomorphic map F of X is non-degenerate if the Jacobian of F is of
maximal rank almost everywhere on X. If F=(f,.. ., f) is a non-degenerate
holomorphic map defined on X and oy (a,r) is the 2(p — q) dimensional area of
the set X NF~'(a), then for T € RY, 7;>0, j=1,...,q, we estimate

2n 2n

ox(t,r) = J X... X j ox(1,€%,. .., 1,6%)do, ... do,
0 0

in terms of t, M;,(r), ox(r), and r. If D=C" and D,={z : |z| <r}, we obtain

similar estimates.

These estimates resemble those obtained by Carlson [2], who showed that a
Bezout type estimate holds except perhaps for an exceptional set in C" of
measure zero; however, our results differ in that the domains that we consider
here are more general, the estimates we obtain are more refined, and in
particular, our results imply that the exceptional set for which the estimate
does not hold has an intersection of measure zero with the distinguished
boundary of every polydisc in C% This leads us to conjecture that the
exceptional set is polar in C? (the set on which a plurisubharmonic function is
equal to —oo, cf. Lelong [10]). We show this to be the case when g=1.

The second phenomenon that we study concerns the geometry of analytic
varieties. Let X be an analytic variety of pure dimension p in a pseudoconvex
subset D of C" and let G=(g,,. . ., g,) be a holomorphic map defined on X. If
0=(ji,...,J) is a subset of the numbers (1,...,q) and |o|=card g, we set

G,={zeX: |g,d=...=Ig;, @) jxeo} and G"= | p G, ,
which is a set of real dimension (2p—m+1).

Of particular interest for us will be the case when X =C" and g;= (z;—a,)/7},
7;>0, j=1,...,n, and for this case we will denote G™ by I'™(a,1).

Ronkin [11] showed that if Y is the zero set of an entire function in €” (i.e.
an analytic variety of co-dimension 1), then Y meets every I'"(a,t) and if a ¢ Y,
the growth of the area of Y N I"(a, 7) is comparable to the growth of the area of
Y in C". We generalize these results to analytic varieties of higher co-
dimension. We show that if the analytic polyhedron

A={zeX: |gi<l, j=1,...,q}

is relatively compact in X and Y is an analytic variety of pure dimension s in D
such that YN{z € X : g;(2)=0,j=1,...,q} is empty, then the area of Yin D is
bounded above by the area of Y in G™ for m=s+ 1. This will allow us to show
that if the distance of Yto G™NaD is positive for m=s+ 1, then the area of Yin
D is finite. For X =C", this will allow us to bound above the area of Y in the
ball by the area of Y N I"*!(a, 1) in the polydisc, and in this case we will also be
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able to obtain the inverse estimate which will permit us tc show that the area
of YNI®*Y(a,1) grows asymptotically like the area of Y in C" As an
immediate consequence, we will be able to show a result of Carlson [2] that the
measure of the intersection of an analytic set Y in C" of dimension g with a
linear subspace of dimension at least g is bounded above by the area of Yin C"
for almost all linear subspaces. We will in fact be able to clarify somewhat the
nature of the exceptional set.

Our techniques will also permit us to give an alternate proof of part if a
theorem of Rudin [13], which says that if X is an analytic variety of pure
dimension p in C" for which there exist coordinates z=z'+z", z’ an (n—p)-
tuple and z” a p-tuple, and constants 4 and B such that ||Z/||[< A1+ |z"|)B
whenever z € X, then X is actually an algebraic variety.

Our techniques depend heavily on the theory of positive closed currents (cf.
Lelong [9] or Federer [4]), which have become such a powerful tool in
complex analysis. Our results reinforce the impression that this theory
possesses an inherent geometric subtlety.

1. Plurisubharmonic functions and positive closed currents.

For the basic theory of positive closed currents, we refer the reader to the
book of Lelong [9]. We recall here only the basic facts that we shall need.

A real valued function g¢(z) defined in a domain D = C" and taking on values
in the range [ — oo, +00) is plurisubharmonic if it is upper semi-continuous
and if for z e D, w e C"—{0},

2n
0(2) £ Lf o(z+wre'®)do
2n Jo
for r<sup {t : z+4e"w € D for |4|<t}. If ¢ is plurisubharmonic then for every
w e C" the distribution
0
defines a positive measure in D. If ¢ is 4* in D and there exists a continuous
function C(z)>0 such that
y —‘zzg—w.wk > Cz)|w|? for all we C",

@ is said to be strictly plurisubharmonic.

Let n € ¥3(B(0,1)) be such that 0=n=1, n depends only on |z|| and
[n(z)dA(z)=1. We set
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1 z
n.(z) = ;;,n(;)-

If t is a distribution in D, we define the distribution

(@) = txn,(p) = t(p*n,).

Then, in D,={z : d(z)=inf,p ||z —w| >¢}, t is a €* function.

In particular, if g is plurisubharmonic in D, ¢, =¢ in D, and lim, _,, ¢, =g, the
convergence being uniform on compact sets if ¢ is continuous.

A current 0 of pure type (p, p) in D is a linear form on the space of differential
forms of degree (n—p,n— p) with coefficients in €5 (D), the space of infinitely
differentiable functions with compact support in D. For every such 60, there
exists a canonical decomposition

= X G ig...idz oA oo Adz AdZ A A dz;
||=p
l=p

(the sum is taken over all strictly increasing multi-indices) where the coeffici-

ents t; ., j...j, are distributions. The exterior differential operators
0 0
0 = —dz,, 0= = dz;
jgl aZj ZJ Z 62
and
= 0+0

extend in a natural way to currents via the extension of differential operators to
distributions. A current 6 is closed if the current d6=0. A current 6 of pure type
(p,p) is closed if and only if 89 =0 and 9d0=0, as one sees immediately from
degree considerations.

A current 6 of pure type (p,p) is said to be positive of degree p if for every

system of pure forms with constant coefficients (ay,...,0,_,),
t Adoyg Ady A ... A (id,_, A d,_,) defines a positive measure in D. This
1mphes in partlcular thaty . j .., isa complex measure for every choice of
iy oo jyoo. jp We shall denote by T# (respectively ®%) the positive closed

currents of degree p (respectively the positive closed currents of degree p whose
coefficients are continuous functions). Then

i)if0 eT, and Yy € B%, 0 Ay € TE*!,
ii) if 0 e Thand Yy e B%, 0 A Y € TR+,
If 6 is a current of degree p with canonical decomposition

Y Gooigg. . 592, A oo Adz A dE A L A dZ

=p
Wl=p
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then, we set
=% & .. dz A A dz A dZj A ... oA dZ
bzr
which is a current with ¥ coefficients in D.,.

LemMMA 1.1. If 0 € T%, in D, then 6° € T% in D,.

