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SOME REMARKS
ON EIGENFUNCTION EXPANSIONS
FOR SCHRODINGER OPERATORS WITH
NON-LOCAL POTENTIALS

ARNE JENSEN

We consider two-body Schrédinger operators H= — A+ V in L?>(R3) with a
not necessarily local potential V that decreases faster than |x| ~! ¢ at infinity. We
prove the existence of two families ¢ (x, £) of generalized eigenfunctions of H
such that the generalized Fourier transforms

— 00

(F @) = lim j f®e.(x,$)dx
N [xl<N

are unitary maps from the subspace of absolute continuity for H onto L?(R3). Let
H,. denote the absolutely continuous part of H. Then H,. = # 1 M, 2% , where
M,.: denotes multiplication with |€]>. Using the results of Kuroda [4] we
establish the connection with scattering theory and prove a rigorous version of
the formal connection between the scattering matrix and the generalized
eigenfunctions used in physics.

For V multiplication by a real-valued function the above results have been
proved by Agmon [2]. We prove the results for a general V by constructing the
generalized eigenfunctions using Sobolev’s lemma. This method is due to Agmon
[1] and has been used by Yamada [8] for constructing eigenfunctions for the
Dirac operator with a multiplicative potential. The applicability of the method
depends on the fact that we restrict our attention to the physically relevant 3-
dimensional case. For a general V the regularity in the x-variable is weaker than
the one obtained in [2] for multiplicative V.

1. Definitions, notations and assumptions on V.

We denote by L? the space L?(R?), the norm | - | and the inner product (-, -), 2
denotes the unit sphere in R* and L2(€) the space of square integrable functions
with respect to the surface measure on Q. The norm and the inner product are
denoted || || and (-, -)o. For s € R, L**=H%* denotes the weighted L? space
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L2 = {f]| (L+|x%f(x) € L?}
with the norm

1fllo,s = NCL+IxPYA

F (Z ~!)denotes the (inverse) Fourier transform on the temperate distributions
in R3. The Sobolev space H™=H™?°, m e R, is the Hilbert space of temperate
distributions given by

H™ = {f| #fel*™}
with the norm

I lmo = 1Ffllom -
The weighted Sobolev space H™* is defined for m,s € R by

H™s = (f| (1+IxPy? e H")
with the norm

1 s = A+ 2SNl -

The dual of H™* is identified with H™™ ~° and the duality is written

(fe) = Ls f(x)g(x)dx .

For two Hilbert spaces K and L (K, L) denotes the bounded linear operators
from K to L, equipped with the operator norm. The adjoint of an operator T is
denoted T*. The subspace of compact operators is denoted ¥ (K, L).

For any 0<f<1 and s € R we denote by C%* the continuous functions on R3
such that (1 +|x|?)¥2f € L*(R3) and such that (1 +|x|?)¥%f (x) satisfies a uniform
Holder condition of order 0. C%* is a Banach space with the norm

Iflo,s = sup (1+|x>*?f(x)|+ sup [(1+]x| 5
xeR? [x—yl

0<x <1
H, denotes the Laplacian —4 in L? with domain D(Hy)=H?°.
AssSUMPTIONS ON V. Let V be a closed symmetric operator on L? with
D(V)2D(H,) such that for some s>}
(L.1) Ve ¢(H*° H*%),
and such that V has an extension to H* ~5, also denoted V, with the property

(L.2) Ve €H> 5 H").
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Norte. In the remainder of this paper s denotes the constant introduced above.

REMARKS (i) When Vis multiplication by a real-valued function v(x) condition
(1.1) is Agmon’s condition (SR), [2]. In this case (1.2) follows from (1.1). A
sufficient condition on v is

(1.3) sup [(1+|Xl)2+2‘j Iv(y)lzlx—YIl_”dy} < 00
xeR3 x—yl<1

for some >0 and 0 <6 <%. The results in [2] are proved under this assumption.
(ii) It follows from [3] that (1.3) is also necessary for v to satisfy (1.1). (This
remark is due to E. Balslev).
(iii) If $<s <s then (1.1) and (1.2) are satisfied with s" instead of s.
(iv) Under (1.1) and (1.2) the results of [4] hold.

From the assumptions on V and the Kato—Rellich theorem follow that by
H=H,+V, D(H)=D(H,) is defined a selfadjoint operator on L.

