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ON THE LEVY-CHINTSCHIN FORMULA
ON LOCALLY COMPACT MAXIMALLY ALMOST
PERIODIC GROUPS

EBERHARD SIEBERT

In his paper [3] W. Hazod proved a Lévy-Chintschin formula for
convolution semigroups on an arbitrary locally compact group G based on the
space 2(G) of infinitely differentiable functions with compact support. On the
other side in [7] the author has given a Lévy—Chintschin formula on a (Lie
projective) maximally almost periodic group (MAP group) G based on its
coefficient algebra K(G).

Both results depend heavily on the fundamental paper [5] by G. A. Hunt on
convolution semigroups on Lie groups. But the proofs given in [3] and [7] are
independent and in some sense parallel.

The main purpose of this paper is to point out how one can derive the Lévy—
Chintschin representation on R(G) (for a MAP group G) if the representation
on 2(G) is given. So we start with the Lévy—Chintschin formula on 2(G) as
stated in [8] and extend it to the space &(G) of bounded continuous functions
on G that are locally in 2(G). But !(G) is a subspace of &(G). Thus by
restriction we get a representation formula, but with an unusual integral term.
Nevertheless by a simple substitution one reaches the desired formula
(Theorem 3.2).

This approach has several advantages: It is rather direct, it demands no Lie
group approximation and the restriction to Lie projective groups (as in [7])
can be dropped. Furthermore the relation between the two different
representations (on 2(G) and on K(G) resp.) is clarified.

For the Lévy—Chintschin formula on a MAP group G we need a Lévy
function y for G. The existence of y has been proved in [7], Satz IIL5. Yet the
demonstration given there is incomplete since it is based on the incorrect
Lemma IIL.12. But if one replaces this lemma by lemma 3.2 of the present
paper one can prove the existence of a Lévy function for G. We will not give
this modified demonstration here since it is similar to the proof of Satz 4.2 in
[8] and since a complete proof will be contained in the forthcoming book [4].

Received August 23, 1976.



332 EBERHARD SIEBERT

Fimally we show how the Gaussian component in the Lévy—Chintschin
formula for a convolution semigroup (on a MAP group) can be calculated
from its generating functional. This result stresses again the distinguished role
played by the Gaussian distributions.

Notations.

For any n € N we denote by M(n, C) the space of all n x n-matrices over C.
E, is the unit matrix in M(n,C), and for M € M(n,C) we denote by M the
adjoint matrix (that is, M=MT) and by Tr(M) the trace of M. We equip

M(n, C) with the spectral norm ||. |, that is,
IM|| = max f
where fB,,...,0, are the elgenvalues of MM. If M is diagonalizable or

(equivalently) normal (that is, MM =MM) then |M| =max,c;<,l2; where
ay,. . .,a, are the eigenvalues of M.

Let E be a locally compact space. By ¥°(E) we denote the space of all
continuous bounded complex valued functions on E and by " (E) the subspace
of functions with compact support. If ¥" is a subspace of ¢°(E) let

V= {fe v : f20}.

A linear functional L on ¥ is called real if L(f)=L(f) for all fe ¥ The
support of f € ¢°(E) is denoted by supp (f). For a subset A of E its indicator
function is 1,. .#% (E) is the cone of all positive bounded Radon measures on E
equipped with the weak topology o(.#°(E),4°(E)). For x € E the Dirac
measure in x is denoted by e,.

By G we always denote a locally compact group. Let B(G) be the system of
neighbourhoods of the unit e in G which are in addition Borel sets. G, is the
connected component of e in G, and it is G*=G\{e}. For fe ®°(G) the
function f* is defined by f*(x)=f(x"1) (all x € G), The function u € €*(G) is
called a local unit, if there exists a U e B(G) such that 1y=u<l; A
convolution semigroup on G is a family (u,),>, in .#% (G) such that y,(G)=1,

Us*xy, = py,, (convolution)

for all 5,t>0 and lim,o u,=¢,.

If G is a Lie group £ (G) denotes its Lie algebra and expg the exponential
mapping from Z(G) into G. For X € Z(G) and for all differentiable functions
f€ €°(G) we define

(X)) = lim [/ exp66X) ~ @)
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1. Spaces of infinitely differentiable functions and linear functionals.

Let G be a locally compact group. Following F. Bruhat [2] we consider the
following two subspaces of 6°(G):

1. 2(G) is the space of infinitely differentiable functions with compact
support on G (see [2] or [8]).

2. £(G) is the space of bounded infinitely differentiable functions on G, i.e.

8(G) = {fe #°(G) : f.g € D(G) for all g€ 2(G)} .

DEerFINITION 1. Let ¥ =2(G) or let ¥ =&(G) and let L be a real linear
functional on 7.

a) Lis called nearly positive if for every fe ¥;, f(e)=0 we have L(f)=0.
b) L is called a primitive form if for all f,g € “V we have

L(f.g*) = L(f)g(e)—f(e)L(g) -

c) Lis called a quadratic form if L is nearly positive and if for all f,g € ¥~ we
have

L(f.g)+L(f.g*) = 2(L(f)g(e)+S(e)L(g)) -

d) L is called concentrated in the origin if for all fe ¥  vanishing in a
neighbourhood of e we have L(f)=0.