Proor. Let (ay,. . .,a,_,) be a system of forms with constant coefficients and
fe €y (D,), f=0. Then

A fliog Ady) Ao A (iog-))

=t A filiog nd) A .o A (id,_pAd,_,) 20

since f=0 and #,=0 implies f*#n,=0. Thus ¢ is positive in D,. Let ¢ be an
(n—p—1,n—p) form with coefficients in €§(D,). Then *(0¢p)=t((dp))
=t(0¢") =0 since convolution commutes with differentiation. Similarly, dt*=0
so dt*=0.

In the applications, there are certain positive closed currents that we shall
use. If o(z) is a plurisubharmonic function in D, then iddg defines a positive
closed current of degree 1. We set

i B

= ~i- 2 = C z = — = i 2
B 2(3(’5||z|| ’Z:l dz; A dz, B, a0 o 25510g lzll? .

N

If ¢t is a positive closed current of degree p, we associate the measure o,
=t A B,-,- An analytic set of pure dimension p in D is composed of a union of
irreducible branches X; and positive integers m; giving the multiplicity of X ;
(cf. Stoll [18]). Then there exists a positive closed current 0; of degree (n— p)
associated with X, the current of integration on X and hence a positive
closed current 6 =3 m;0; of degree (n— p) associated with X, and g, gives the
2p dimensional area (with multiplicity) of the analytic set X.

2. An average Bezout estimate in C".

Let X be an analytic variety in C" of dimiension p and F=(f},.. ., f)),q<p,a
non-degenerate holomorphic map of X into C% By non-degenerate, we will
mean that (df},. . ., df,) are linearly independent almost everywhere on X. The
Bezout estimate consists in majorizing the area of F~!(a) by a function of the
area of X and the area of F j"(aj), j=1,...,q, or alternately, the growth of

Math. Scand. 41 - 24
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log|fjl. It is now known that such an estimate is in general impossible [3]. We
shall obtain here an estimate of the average area of F~!(a) over the set

rece: Bl _
T T

q

in terms of t;, the growth of the area of X, and the growth of the functions
log [fjl

Before embarking on the development of this result, we note that there
already exist several Bezout Theorems in the literature. Stoll [18] showed that
if X is a complex manifold in C" or in the unit ball in C" and f: X — C?%is non-
degenerate, then F, !(0), where F,(z)=F(tz), t= (t;,. . .,¢t,), 0t ;< 1, satisfies an
average Bezout estimate in t. In [19], Stoll obtains a uniform estimate, but it
involves a host of different terms which seem difficult to estimate in practice.
The result closest in spirit and content to ours is that of Carlson [2], who
obtains a uniform Bezout estimate for almost all a € C? when X =C". Our
estimates are similar in nature, but finer, the domains considered here are more
general, and more is obtained on the nature of the exceptional set.

The first case that we shall consider is as follows: D is a bounded domain in
C" given by a %? plurisubharmonic function §. That is, there exists a
plurisubharmonic function ¢ defined in a neighborhood N of dD such that

DNN = {z: §(z)<0} .

In fact, we can assume D defined by a function ¢ defined everywhere in D. Let p
>0 be such that

{z: —pses0f c= N

and yx(t) an increasing ¥* convex function of ¢t such that y(0)=0 and y= —u
for t< — u and set ¢ = x(@), which is plurisubharmonic and defines D. We will
always make this assumption. We set

Ds; = {z: o(z)< -0} .

LEMMA 2.1. Let 6 be a_‘closed positive current of degree (n—p) with €%
coefficients, p<n. Suppose Vg0 in a neighborhood of 0D. If h is a € function
in a neighborhood of D, then

2.1)
j hido A O A B,_y = J hiddg A 0 A B,_,
oD D

—JD iddh A 0 A B,_, .
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ProOF. Since 0 A B,_, is d closed, by Stokes’ Theorem

f hidg A 0 A B,y = J dh A ido A O A Bp_1+j hiddg A 0 A B,_,
D D D

and
O=J giahAGAﬂp_,=jQiaahAO/\Bp_1+
D D

+I do AN idh A O A B,y .
D

But
do A idh A O AB,_y =200 nidhAnOAB,,
=00 A idh A O A B, =—dh/\i5@/\0/\ﬂ,,-1

and
i00h A O A B,y = —i0dh A O A B,_, .

_I;EMMA 2.2. Let 0 be a positive closed current of degree (n—p) with €
coefficients and suppose Vo0 in a neighborhood of 0D. If V(z) is
plurisubharmonic and bounded in D and

lim V() = V(z),
z—2o€0D
zeD

(2.2)
then j V(2)idg A 0 A B,-y = J‘ V(2)iddg A 0 A B,_y —
oD D

—L} 00V A O A B,y

Proor. Let 6 >0 be so small that §Q #0 in a neighborhood of éD; and let V*
=V x1,. Then V*is plurisubharmonic in D, for ¢ sufficiently small, and ¥*| Vin
D;. Applying (2.1) to V¢, we obtain

J Ve(2)idg A O A B,_y = J Ve(2)idde A 6 A B,y —
oD, D,

—j (@+8)iodVE A 6 A B, .
D,
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When ¢ — 0,i00V* A 0 A B,_, converges to the measure id0V A 6 A B,_,, s0
by the Bounded Convergence Theorem

f Vidg A 0 A B,y = J V(2)iddo A 0 A B,_y —
oD, D,

—J (@+0)iodV A 0 A B,y .
DJ
As § — 0, the right hand side tends to

J‘ V(2)iddo A 6 A B"_I—J Qi0dV A 0 A B,y
D D

whereas by the Bounded Convergence Theorem, the left hand side converges
to [opVido A 0 A B,_,, as one can see easily by choosing ¢ as a local
coordinate near 0D.