We denote by 7y(k), k>0, the trace operator defined on C3 (R?) by (using polar
coordinates x=kw, k>0, w € Q) (y(k)f)(-)=f (k). y(k) has an extension to a
bounded linear operator y(k): H*® — L*(Q)for any t > . There exists a constant
C such that

(1.4) lyk)|| < C forall k>0,

and if t <3 there exists a constant C’' such that
(1.5) Iy (k) =y(k)ll < C'lky—ky['™*  for all ky,k;>0.

The normsin (1.4)and (1.5) are the operator norm on #(H"°, L*(Q)). For a proof
of these results, see [5 p. 44].

2. Some lemmas.

We state without proof some results which we need in section 3 and 4. The
following result is known as Sobolev’s lemma. For a proof, see [7].

LemMA 2.1. For t>3,u € H"® is a bounded continuous function (after correction
on a null set) such that [u(x)| < C|lull,, o for some C>0.Forany0,0<0<t—3,0<1,
there exists a constant C' such that

21 lu(x)—u@) = C'lull,olx—y°.
We denote by e, (H) the discrete set of positive eigenvalues of H. (It is proved

in [4] that e, (H) is discrete under our assumptions on V). The resolvent is
denoted R(z)=(H—2)"".
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LemMMA 2.2. For any t>4% and A € R, \e, (H) the following limits exist in the
operator norm on #(H%',H* ')
2.2) R(A+i0) = limR(A+ie) .
el0

The convergence is uniform on compact subsets of R, \e, (H).

This result is due to Agmon [2] for multiplicative V. It is proved under our
assumptions on Vin [4].
We define ¢g(x, kw)=exp (ikw- x) and for g € L*(Q) we define

(2.3) @h(x, k) = L @o(x, kw)g(w)dw .

LemMa 2.3. For any t>% and any integer m=0
@%(-,k)e H™ ' N C*(RY).
Let K<R, be a compact set. There exists a constant C=C(m,t, K) such that

(2.4) l@8(»k)lm, -+ = Cligla

for all ge L*(Q) and all ke K. Moreover, k +— ¢%(:,k) is continuous
R, — H™ ™' equicontinuous for g in a bounded subset of L?(%).

For a proof, see [2]. The last statement follows from the proof given in [2].
We note that

3

(2.5) 040, k) = 2ny(F " 'y(k)*g)(x)
where y(k)* € 8 (L*(Q),H™"°).

It is a consequence of Lemma 2.2 that H has no singular continuous spectrum.
We denote by LZ the closed subspace spanned by the eigenvectors of H and by
L3, the subspace of absolute continuity of H. Then L*=L2@®L2.. The proof is
analogous to the proof of theorem 6.1 in [2].

3. Existence of generalized eigenfunctions.

We denote by x and ¢ the variables in configuration space and momentum
space. We always use polar coordinates in momentum space: ¢ =kw, w € Q. We
use the notation

e={keR,| kK ee,(H)}.

THEOREM 3.1. There exist twa_families
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¢4 (x,k,w), xeR3 keR,\e, we
of generalized eigenfunctions for H with the following properties

(@) ¢4 € L& (R* xR \ex Q; dx x k*dk x dw)

(b) (x,k) — @4 (x,k, *) is continuous R3> x R, \e — L*(Q)

(c) for geL*(Q) we define % (x,k)=[q¢. (x,k w)g(w)dw. Then
0% (", ke H 275N C% 75, k € R, \e, where s is the constant from the assumptions
on V,0<0<4, and furthermore

(3.1 (Ho+V—k»¢% (-,k) = 0 for ke R,\e, g€ L*(Q),
(32) 0% (k) = (1—RUCFOV)p4(-,k) for ke R,\e, g e [2(Q) .

REMARK. When V is multiplicative the families ¢ (x,k,w) are measure-
theoretically equivalent to the generalized eigenfunctions constructed in [2].
They are unique in the same sense, see [2].

ProOF. According to lemma 2.3, ¢4 (-,k) € H*> ~*for any g € L?(Q). Thus for
ke R \e,

(1—R(KXFiO)V)ps (-, k) € H> .

