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PLURIHARMONICITY IN TERMS OF
HARMONIC SLICES

FRANK FORELLI!

Abstract.

Let f be a function on the open unit ball in C". We prove that if the slices of f
through the origin are harmonic and if f is smooth at the origin, then f is
pluriharmonic.

1. Introduction.

1.1. We will denote by B the open unit ball in C" and by S the unit sphere in
C". Thus

B = {z: zeC”,szZj<l}
1

and

If fis a complex-valued function on B, then we will denote by H(f) the class of
those y in S such that the slice 4 — f(uy) is harmonic on the open unit disc D.
Thus H(f) is a circular subset of S. By C¥(0) we mean the class of those
f: B— C which are of differentiablity class C* in some neighbourhood of 0
(which depends on f). The purpose of this paper is to state and prove the
following three theorems on pluriharmonic functions.

1.2. THEOREM. Let fe C(B) and let H(f)=S. If
(L.1) feN{C40): k=1,2,...},

then f is pluriharmonic on B.

1.3. THEOREM. Let f: B — [0,00) and let H(f)=S. If (1.1) holds, then f is
pluriharmonic on B.
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1.4. THEOREM. Let f: B — C and let H(f)=S. If (1.1) holds, then f is
pluriharmonic on B.

1.5. Although Theorem 1.4 contains Theorems 1.2 and 1.3, we prefer to
separate them since the proofs of Theorems 1.2 and 1.3 are elementary,
whereas the proof of Theorem 1.4 is not.

2. The proofs of Theorems 1.2, 1.3, and 1.4.

2.1. PROPOSITION. Let G be an open subset of RP and let g € C*(G). If (x,y) €
G xR? and if

h(t) = g(x+ty),
then

h®0) = g¥(x,p,...,y).

Proor. We have [h(t+s)—h(t)]/s=[g(x+ty+sy)—g(x+ty)]/s, hence
R(@) = gx+ty,y) .
Thus A" (t)=g"(x+ty,y, ), etc.

2.2. We will denote by N the class of all nonnegative integers and by N, the
class of all positive integers. If k € N", then by |k| we mean Y} k;, whereas if

z € C", then by |z| we mean
n ~ 3
lz| = (Z zjzj> .
1

If 5, € N, then we will denote by H,, the class of all polynomials in z and z
(z € C") that are homogeneous of bidegree (s,t). Thus if fe H, then

f2) = Z ¢ jkzjz—k
U, kyel(s, 1)

where ¢; € C ;lnd
I(s,t) = {(,k) : j.k e N" |jl=s, [k|=t} .

We let H=H g, and H_,=H,,. Thus H, is the class of all polynomials in z that
are homogeneous of degree s, and H _,= H,. We will denote (as is usual) by T
the class of all u in C such that pji=1.

We owe the statement of the following proposition to Rudin, who proves it
by means of Taylor’s theorem. (This proposition was implicit in our first draft
of the proof of Theorem 1.2
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2.3. ProposITION. Let k € N, and let g: B— C be such that if u € D and
z € B, then

2.1) g(uz) = u*g(2).
If g € C*(0), then g € H,.

Proor. If —1<t<1, then
t'g(z) = g(t2),
hence by Proposition 2.1
(2.2) klg(z) = g¥(0,z,...,2).

Furthermore g®(0,v,,. . .,v)) is a complex-valued k-linear symmetric form on
X% C" over R, hence by (2.2) g is a polynomial in z and Z which is homogeneous
of degree k. That is to say

ge Y H,.

s+t=k

We have

g= Y 8 Whereg,eH,.

stt=k

If u € T, then by (2.1)

g = Y wi'ge = Y pgy,

st+t=k s+t=k
hence g, =0 if (s, )= (k,0) which completes the proof of Proposition 2.3.

2.4. ProposiTION. Let f: B — C and let H(f)=S. If k € Z, then we define
fi: B— C by

2n

(2.3) fil2) = % J f(e®z)e”*0qd0 .

o

24.1. If z € B, then 3% |fi(2)| <00 and f(2)=32" fi(2)
2.4.2. If z € B, then f,(2)=f(0).
243. If k>0 and fe C¥0), then f, e H, and f_, € H_,.

ProOF. If z € C", if u € C, and if /< 1/lz], then

1 2n . .
24 Suluz) = 3 L f(e®uz)e *0 dg .
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Furthermore p — f(uz) is harmonic if |u|<1/|z|, hence

1) = ¥ @7+ Y o0
If k € N, then by (2.4)

(2.5 feluz) = ¢, (2

and

foiluz) = c_i ()i~ .
Thus if k € Z and z € B, then
(2:6) L) = al2),
hence 2.4.1 and 2.4.2 hold.
If ke N, if ze B, and if |u|<1/|z|, then by (2.5) and (2.6)
flpz) = pi(2) .