LeEMMA 2.3. Suppose ¢ is strictly plurisubharmonic and §Q#0 in a
neighborhood of D. If 0 is a positive closed current of degree (n—p) with €%
coefficients, then i0g A 0 A B,_, defines a positive measure y on 0D, supp u
csupp 0N oD and

d%o

020z

f duéCDJ 0 A B, where Cp < Ksup)
D D

D jk

ProoF. It is clear that idg A 6 A B,_, determines a linear functional on the
Banach space of continuous functions on dD with the supremum norm, so it is
a measure on ¢D. Let h be a continuous function on dD, h=0. By Bremermann
[1], there exists a plurisubharmonic function V), such that

lim V(z) = Vu(zo) = h(zo) -
z—2z,€0D
zeD
We can assume without loss of generality that V, >0, for otherwise, we replace
V, by sup (V,,0) which is also plurisubharmonic in D. By the maximum
principle, 0V, <supgph so by (2.2),

J hidg A 0 A B,_y = J V,iddo A 0 A B,_y—
oD ‘ D

—JD iV, A O A B,_, 20

It is clear that supp pcsupp 8N oD, for if supp hNsupp 8N ID is empty then
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f hidg A 6 A B,y =0.
oD
If h=1, we obtain

I iEQAOABp_1=J i0do A 0 A B,_;y .
aD D

By Lelong [9, p. 74], there exists a constant 4 independent of D such that if ¢ ;
is a coefficient of 0 then

(23) f ltl,JldA g AJ 0 A ﬁp .
D D

Let Y be an analytic¢ variety of pure dimension p in D and 0y the closed
positive current of degree (n— p) associated with the area of Y. We set

D,=D,, and oy(r) = J Oy A B,.
b,

r

If f is holomorphic on Y, we set
My(f,r) = sup |f].
b.ny
For any given a € C, if f is not identically a on any component of Y, then
YN f~!(a) is an analytic variety of pure dimension (p—1) (by Gunning and
Rossi [7, p. 245], we can actually suppose f defined in all of D since every

holomorphic function on Y is the restriction of a function holomorhic in D).
Then

i /1
0y(f,a) = %aa(E log|f—a|) A Oy

is the current associated with the area of YN f ~!(a) (cf. Lelong [9], especially
p. 78). We set

6Y(f9a$r) = Jb GY(f;a) A ﬁp—l .

LemMa 2.4. Let f be a non-constant holomorphic function defined on an
analytic variety Y of pure dimension p in D. Then for every r and t>0,
Lj' log|f—1€'’| Oy A B, is an integrable function of ¢.

Proor. The proof will turn on the easily verified identity

1 [?n .
(2.4) ——j log|A—e|dp = log* |A|
2n ),

which is a simple consequence of Jensen’s formula.
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Thus
1 [ )
EJ log|f(z)—1e’|dp = sup (log|f(2)},log7) .
0

Let f be a homomorphic function in D such that 7|, =f and let
Ve(z) = (log|f(z)—e)*n, ,
Vi(z) = sup (log|f(2)], logt)*n, .

Then for ¢ sufficiently small V¢ and V: are € plurisubharmonic functions in a
neighborhood of D,NY and are decreasing as ¢ — 0. Furthermore, by (2.4),

1 2n
—j Vi(2)de = Vi(2).
2n ),
Given 6 >0, for ¢ small enough
oy(r)llog” My(f,r)+log* t]+6 2 j Ve(z)fy A B, = A?
b,
and

lim A¢ = _[b log|f(z2)—1€|0y A B, .

=0
2n
f (lim A;”) do
0 &0

2n
lim j Aldo

e=0 Jo

Then by Fatou’s Lemma,

2n
f ( j log|f—el0y A ﬁ,,)dw
] D,

[\

v

f sup (log|f|,log7)0y A B, >—00 .
b,

LEMMA 2.5. Let f be holomorphic in D and non-constant on Y and let

i 1 .
Ap) = L,'iaa(iﬁ ‘oglf—re'mm) Ay A By
Then

2n 2r 2n
limf Ap)de = f (I Oy(f, 7€) A ﬁp-x)dw = f oy(f,1e,r)do
&0 Jo 0 D, 0
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and for y>1

2n
Jaamwnwg " Cliog* My(f;yr)+log™ tloy(yr) .

0 (—1)
Proor. Let
1 .
W@=EM£4“%

which is plurisubharmonic in a neighborhood of D, for & small enough, and let
08, = By L1/ P Set

e = e*ng+&liz)?,
which is strictly plurisubharmonic in D. Let §>0 be given. For ¢ sufficiently
small
%o,
0z;0z,| =

su
P2

and if

a; = infg, D} = {ze D, g, <o, +4},
oD,

then for ¢, 4 and ¢ sufficiently small,

sup |f| £ My(f,r)+6 .
piny

Furthermore, for ¢ sufficiently small,

oy(r)+d = J 0 A B,.

D}
By Sard’s Theorem [14], the set of 4 for which §Q§=0 on 0D} is a measure
zero. For 4 not in this exceptional set, by Lemma 2.3

j Veidg: A O A B,oy = J V¢iddo: A 0° A B,y —
oD} D}
—\[ (Q§+a§+A)165V£¢ A 05, A ﬂp—l .
D;

We first let 4 — 0, then & — 0, then & — 0 to obtain for any u>0 and ¢
sufficiently small (depending on )
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2.5 u+Cllog* My(f,r)+log™ t]oy(r) = JD Veiode A Oy A Bpy—

r

1
-—J;) <Q+;>i65V‘;’ AOy A By

Thus, since

L _ e
T

Viz) 2 5-log

b

1
27
if we apply (2.4) for yr, we obtain

1+ Coy(yr)[log™ My(fyr)+log™ 1] —
T el®
T

—l—lo U
N Dw 27! g

> (=1
yr

i00g A Oy A B,

j i08V? A Oy A B,_y 20
b,

so if we can show that lim,_,, A%(p)= oy (f, t€'%,r) for almost ¢, the first part of
the lemma will follow from Lemma 2.4 and the Lebesgue Dominated
Convergence Theorem, and the second part will follow from (2.4).

The $et of points Y’'c Y for which Y is not a manifold is an analytic variety
of dimension at most (p— 1) so there are at most a finite number of ¢ for which
f'(ze")N Y Y', hence for all but a finite number of ¢, the set 9f=0, f=1€'®
on Y is an analytic variety of dimension at most (p —2). Thus, if ¢ is not in this
exceptional set, the set on which f ~!(¢'?) N Y is not a complex manifold is an
analytic variety Y, of dimension at most (p—2). Let we g (D,) and
Y € 43 (D) such that 0y <1 and y =1 on Y,. Then

limf (1—Y)widdV? A Oy A B,_,
b,

£~0

= f w(l—n//)iaﬁiloglf—tei“’l A by A B,y
b 2n

= L_) (1=Y)wby(f,7e) A Bp—y

since we can use f as a local coordinate on Y NC(suppy). If we can find a
sequence ¥, — Yy, the characteristic function of Y, such that

5 i00(Y,w) A Oy A Bp—s]l >0
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then, by (2.4),
f

falo) = J log ;—e“" 00 (W) A Oy A Bpoil
b,

converges in measure to zero, so there exists a subsequence, which we will
again denote by f,(¢), which converges almost everywhere to zero, and since