From lemmas 2.1, 2.2, 2.3 and the definition of H* ~*follow for a fixed x € R3 the
estimate

I(1=R&>Fi0)V)@s(-,k)(x) = Clglq
for all g € L2(Q) with C independent of g. Hence
g — ((1=R(K2Fi0)V)p3(-,k))(x)

is a bounded linear functional on L*(£) and thus there exists ¢ , (x, k, *) € L*(2)
such that for all g € L*(Q)

J @+ (x,k0)g(@)do = ((1-RK>FiO)V)s(-,k)(x) .
Q
By lemmas 2.1, 2.2, 2.3 and some elementary estimates together with

"(Pi(X, k’ ')'“(Pi(xl,kl’ )”Q =

Su1p J ((pi (x9 ka w) —Q4 (xla kl, w))g(w) do
Seiast '’ @
the two maps (x, k) — ¢ (x, k, -) are continuous R*> x R, \e — L?(). Thus (b)

is proved. (a) follows easily from (b). Now it is a consequence of our definitions
that for k e R, \e
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9% (x.k) = ((1-R(K*FiO)V)e3(-, k))(x) .

Thus (1+(*>)"*2¢% (-,k) € H*° and from Lemma 2.1 we get ¢% (-, k) e C" ~*
for any 0 <0 <1. Equation (3.1) is proved as follows. For g € L?(), k € R, \e we
have

(Ho+V—k)(1—R(K*Fie)V)ps (-, k) = LicR(k*Fie)Vol(-, k)
since Hy+ V—k? is a bounded linear operator from H* ~% to H® ~*. Using
lemmas 2.3 'and 2.2 we can let ¢ tend to zero and thus prove (3.1).
REMARK. The proof depends on the dimension of the space being 3. For the
case L2(R") one must require instead of (1.2) that
(3.3) Ve €(H™ S(R"), H" *5(R")

for some m>n/2. The above results can be established under this assumption.
For V multiplication by v(x) (3.3) implies v € Hj; 2(R") and is thus stronger than
Agmon’s assumption for n>3.

THEOREM 3.2. Let ¢, be the two families of generalized eigenfunctions from
Theorem 3.1.

(@) If s>3 then ¢ (x,k,w) are jointly continuous in (x,k,w). For fixed
keR \e,we

¢, kw)e H>*NC*™5, 0<0<}%,
and
(3.9 (Ho+ V=Ko, (", k,w) = 0.
(b) If s>1 and V has an extension to H* ~™% such that
(3.9 Ve €H* " H" %
then @ (x,k,w) are jointly continuous in (x,k,w). For fixed k € R, \e, w € ©,
0 (L kow)ye H 73N C» 7578 0<0<3,
and
(Ho+V—-K)p, (- k,w) = 0.
RemARK. These results are well known for multiplicative V. See [2, p. 170] and

the references given there. We note that for a multiplicative V (3.5) is implied
by assumption (1.1).

Proor. We prove (a), the proof of (b) is analogous. s>3 implies that
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®o(+,kw) € H* ~* and that (k,w) — ¢, (-, kw) is a continuous map from R, \e
x Q to H* ~% It is easy to see that (after correcting ¢ on a null set) we have
¢4 (ko) = (1-RE*Fi0)V) @, (-, k, w))(x) .

Now the regularity results follow from lemma 2.1, 2.2 and the above mentioned
continuity property of ¢q(-, kw). Equation (3.4) can be proved in the same
manner as (3.1) was proved.

4. The expansion theorem.

Instead of giving a selfcontained proof of the expansion theorem we use the
results from [4].

THEOREM 4.1. Let ¢ . denote the two families of generalized eigenfunctions from
theorem 3.1. There exist two bounded linear operators F ;. on L* with the following
properties:

(a) &, are partial isometries with initial space L2, and final space L*.

(b) For any fe L?

@1 (F L N)kw) = A}T;o (2m) jl I Nf(x)qii(x,k,w) dx

and

4.2 (Z%)(x) = lim (21:)‘%[ j f ko) (x, k, w)dwk? dk
, j L Je

J—oo

where I; is an increasing sequence of compact sets such that U;I;=R\e.
(c) Let P, denote the projection of L* onto L%. Then

(P H)f = (FEM.2F ,)f for all fe D(H),

where M,.;2 denotes multiplication by k*.
(d) For fe H*S ke R, \e

(F L ko) = (y(R)(F (1= VR(K*£i0))f))(w) .

Proor. For fe H%* we define
(F+ f) ko) = y(k)(F (1= VR(K* £i0))f)(w) .