REMARKs 1. Let L be a linear functional on ¥g={f€ ¥ : f=f} of one the
four types introduced in definition 1. Then the unique extension of L to a real
linear functional on ¥~ is of the same type.

2. A real linear functional L on ¥ is concentrated in the origin if and only if
for any local unit u € ¥~ we have L(u.f)=L(f) for all fe 7.

3. Any primitive and any quadratic form on ¥~ is concentrated in the origin
(see [8, Lemma 3.1]).

LemMa 1. (i) Let L be a linear functional on 2(G) coricentrated in the origin.
Then L can be extended uniquely to a linear functional L on &(G) concentrated
in the origin.

If u € 9(G) is a local unit then L(f)=L(u.f) for all f€ £(G).

(i) If Lis a primitive (respectively quadratic) form on 2(G) its extension Lis a
primitive (respectively quadratic) form on &(G).

Proor. (i) Let f € €(G). If u,v € 2(G) are local units, we have by remark 2:
Lu.f)y=L(u.v.f)=L(.f). Thus by L(f):=L(u.f) (all fe &(G)) there is
deﬁned a real linear functional Lon &(G) independent of the special choice of u.
"1t is obvious that L is concentrated in the origin and that it is the unique
extension of L with this property.
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(i) Let L be a primitive form on 2(G). With u also u.u* is a local unit in
2(G). By remark 3 it follows for f,g € £(G):

L(f.g* = L((u.u*)(f.8%) = L((u.f). (u.8)*)
= L(u.f)(u.g)(e)— u.f)e)Lu.g) = L(f)gle)—f(e)L(g) .

Analogously one proves the statement for a quadratic form.

DeriNITION 2. Every linear mapping I' from 2(G) into itself with the
following properties is called a Lévy mapping for G:

(LM 1) For every primitive form y on 2(G) and for every f € 2(G) we have
Y(f=T(f)=0.

(LM 2) For every fe 2(G) we have I'(f)*=—TI(f).

(LM 3) For every x € G the functional f— (I'(f))(x) is a primitive form
on 2(G).

REMARK 4. On every locally compact group G there exists a Lévy mapping.
[By [8, Satz 2] there exists a Lévy mapping I on 2x(G). One extends I" to
2(G) by

F(fi+i.f) = T(f+i.T(f)

for all f}, f, € 2r(G). Taking into account remark 1 one sees immediately that
this gives us a Lévy mapping defined on 2(G).]

LEMMA 2. Let I" be a Lévy mapping for G. Given a local unit u € 2(G) one
defines a linear mapping I' from &(G) into 2(G) by I'(f)=T(u.f) for all
f € &(G). This definition of I is independent of the special choice of u, and T
enjoys the properties (LM 1), (LM 2), (LM 3) (with 2(G) replaced by &(G)).

Proor. From (LM 3) and lemma 1 it follows that I' is defined and
independent of u. The verification of (LM 1), (LM 2), (LM 3) is immediate.

DEFINITION 3. A positive Radon measure n on G is called a Lévy measure
for G if {g« fdn< + oo for all fe 2,(G), f(e)=0 and if n(CU)< + oo for all
U € B(G).

REMARK 5. A positive Radon measure n on G* is a Lévy measure for G if and
only if (g« fdn< + o0 for all fe &, (G), f(e)=0.

2. Extension of the Lévy—Chintschin formula from 2(G) to £(G).

Let G be a locally compact group and (y,),», a convolution semigroup on G.*
The generating functional (4, &) of (u,),>, is defined by
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= {fe ®°(G) 11m J[f—f(e)]du, cx1sts}

and

A(f) = ‘ffé‘% f[f—f(e)] dy, for fe o .

(A, o) has the following properties:

2(G) is contained in /.

A is a real functional.

&/ contains the constants, and A(15)=0.

A is nearly positive, that is, A(f)=0 for all fe o/, f(e)=0.
A is normed (on 2(G)), ie.

NN

sup{A(f) : fe 2(G), 1y<f=<1; for some U e B(G)} = 0.

6. A admits on 2(G) a canonical decomposition (Lévy-Chintschin
formula): There exist a primitive form 4; on 2(G), a quadratic form 4, on

2(G) and a Lévy measure # for G such that for all f € 2(G) we have (with a
fixed Lévy mapping I for G):

A(f) = Al(f)+Az(f)+Lx Lf=sfe-rf)ldn.

7. for fdn=lim,o 1/t |G f dp, for all fe A (G*).

[In fact these properties have been established for real valued functions in [8].
But the extension to complex valued functions is immediate with the aid of
property 2.]

We are now going to establish the decomposition described in 6. also for
A|&(G). For this purpose let us define -

%52(G) = {fe 6°(G) : edsupp(f)}.
%"°(G) may be considered as a subspace of °(G>).

LEMMA 1. 4°(G) is a subspace of o, and A(f)= g f dn for all f€ €2(G).