C(r) z V¢ 2 log {—e“

b

jf), Velioo(y,w) A Oy A B,_,| will also converge to zero for almost all ¢
uniformly in ¢, so that for almost all ¢

limj widoV? A Oy A B,y
D,

e—0

lim limJ‘ o(1=y,)iddV? A Oy A B,—y
D,

n—00e>0

lim L o(L=¥,)0y(£;769) A fp-y

n—+oo

ﬁ 0y (f,79) A Bp-y -
b

r

To construct y,, we note that by Lelong [9, p. 77, Proposition 12], there exists
a constant K (depending on r) such that

j 0 A B, < Kt??
B(z,t)

independent of z (where B(z,t) is the ball of center z and radius t). Since Y, is
an analytic variety of dimension (p—2) at most, it has finite 2(p — 2) Hausdorff
measure (cf. Federer [4] for a definition of Hausdorff measure), so given an
integer n, there exists a finite number of balls B =B(z; ,,t; ,) with

1 -
supt;, < - and Y ¢ <4
i n

1

such that YN D,cU BY. Let 5(z) be in €3°(B(0,2)) such that n=1 on B(0, 1) and
0=n(2)£1, and set

() = n("‘“z*"), Ua(2) = 1=-[] (1-n"(2) .

ti, n

Then, by (2.3)
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f 100(yr,0) A Oy A B,y < C;ZJ t9YAﬁ"+

OYABp

+C, Y,
ixj JBINB Linljn
and
Oy A
| Zrhgy oy o by
gnp L - 2
i%j i,n ]n i JFi BN B i,n
tjngtll
Oy A ﬂ
<3 %
i i,n
so

J- [00(,w) A Oy A Byl £ C, thp 2 < ,
D,

which concludes the proof.

ReMARK. If @, @, € €T, then

JJ% (W@, (u—v)n (v)dvdu = ftpz(W)tpl (w+v)n,(v)dwdv

= J¢2 W, (w—v)n.(v)dwdv

since 7,(—v)=1,(v). If ® € €3 (D,) and ¢ sufficiently small

j wddlog|f—1e’| A 0% A B,
b,

r

= J; (widdlog|f—1e”y A Oy A B,

r

and so as in Lemma 2.5, one has for almost all ¢

limf id0log|f—1e'’| A 0% A B,y =J ay(f,1€',r) .
D,

-0 . r

THEOREM 2.6. Let D be a bounded domain in C" given by a
plurisubharmonic function g and let Y be a pure p dimensional analytic variety in
D. Suppose F: Y — C?is a non-degenerate holomorphic map defined on Y and let
M (r)=supp ny|fil. If T € R%, 1;>0, we set 0.(¢,. . ., ®,) to be the closed positive
current associated with the area of YN F~'(t,€1,. . .,7,6'°q) and
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o.t(¢’r) = j‘ﬁ gt((pl" . -’(pq) A ﬁp‘q *

Let T? be the q-dimensional torus and d® the product measure on T Then for
every y>1,

rC | 4 .
L o,(®,1)dd < [(’v’ 1)] oy(y) [ Dog* M;(*~*1r)+log™ 1] .
'q - j=1

PrOOF. We establish the result by induction on q. For g=1, this is just
Lemma 2.5. Assume the result for (g—1). By Lemma 2.5

’

2n ) B rC
J‘ oy(f1, 1,6,y ) do, é‘[(:_l)][lof M, (y'r)+log™ t,]oy (y?r) .

o

Let F=(f,,..., f)- The set on which F does not have rank (g — 1) is an analytic
variety on Y of dimension at most (p— 1), so for all but a finite number of ¢,, F
is non degenerate on YN f;!(1,e"). The estimate now follows from the
induction hypothesis and Fubini’s Theorem.

COROLLARY 2.7. Let Y and F be as in Theorem 2.6. Then given y>1, o> 0, and
e>0, there exist constants C, and C' depending only on a,y,¢,7 and D such that
for almost all @

i) 6,(P,r) £ Cir1t 1 %6y (yi(r +¢) ﬁ [log* M;(y*(r+e¢))]

or

i) 0,(@7) < Cyrlog” N oy G2+ ) [] [log® M, 1]

i=1

for r=2ry .
Proor. The proof of (i) is contained essentially in [2], so we consider only

the second assertion. Let r,=y,. Then if T(yp,r) is the function given by
Theorem 2.6, and if

= {®: 0.(®,7")>(nlog)' "*T1Y"}

then meas X, < K (y)/n'** and since ¥0o; 1/n' ** < + 00, if Q,= U, ., then for
n sufficiently large, m(,)<e. If @ ¢, Q,, which has measure zero, then
for n sufficiently large (depending on ®)

@) 5 Clogr) oy 9| I1 g M+ |7
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and by the increasing nature of ¢,(®,r), this holds for all 7 such that
P TIEr<y" so

q
a,(tp,r) b C’r"(log+ r)l +°‘0'y(y““r)l:]_[ log"’ M(y““r):l .

j=1

We now consider a slight variation which in some sense has a wider
application as we do not require a plurisubharmonic function defined in a
neighborhood of D. Let D be a bounded pseudoconvex domain (domain of
holomorphy, cf. [7]) with €3 boundary. By this, we will mean that there exists
a function t(z) defined in a neighborhood N of dD such that V140 near oD,
1€ %3 and NND={z: 1(z)<0}. Then if

d(z) = inf ||z—w|,
welD
d(z) is a %* function near dD and since D is a pseudoconvex domain ¢=

—logd(z) is plurisubharmonic and
(9| _
02,0z | —

C
d (2

Thus, exactly as for Theorem 2.6, one shows the following result.

THEOREM 2.8. Let D be a bounded domain of holomorphy in C" with €
boundary, and let D,={z : d(z)>1/r}. Let Y be an analytic variety of pure
dimension p and F a non-degenerate holomorphic map of Y into C% Then for
every y>1,

2 q q
o (@,r)dd < C| — | oy [] [log* M,(y*~7*'r)+log™ 1]
T logy i=t

which implies that for y>1, >0, ¢>0 and almost all ®.
q
i) o.(P,r) £ Cr*ti*eg, (yi(r+e)) H [log* M;(y*(r+¢))]
i) o(d,r) = C'r*(log* r)““dy(v"“r)['ﬂ 108+M,'(v“+‘r):|
j=1
Sfor r=rg.
In the case D=C", we obtain different estimates.

THEOREM 2.9. Let Y be an analytic set of pure dimension p in C" and let F be a
non-degenerate holomorphic map of Y into C% Let M;(r)=supynp,,|fjl. For
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T € R%, 1;,>0, let 0,(P) be the positive closed current associated with the area of
the analytic variety YN F™'(t,e',. . ., 1,e"%) and

0.(P,1) = J\B 0.(D) A Bp—'l
©,r)

Then for every y>1,

j g TP = oy (y'r) l'[ [log* M;(y*~/*'r)+log™ 7] .