Furthermore if fe C*(0), then by (2.3) f, € C¥(0), hence by Proposition 2.3
Ji € H,. Likewise f_, € H_, which completes the proof of Proposition 2.4.

2.5. THE PROOF OF THEOREM 1.2. Let f; be defined by (2.3). Since fe C(B), f
is bounded on compact subsets of B, hence by (2.3) the f, are uniformly
bounded on compact subsets of B. Thus by Proposition 2.4 f'is pluriharmonic
on B.

2.6. THE PROOF OF THEOREM 1.3. Let f, be defined by (2.3). If z € B, then by
(2.3)

2n
mwgﬁLﬂ&m=mu

hence by Proposition 2.4 f is pluriharmonic on B.

2.7. For the purpose of the proof of Theorem 1.4 we recall the following
proposition of Hartogs and Hérmander (Theorem 1.6.13 of [2]).

2.8. PROPOSITION. Let G be an open subset of R? and let {g, : k € N} be a
sequence of subharmonic functions on G such that if k € N and x € G, then

g(x) <o and limsupg;(x) < a

j—oo
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where a,a € R. If F is a compact subset of G and if b> a, then there is an index N
= N(F,b) such that if k=N and x € F, then

g (x) < b.

2.9. THE PROOF OF THEOREM 1.4. Let f, be defined by (2.3). It is to be proved
that the f, are uniformly bounded on compact subsets of B. The following
proof of this fact is a paraphrase of the proof (of another fact) on pp. 9-11 of
the classic paper [1] of Hartogs.

By (2.3) there is an r>0 and a >0 such that if k € Z and [z|<r, then | f,(2)|
<p. Thus if ke N, and z € B, then

1
AN = ;lfk(rZ)I”" Sa.

Furthermore if z € B and p € D, then the series Y{° f;(z)u’ converges, hence

limsup| fi(z)|'7 £ 1.

j—oo
Thus if 0=<t<1 and if b>1, then by Proposition 2.8 there is an index N
= N(t,b) such that if k= N and |z| <t, then | f,(z)|'* <b, which is to say that if k
2N and |z|£t/b, then

i@l = b7 filbz)l < 1.
Thus if 0=<t<1 and if b>1, then by Proposition 2.8 there is an index
N=N({(t,b) such that if k<N and |z| £t, then | f,(2)|'* <b, which is to say that
if k=N and |z|£t/b, then

3. An application and a remark.

3.1. We begin with an application of Theorem 1.2 to a recent theorem of
Rudin. We will denote by 4’ the Laplace—Beltrami operator with respect to the
Bergman metric on B. Thus if f € C?(B), then

n

af = 4(1—-|z|2)<2 ozgz— % fokazf/af“az’)'
; jk=1

ji=1
We let

A" =4 Y 252/05,0z; .
k=1

Thus
(3.1) 4 = (1=|z2P4-4").
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3.2. ProPOSITION. Let y € S, let p € D, and let z=puy. If f € C*(B), then

2

0
(3.2) (4"f)(z) = 4uﬁmf (uy) .

ProoF. We have z;=py;, Z;=jij;, and

Swy) = f(uys,. .o, myn) -

Thus
0 _ " (of 0z; 0f 0z; " of
hence
0? " d (of
Bﬁauf(uy) = ;y’ﬁ(a_z)

= iyj i < o O | ) Qﬁ)

&7 e \oz,0z; 0 02,0z; o

Y yidf0z,0z; .

jk=1

Thus (3.2) holds.

3.3. THEOREM (Rudin [3]). Let f: B — C. If fis harmonic with respect to both
the Laplace-Beltrami operator A’ and the Laplace operator A, then f is
pluriharmonic.

Proor. We have
Af = Af =0,
hence by (3.1)
A'f=0.
Thus by Prop;osition 3.2 H(f)=S, hence by Theorem 1.2, f'is pluriharmonic.

34. Let jkeN,, let ge H;,, g+0, and let he H;, h+0. Furthermore let
f(2) = g@h()zl¥
if z+0, and let f(0)=0. Thus if y € S and p € C, then

(3.3) Smy) = HgWh(y),
hence H(f)=S.
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If f is pluriharmonic, then by (3.3) f is holomorphic. Hence h(z)/|z|*/ is
holomorphic if z+0, hence h(z)/|z|*/ is bounded on {z:z € B, z+0} if n=2.
Thus if n=2, then fis not pluriharmonic, although f € C(B). This proves that
without the hypothesis (1.1), the conclusion of Theorem 1.2 need not hold.

It may be worthwhile to point out that the Riemann removable singularity
theorem [4, p. 19] (which was just used) is a corollary of the elementary
Theorem 1.2 if in the statement of Theorem 1.2 the hypothesis “fis continuous
on B” is replaced by “f is bounded on compact subsets of B”.
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