It is proved in [4, section 5.5] that F, can be extended to a bounded linear
operator on L? with the properties (a) and (c). We denote by L? the L?-functions
with compact support. For f e L2, h € L*(Q) we have

Math. Scand. 41 - 23
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j h(@)(F (1 - VR(K* £10)) f) (ko) dow
Q

= f h(@) lim (2n)‘%f (1= VR +10)f) () @o (x, — keo) dxdeo
Q |x|]<N

N—oo

N—oo

= lim (2n): f h“(E)J (1= VR(KX £i0)) f)(x) 0o (x, — kew) dxde
|x] <N

N-—oo

= lim n)~: j (1= VR(K? £i0))f)(x) J h(@)@o(x, k) dow dx
x| <N Q

= (271)";] fX)(1=RK&>Fi0)V)e5(-, k) dx
R3

= (27:)-%J f(x)f 0. (x,k, w)h(w) do dx
R3 Q

=J M(zn)-%f ()94 (% k, ) dxdo .
Q R3

The exchange of the limit and the integration above is legitimate, because
(# (1 = VR(k* £i0)) f) (kw)
= (27t)—% lim j ((1 = VR (k* £i0))f)(x)e ™ *** dx
N—oo J|x|<N

the convergence takes place in H*, as # maps H%* onto H*°. We have also
used the continuity of the trace operator and the inner product on L?(Q).
Furthermore we have used the fact that

j S(R(ZFi0)Vg)(x) dx = J (VR(K £10))(x)g(x) dx
R R}
for fe H**, g e H* %, which is a consequence of the assumptions on V and

lemma 2.2. We have also used Fubini’s theorem twice. The first use is easy to
justify, the second use is justified by the following estimate

L3 L @+ (x, k, w)h(w) f (x)| dwdx
= gl fiie SUP ) s (x,k)llg < oo .

X €supp

It follows from theorem 3.1(a) that for f € L? we can define

(F 4 ko) = 2m) 7 j 091 (v ko) dx



EIGENFUNCTION EXPANSIONS FOR SCHRODINGER OPERATORS ... 355

and that &, f belongs to L2 (R, \ex Q; k*dk x dw). We see that for each

ke R, \e

(FeNk:) = (Fe k) in L2(Q).
(F4 f)(k-) is continuous in k with values in L?(<), so we get
4.3) Ff, =F.f fel?.

From the properties of F , stated above follow that % , have unique extensions,
also denoted # 4, to bounded operators on L* with the properties (a) and (c). (d)
follows from (4.3) and the density of L? in H**. Let yy denote the characteristic
function of {x | |x|<N}. Then for any f e L?

(F + Nkw) = Alll_{n F 1 (nS) (ko)

lim (2m)~* J F®)@L (x, k w) dx
Ix|<N

N-oo

(convergence in L?) and (4.1) is proved. It follows from theorem 3.1(a) and
Fubini’s theorem that for f e L2, supp (f) € {kw | ke R \e,we Q}

(FLN) = 2073 L \ j ko, (ko) dokdk

Now the proof of (4.2) is analogous to the proof of (4.1).

5. Representation of the scattering matrix.

We refer to [4] for a discussion of scattering theory. We summarize some
results from [4] in the following theorem:

TueoreM S.1. (Kuroda). Define W, =% %% . Then

W+ = s— lim ilHe—-itHo

t—+ o0

3

and range (W,)=LZ, that is the wave operators exist and are complete. The
unitary scattering operator S=W?%W_ has a representation

(FSf) ko) = SK)(Ff) k) (@)

where S(k), k € R, \e is a family of unitary operators on L*(Q), depending
continuously on k in the operator norm on L*(). S(k) has the following
representation

(5.1) S(k) = 1—niky(k)F[V—VR(K*+i0)V]F ~'y(k)* .
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REMARK. It follows from the remark after lemma 2.3 that # ~'y(k)* maps
L?(Q) into H* ~* boundedly.

THEOREM 5.2. S(k)—1 has the kernel t(k; w, @), symbolically given by

(52) t(k; w, @) ~ _§1£z7k J 0o (X, —kw)Ve_ (x, k, ') dx .
R3
This is to be interpreted as follows. For f,g € L*(Q) and k € R, \e
. i —
(53) (f (S(k)—1)g)o = *ka @§(x,k) Vol (x,k)dx .
R3

REMARK. (5.2) is the representation of the scattering amplitude in terms of
generalized eigenfunctions formally derived in physics textbooks, see for instance

[6].

Proor. From (5.1) follows for k € R, \e, f,g € L*(Q)
(/. (S(k)—1)g)o
—nik(f,y()F[V—VRK* +i0)V]F ~'y(k)*g)a
—nik(Z " 'y(k)*f, V(1 =R +i0)VNF ~1y(k)*g)
ik

= — 52 (@§( k). Vo (-, k)

Il

where we have used the remark after lemma 2.3 and (3.2).
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