1
[(G* =1
Thus for 0.>0, e>0 and almost every ®, either

Crl +a

q
) o/(Pr) = WUY Y(r +¢)) U [log* M(y1(r+¢))]

or
Cr

i) o0,(d,r) £ W

q
(log™ r)! **ay (y**1r)| ] log* Mj(v"“r)]
j=1
for rzrg.
ProoF. We consider the ball of radius yr and Y an analytic variety of pure

dimension s. Then, since |z||? is strictly plurisubharmonic, if f is holomorphic
in Y, one shows exactly as in Lemma 2.5 that

oy(yr)llog* My (f,yr)+log™ 7]

2n
J q ()~ 1zl1%)03(f, ) A ﬂs~1>d<ﬂ
0 B(0,yr)

2n
r’(y*—-1) J oy(f,1€%,r)dy .

0

v

1\

It is now a simple matter to apply induction as in Theorem 2.6 to arrive at the
desired conclusion.

We note that in Theorem 2.6, and 2.8 and 2.9, (i) gives the better estimate for
functions of finite order whereas (ii) gives the better estimate for functions of
more rapid growth.

In [2], Carlson asks if it is possible to give some kind of an analytic
characterization of the sets on which a Bezout estimate of the kind i) or ii) does
not hold. It is clear from Theorems 2.6, 2.8, and 2.9 that the intersection of such
a set with the distinguished boundary of any polydisc is a set of measure zero.
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This is a property shared by C%polar sets (sets on which a plurisubharmonic
function takes on the value — oo, cf. Lelong [10]). This leads us to conjecture
that the set of exceptional values is indeed a C%polar set. We show this for the
case g=1.

THEOREM 2.10. The set of A € C for which

I oy(f,A,1)
i -4
) g Gt o)log® My ra) - T
or
T aY(f; l»r)
I -
e (Qog* N ooy (Pr)log” My(fi?n) T °
in Theorem 2.6,
. T GY(.f; A’ r)
1 = 400
B %, + o) log” My (701 9)
or
— ay(f,4,7) _
m e log ¥ oay, 20 log* My 7o) ~ T
in Theorem 2.8,
— r' ey (f; A1)
i) lim = 400
) Gt a)log” My (f7(+9)
or
2
m réoy(f, A1) too

r (l0g* 1) ¥ o0y (P log* My (fy%r) ~
in Theorem 2.9,
for every 0>0, e>0, y>1 is an R2-polar set.

Proor. We shall prove only the first part of i) since the others are proved in a

similar fashion.
Let

V() = J‘ log|f—Aliddg A Oy A B,
" s, ray(m)logt My(fyr)

which is a subharmonic function of A for every r. By Lemmas 2.4 and 2.5, we
have
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GY(fa ""’ r)
[roy(yr)log™ My(fyr)]

L+log* |4l = V.(A)+

Let

1
V(@) = };, e Vi (D) =K1 .

Since for fixed 4, V;,, (1) —k** is negative for k large enough, either V(1) defines

a subharmonic function or converges to — oo uniformly on compact sets. Since
by (2.4),

1 [ .
P j log|f—4%?|de = sup (log|f],log|Al)
T Jo

SO

r [ .
— %) dp = 1
o f V(e do 2 log |

and V() cannnot converge uniformly to —oo, hence V(A) is subharmonic.
Suppose for A there exists a sequence r, — oo such that

O.Y(f;)'ﬁrn) - 00
rat oy (y(ry+e)log™ My(f,y(r,+e)) ,

Then

GY(f; 'L kn)

h
K% o0y (k) log* My(fik,) o rennT @

and hence V()= —o0, so for fixed >0, ¢>0, y>1, the set on which an
estimate of the form i) does not hold is a polar set. We now choose sequences
o, ~ 0,6, ~ 0,7, ~ L. Since a countable union of polar sets is polar, the set of
A for which we do not have an estimate of the form i) for every a>0,e>0, y> 1
is polar.

An R2-polar set is also a set of logarithmic capacity zero (cf. Landkof [8]).

3. The geometry of analytic sets.

In [11], Ronkin showed the following surprising result. Let Y be an analytic
variety of co-dimension 1 in C" and let

2={zeC": liLI: =@},

Tl Tn
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which is a set of real dimension (n+1). Then if 0¢ Y, the measure of
YN XN B(0,r) grows asymptotically like the measure of Y N B(0,r) (see below
where these measures are made more precise). This imposes some kind of a
geometric restriction on Y. The proof depends heavily on the fact that there
exists an entire function f in C" with Y as its zero set, and since log|f] is
plurisubharmonic,

J log|f (z,,. . ., 7, dg,. . . do,
TVI

is an increasing function of ,,. . . 7,. If 6 is a positive closed current of degree 1
in C", then there exists a plurisubharmonic function V in C" such that 6=
iodV (cf. Skoda [15]), so by the same reasoning as that of Ronkin, one can
conclude, for instance, — if the coefficients of 6 are continuous functions, that
the growth of the mass of 8 in X is asymptotically the same as the growth of the
mass of 6 in C". We shall generalize these results to analytic varieties of pure
dimension p defined in C", or more generally, to closed positive currents.

Let X be an analytic variety of pure dimension p in a pseudoconvex domain
D<C" and let

A={zeX]| lg@I<l, j=1,...,q}
be compact in X. We will say that G=(g,,. . ., g,) is non-degenerate if for every
subset g;,...,g;, of p elements, dg;,...,0g; are linearly independent almost

everywhere on X. If 6= (j,,. . ., j) is a subset of the numbers (1,. . .,q) and |o]
=card o, we set

G, ={zeX: lgi,(@)=...=lg (2), jy €6} and G"= U G,.
We let Gl=A.

LeMMA 3.1. Let G=(g,. . .,8,) be non-degenerate in an open set D<C" and
let

¢ = _suwp (loglgj), o = sup (loglgi,loglg;)
j=1...,9

and =Y, <;0j which are plurisubharmonic functions in D.
Let
U= {zeD: glz)=0, j=1,...,q} .

If 6 is a closed positive current of degree (n—1) with €™ coefficients and
U Nsupp 0={F} then

i000 A 0 = i0dg A 0

as a measure on D.



THE AREA OF ANALYTIC VARIETIES IN C" 385
Proor. Let w € €3’ (D) and let

Xju =1{zeD: |g@@=lg=g)} .
Then

is a set of finite Hausdorff (2n—2) dimensional measure since G is non-
degenerate. Thus, given ¢>0, there exists a finite number of balls B;= B(z,,t;)
which cover suppfNsuppwNX such that Yt 2<C and supt;Se.
Furthermore, since U Nsupp 6={F}, we can suppose that d(B,U)=C>0
independent of i and e Let n(z) € €3(B(0,2)) such that n=1 on B(0,1),
0=n(z)=1 and set

z—z
t.

1}

ni(z) = n( > B2) = 1-TT(1—ni(2)) .

Suppose w=0. Then

f widdg A 0 = J (1—-B)widdg A 0 = j (1B )widde A 6
D D

D

for in the support of (1—B,), either i00¢ =iddg or ¢ is pluriharmonic. But
jﬂﬁwi65g AB= ——J@(ﬁew) A idg A 0,

and since g is a Lipschitz continuous function with exponent 1 outside a fixed
neighborhood of U, Jg as a distribution is a bounded function on supp 0 so

‘[ |0(Bw) A i0g A 0] £ KD 13" ! < CKe.
D i

Since ¢ was arbitrary, this completes the proof.

LEmMA 3.2. Let D,G,U and ¢ be as in Lemma 3.1 and let
A={zeD: |g2I<], _]:=1,. . q}

with A compact in D. Let 0 be a positive closed current of degree (n—1) with €
coefficients defined in a neighborhood of A such that supp 0N U={F}. Then

tj i00g A 0 2 —IQG A B,
A
where t=sup4nuppo 121%

Math. Scand. 41 - 25
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Proor. Let y=d(U, supp ). We form

0. = o*n,+¢lz|?,

which is strictly plurisubhamlonic in a neighborhood of 4. By Sard’s Theorem
[14], the set of £ for which Vg, =0 on {z : g,(z)=¢} is of measure 0. Let

Di = {z: o.<¢}.
Suppose §>0 is given. Then for £ not in the exceptional set and ¢ sufficiently

small, by Stokes’ Theorem

(t+5)J iddg, A 0 = (t+9) ido, A 0
D} oD}

and by Lemmas 2.2 and 2.3

(t+9) idg, A 6 = J |z||%ide, A 0
oD} oD}

2 J llz|%i0de, A B—I o0 A B
D} D}
so if we let £ —» 0, ¢ — 0, then 6 — 0, the Lemma is proved.

If X is an analytic variety contained in a pseudoconvex domain D in C" and
g is holomorphic on X, then g is the restriction to X of a function holomorphic
in D (cf. Gunning and Rossi [7, p. 245]), so we can assume without loss of
generality that g is defined in D. If Y is a subvariety of X of dimension s, then Y
is a subvariety of C" of dimension s. Let

Ya((pl" . ',(Pm—-l)
={z: g —gen=...=¢g  —ge1=0,j,ea}.

Let 6,(®) be the positive closed current of degree (n—s+m—1) associated
with the area of the analytic variety YN Y,(®). Let

A, ={zeD: |g2l<r, j=1,...,q} for r=1,
and set
ny(®) = j 0,(@) A Bis—m+1y
A,
(with the convention that this is zero if YN Y_(®) is not of dimension (s—m

+1)) and
n,(r) = j n(®)do .
Tm—l
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THEOREM 3.3. Let X be an analytic variety contained in a pseudoconvex

domain D in C" and let G= (g,,. . ., g,) be a non-degenerate map of D into C? such
that

A={zeX: |g(I<]l, j=1,...,q}

is relatively compact in D.
Suppose that Y is a subvariety of X of pure dimension s such that

YNU ={zeX :g,(2)=...=g,(z)=0}

is empty. Let 0 be the positive closed current associated with the area of Y. Then
for every y>1, there exists a constant ¢ (depending only on y) such that

J 0 A By < (ctf 3 n(r)
A,

7
lol=s+1

where ¥ =r+y (1 —r) and t=sup,ny|z|>.

Proor. We shall proceed by induction on s. For s=0, the result is trivial
since G' = A. It is sufficient to treat the case Y irreducible since every variety
can be decomposed into a countable union of irreducible branches.

Suppose first that Ye Z={z : g;(z) — g,(z)e’” =0} for some j, k and ¢. Then
we can replace G by G'=(g,...,g,-,) where we omit g;, and X by ZNX.
Thus, we can assume that this does not occur.

Since X is an analytic variety in C" there exist (n+1) functions F

=(f1,- . -» fu+1) such that X is just the set of common zeros of the f; (cf. Skoda
[16]). Then the set

A= {zeD: lgjl<1, %<1}

is relatively compact in D for o sufficiently small. If we set

U= {z: gy=...=g;=fi=...=fas:1=0},

then by hypothesis ¥ N T is empty.
Let 6° be the regularization of 6, which for ¢ small enough, gives a positive
closed current of degree (n—s) in a neighborhood of 4,, and let Y*=6° A B, _,.
Let

0= sup(loglgil, log|f—"|>.
Jrk

r or

Then by Lemma 3.2, for ¢ sufficiently small,
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tj_ i0dg A Y = —J oYt A B
A, A,

Since supp 00g= A; U A, U A4;, where
A, = L{{z: l—g"il=l—€"—|>sup<|—gr—|, 5 ) I+j, l=|=k}
jr
A, =H{z: %=I}§ > sup(-g—— —g—) 1), l*k}
A; = ,Uk {z: l—gr’—| = l—({:—l > sup(l—gr'-”—l, lg—), m=j, l#k}

supp ¥ N (4, U 43)={} since Y={z: fj(z)=0, j=1,...,n+1}. Thus, for ¢
sufficiently small,

suppy* N (43 U 4,) = {5}
so if ¢'=sup;log|gj|/r,

tf i000' A YF 2 —J oYt A B.
a, a,

Let
D, ={zeD: |g|>¢ j=1,...,q}.

Then D, is again a pseudoconvex domain and for ¢ sufficiently small,
suppidde’ A Y°< D, for all e<g, for some &,. Thus

tf 000" A Y* 2z —J oV AP
A4,nD, a,

so by Lemma 3.1, if ¢;,=sup (loglgl,log|g)

ey | i00eu A YF 2 —ﬁ oyt A B.
j, A,ND, A,
y (23),
I .
i000;, = ———J i0dlog|g;— g’ do
27 o
s0

2rn
ty f (J —laaloglgj g€l A O A B, 1)
jkJo A,ND, 2

v

_L, ot® A Bs.
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Clearly we can find a strictly pseudoconvex domain D such that Z,ﬂDéﬂX
cDNXcA and since

sup (loglgjl,loglgd) > & > 0

in D,, we can apply the reasoning of Lemma 2.5 and let ¢ — 0 to obtain

2n 1 .
ty J (J ——iddloglg;—ge'’l A 0 A Bs—1)d¢
ik JO inp, 27

r 4

v

‘J QG A Bs
A,

so clearly

2n 1 .
tzf (f 8 loglg;— el A 0 A ﬂs_l)mp > —j o0 A B,.
ik JO a,2n A

We replace r by #~!*r and obtain by the induction hypothesis

J;" 0 A B (ctf Y nr).

lo|=s+1

CoROLLARY 3.4. Suppose that D, X and G are as in Theorem 3.3 and that Yis a
subvariety of X of pure dimension s such that d(Y,G*** N 0A)>0. Then (40 A B
< + 00 where 0 is the positive closed current associated with the area of Y, and Y
consists of only a finite number of irreducible branches.

Proor. We choose a value b € C? such that YN G~ !(b) is empty. This is

possible if we choose b close to the distinguished boundary of the polydisc in
Ci. We let

gi—bi .

G = (g),...,8) Wwhere gj = I gh
i%j

we can find b for which G’ remains non-degenerate. Then if d(Y,G**!1 NdA)
>0, '

d(Y,G'°*Ynad) > 0

also, so Theorem 3.3 implies that the area of Y is finite in A.

Suppose Y consists of an infinite number of branches. Let R=maxr such
that YN A,NG**! is non-empty. Then R<1 and there are at most a finite
number of branches Y; of Y which intersect Ag. Every branch of Y must
intersect Ag, so Y has only a finite number of branches.
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We refer the reader to Rudin [12] for a non-trivial example of an analytic
variety which satisfies the hypotheses of Corollary 3.4.

Rudin [13] has shown that an analytic variety Y of pure dimension p is
algebraic (i.e. defined by polynomials) if and only if after a non-singular linear
change of variables, we have z'=(z,,. . .,z,), 2= (2,+1,. . ., Z,) and constants 4
and B such that for every ze Y

(3.1 Iz < A+

since this property is invariant with respect to translations, the sufficiency
follows from the following more general result.

CoROLLARY 3.5. Suppose that Y is an analytic variety of pure dimension p such
that after a non-singular linear change of variables, 0 ¢ Y and for positive
integers m;, j=1,...,n and z € Y, there exist j<p and k2p+1 such that
|zjI™ #|z,|™ for | z| sufficiently large. Then Y is an algebraic variety.

Proor. The mapping F: (z,,...,2z,) = (z11,. ..,z is a proper mapping so
Y=F(Y) is a variety of pure dimension p in C" by the proper mapping the-
orem. Let w be the variable in the image space. Then by Theorem 3.3, if §
is the current of integration on Y,

J o AB,<Crr
B,r)

since for ||w| large, YN G?*! is empty, G={w,,...,w,}. Then [f A a,<C (cf.
Lelong [9, p. 73]) and so Y is an algebraic variety by Stoll [17]; thus, there
exist polynomials P,,...,P,,, such that w e Y if and only if P;(w)=0. But
then Y is contained in an algebraic variety P;(F(z))=0 and since Y has at most
a finite number of irreducible branches (since Y has at most a finite number
and F is proper), if 6 is the current associated with the area of Y, [0 A a, <00
and hence Y is also algebraic.

Theorem 3.3 is in reality a statement about positive closed currents which
will hold whenever the coefficients are sufficiently regular. Thus, we
reformulate it under a slightly different form. Suppose 0 is a closed positive
current of degree n—p and that 6 has continuous coefficients. If 6ya((,0) is the
positive closed current of degree |o|—1 associated with Y, (¢), we let

0,(¢) = Oy (@) A 0,

ny(p) = ‘[ 0,(0) A Bp—ms1, Nelr) = j ny(p)de .
A,

Tm—l
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Tueorem 3.5. Let D<=C" be pseudoconvex and A={ze D:|g;(z)|<]1,
j=1,...q} compact in D for a non-degenerate mapping G=(g,,.. -8, Then
if 0 is a positive closed current of degree (n—s) with continuous coefficients, for
every n>0, there exists a constant C such that if t=sup,, Iz,

j 0 A B, (Cty Y n,(r)
A,

lal=s+1

for ¥=r+n"t(1-r).

COROLLARY 3.6. Let D, G and A be as above. Then if 0 is a positive closed
current of degree (n—s), supp@NG**! is non-empty in A.

Proor. We choose r<1 so large that supp6NA,+{F}. Then € for ¢
sufficiently small is ¢ in A, so by Theorem 3.5, supp °NG**! + {F} and thus
d(supp0,G**1) <. Since this is true for all e¢>0, the corollary is proved.

Let Y be an analytic variety of pure dimension s in C" and let

Z;—a, z,—a
G = yor ), 1;>0.
Ty Tn

For this case, we will denote G™ by I'™(a, 7). If a ¢ Y, then Theorem 3.3 gives a
lower estimate for the area of YN I'®*Y(q, 1) in terms of the area of Yin C". We
will now obtain an upper estimate for Y NI'¢*Y(q,1). Let T,(a,t,®) be the
linear subspace of all z such that

z,—z % =0, k=1,...,m—1, j,jmn€o0.

If |o|=s+1, we let nl(a,7,P) be the number of points (counted with
multiplicity) in YN T (a,t,®)N B(0,r) (perhaps infinite) and set

r

’ ,Tot
no@tr) = | n(ar,d)dd, N,acr) = f LLLUNS
LY T 0
If 6 is the positive closed current associated with the area of Y, we set
r . t
o= onw wma o= [
J B(O,r) 0 t

THEOREM 3.7. Let Y be an analytic variety of pure dimension s in C". Then
there exist constant c,, c,, ky, and k, depending only on t such that if a¢ Y

€y z Na(asr;klr) é NY(r) é Cy Z Na(a’t9k2r) .

14 o
loe|=s+1 lo|=2s+1
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Proor. We assume without ioss of generality that a=0 and 7;=1 for all j.
We note that the right hand inequality follows immediately from Theorem 3.3
since B(0,r) is contained in the polydisc D,={z : |z|;| <r} and supp,_ |z||>=nr?.
Thus, we show only the left hand inequality.

Before embarking on the proof, we note that it is easy to see that the set of @
for which nf(®) is not a finite set of points is of measure zero. This is easily
established from the fact that if Y is an analytic variety of pure dimension gq
with irreducible branches Y, then {z : z,—z,e"} N ¥; is either Y, or a variety of
pure dimension (q—1) (cf. Gunning and Rossi [7]), so there are at most a
countable number of y for which Y;<=z,—ze" for some j. Thus, by induction,
there exists a countable number of sets Q; each of measure zero such that
YNTI,(a,1,®) is zero dimensional for ¢ ¢ Uj Q;.

Let 6% be the regularization of the current 6. Set

0, = supI:logI—ZLl, log@, logﬁ] where f<pu<1,
i>2 r r r
0 = sup(log@, loglz,j—+1|>, j=2,...,5,
. r

ef = e;j*n,; and gy = expgy .
Let

¢ = 0% A i00Q% A ... A i000%, € = (- . -»E))
J J J

and v=|z|?—r2
On dB(0,r), ¢;<0 so for small ¢;, ¥ <2. Hence by Lemmas 2.2 and 2.3,

0> j (@jj—2)i51 APy A BT 2 j @5 —2W5-1 ¢
3B(0,7)

B(0,r)

N j (2 = 2020385 A Wi-y A B0
B(O,r)
and

i00g% A W5_y A BT = idd(expo%) A Yi_, A BT
= exp @7[idey A 005 A Y5y A BTP+i000% A Yy A BCT]
= exp%iddoy A Yooy A BEP,

Thus

[ v pn
B(0,r)

1\

J (r* — l1zI1*) exp @%iddg% A Yi_y A BETI.
B(0,7)
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Let k<1 be given. Since 0 ¢ supp 6% for ¢, small enough and since

suppidde, N suppf N {z : g;(z)= — o0}

is empty for ¢ small enough,

€Xp g7 — €xpg; = sup (@, @)

uniformly on suppy%_; when ¢; — 0. Thus, for ¢; small enough.

>

f Wiy A BOTID
B(0,r)

k 1 |z; .
> —j (= 11P) sup(ﬂ, ———'Z”")i@ae? NN
2 JBo.n r

r

Furthermore, on supp iddg;, ||z||/2 < sup (Izjl,1z;+ 1)) = lIz]l, so for € small enough

j Yi-1 A pe=ith 2 Ckrz[J iaagji A VS A pe—d—
B(0,r) B(0,kr)

- J 0005 A Y5y A ﬂ‘s‘j’].
B(0, k%)

By Lelong [9, p. 73], r~ 2P {pq.,,i000% A Y5y A B is an increasing
function of r so for j<s,

j L1 A Be-ith > C;ﬁj iaggjj A \//§~—1 A BT
B©,n) B(0, kr)
Thus, by iterating this result, we obtain for j<s

J Q% A ﬂs = r2(s-j)c;zj' ' ‘l’j A ﬂ(s—j)
B(O,r) B(0, k'r)

for ¢ small enough, or alternatively, using Lelong [9, Proposition 10, p. 73],

(3.1) ‘ J woAasgc;;'J AN
B(O,r) B(0,k*"1r)

In order to treat the case j=s, we will need a slightly different technique. Let
R be fixed and let T=1log | z||/R. Then by Lemmas 2.2 and 2.3

0> f Q:‘iaf AVYey = J' oSV A “"J“Eiaa—gi’ A Yooy
B(O,R) B(0,R)

so if we let ¢, — 0 we obtain
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" Izl .
_j oWEi_ 1 A a2 —J log Rl i00g, A WE_, .
B(0,R) B(O,R)

Let >0 be given. Then for u large enough, p<1 and ¢ small enough
llzll

— 0 —log—R—+6 on suppyi_,
SO
6J LA a——j logllz—ﬂllli~l Aa
BO.R) BoR) R
2 - toaleliore, n vy
B(O,R)
Let

A () = J;(O) toAna and  A,(0) = JB(O )iaﬁgs AP
,t t

Then, since 4,(0)= A,(0)=0, if we integrate the above expression by parts, we

obtain
R R
5J Vi, A cz+J~ A 4, gf A0 4,
B(O,R) o ¢ o

Combining this with (3.1), we have

(3.2) 5J 0 A as+f (j 0% A ozS)ﬂ
B(O,7) o \JBw©. t
N s dt
o [ ([, 50 v
0 B0 t

3, = sup[log‘ 1‘ |Zr2|] ,

then for supe; small enough, g; =g, in (:_, supp g5 so by (2.4)

1 .
J i00g, A Yo, = J (J i00 —loglz,—z,_ €'
B, Bon \J7r 27

/\ 165 loglz Zg41€%0 %0, A Beodtb).

j=1

If we let
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We now let ¢, — 0 in (3.2) to obtain

(e e :
.C(Né+Ny(r) = Ci f — [j (iag——l—log lzy— 244 1€
0 t JBoy LJT 2n

5= 1 .
/\1 iaaﬂloglzj—zsﬂe""q*nﬁ A 0>d¢].
j=1

We now let successively ¢; — 0, j=1,2,...,s—1. Since log|z;| is bounded
below on suppy:_, for ¢ sufficiently small, we can repeatedly apply the
reasoning of Lemma 2.5 and Fatou’s Lemma to pass to the limit under the
integral and obtain

C(r)0+Ny(r) 2 N (k" 'r).

Since § was arbitrary, the result now follows.

Cornalba and Shiffman [3] have constructed an example of a variety in C3
such that the intersection with a certain 1-dimensional subspace can be made
to grow arbitrarily fast even though its total area is of finite order. Carlson [2]
showed that if Y is an analytic variety of pure dimension s and 8 is the
associated positive closed current of area, then for almost all linear subspaces
A of dimension s jB(O,r)ﬂ 4 0y does not grow more rapidly than jB(o,,) 0 A o (he
actually uses the integrated areas). The following result gives some insight into
the nature of the exceptional set.

THEOREM 3.8. Let Y be an analytic variety of pure dimension s in C" and
suppose a ¢ Y. Then given a >0, there exist constants ¢ and k depending only on
o and 1 such that for almost all @ € T*,

N¥(a,7,®) £ C(log* ' **Ny(r) for r=rd.

Proor. This follows from Theorem 3.7 as in Corollary 2.7 see also [2, p.
136].

In the preceeding presentation, we have singled out the sets I'**!(a,1) to
measure thé global growth of Y, an analytic variety of pure dimension s. These
sets are in no way unique, and we sketch here an alternate approach.
Suppose we have £; € C", j=1,...,M such that not all the £; lie in the same
real hyperplane (hence M =2n). Let

G = (8, --.8m)» & = expl&;z).

We will say that Y is non-degenerate for G if Y is not contained in any
hyperplane which passes through the origin. We let
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A, = {zeC": Reé,zy<r, j=1,...,M}
and we define nl,(®) as above, where the integral is to be taken over A,. The set

lexp (&, 20| = lexp (&, 23]

is just the (2n—1) dimensional hyperplane Re {&;—¢,,z> =0.
One establishes just as in Theorems 3.3 and 3.7 that there exist constants
¢1,€5,k, and k, such that

¢ Z ny(ky,r) < r—?s JB(O )OY A B Sy Z ng(k,r)

a o
lol=s+1 lo|=s+1

for every Y non-degenerate for G. In fact, here there is no need to integrate the
above inequalities since

loglexp <¢; 2> = Re(¢;,2)

is bounded in a neighborhood of the origin. We leave it to the interested reader
to verify these inequalities.

Note. Since we completed this work, another article by Carlson [20] has
appeared which sheds some new light on the problems considered here. In
particular, he shows that the set for which a Bezout estimate does not hold is
an R2P-polar set, that is the set on which some subharmonic function takes on
the value —oco. This reinforces the conjecture that it is actually CP-polar.
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