ProOOF. Let u € 9(G) be a local unit. Then we get from properties 3 and 6
above:

lllr;r)x J[IG uldy, = A(lg—u) = —AW) = J[lc—u]dn.

Furthermore for f e # (G*) we have f.[1g—u] € X (G™), thus by property 7:
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!
lim - Jf.[lc—-u]dy, = Jf.[lc—u]dn .
tlo t
Together this gives us

1
lim—[lg—ul.p, = [lg—ul.n
tlo t

weakly in .5 (G*). Let f € $°(G). Then u can be chosen such that u.f=0. It

follows:
jf dn

jf-[lc—“] dn

]

lim > Jf-[lc—u]dﬂ. ~ lim~ jfdﬂ, = A(f).
o t tot

This proves the lemma.

ProvposITION 1. (i) &(G) is a subspace of .

(i) Let A,, A, and T' be the canonical extensions of A,, A, and I' (from
property 6 above) to &(G) (cf. lemma 1.1 and lemma 1.2). Then for every f € & (G)
the Lévy—Chintschin formula is valid:

A(f) = ﬁx(f)+/iz(f)+L! Lf—fe—T(dn.
Here A, is a primitive form and A, a quadratic form on &(G).

Proor. (i) Let f € £(G), and let u € 2(G) be a local unit. Since u. f € 2(G) by
the definition of &(G) we have u. f € o by property 1. Since (1g—u).f € 2(G)
we have (1g—u).f e & by lemma 1. Together this gives us f € /.

(ii) With the aid of lemma 1 and property 6 we obtain:

A(f) = A@-N+A((Ig=w).f) = A w.f)+A;(u. )+
+ Lx [u.f~f (&)~ (u./)}dn+ L (lg—w).f dn

ﬁl(f)+fiz(f)+Lx [f~f(@—T(f)dn.

The last statement follows from lemma 1.1.

3. Lévy—Chintschin formula on maximally almost periodic groups.

Let G be a locally compact group. By Rep, (G) we denote the space of all n-
dimensional continuous unitary representations of G, equipped with the
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compact-open topology (n € N). Rep (G), the topological sum of the Rep, (G),
n € N, is locally compact. The dimension of D € Rep (G) is denoted by n(D). If
Rep (G) separates the points of G then G is called maximally almost periodic
(MAP).

The linear span K(G) of the coefficients of all D € Rep (G) is an algebra over
C, the coefficient algebra of G. A linear functional N on K(G) can thus also be
considered as matrix valued mapping on Rep (G), and N is called continuous if
it is continuous on Rep (G) (see [7, I, § 1]).

In the sequel we always assume that G is a MAP group.

REMARKS 1. Let G be a Lie projective group. Then for any compact subset C
in Rep (G) there exist a compact normal subgroup K in G such that G/K is a
Lie group and a compact subset C in Rep (G/K) such that C={Dop: D € C}
(where p denotes the canonical mapping from G onto G/K).

2. R(G) is a subspace of &(G) (see [2]).

DerinITION 1. Let L be a real linear functional on K(G).
a) Lis called a primitive form if for all f,g € K(G) we have
L(f.g*) = L(f)g(e)—f(e)L(g) .

b) L is called a quadratic form if L(D) is a positive semidefinite Hermitian
matrix for any D € Rep (G), and if for all f,g € R(G) we have

L(f-g)+L(f.g*) = 2.(L(/)g(e)+/(e)L(g)) -

ReMARK 3. If L is a primitive (respectively quadratic) form on &(G) then
(—L)| R(G) s a primitive (respectively quadratic) form on &(G). [We only have
to show: If Lis a quadratic form on &(G) then for any D € Rep (G) the matrix
—L(D) is positive semidefinite. Let D= (d;});<;, j<m (a1 - ->a,) € C" and

n

fi= Y aad;.

i,j=1

Then f*=7and |f|<f(e) (since f is a positive definite function), thus

f+* £ 2fl9) = (f+/¥)e).

Since L is nearly positive and since L(f*)=L(f) as well as L(15)=0 we get
(=L)(f)z0]

DeFINITION 2. Every mapping y from G x Rep (G) into U,>  M(n, C) with the
following five properties is called a Lévy function for G:

Math. Scand. 41 - 22
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(LF 1) y is a continuous mapping from G x Rep, (G) into M(n,C) for any
n e N.

(LF 2) For every compact subset C in Rep (G) we have
sup{|y(x,D)|| : xe G, De C} < +o00.
(LF 3) For every compact subset C in Rep (G) we have

lim sup ||ly(x,D)|| = 0.
x=eDeC
(LF 4) For every x € G there exists a one parameter subgroup (x,),.g in G
such that D(x,)=expty(x, D) for all D € Rep (G) and ¢t € R.
(LF 5) For every compact subset C in Rep (G) there exists a U € B(C) such
that D(x)=expy(x,D) for all De C, x e U.

REMARK 4. For any x € G one can extend y(x,.) uniquely to a real linear
functional on &(G) (by [7, Lemma 1.1]) also denoted by y(x, .). By (LF 4) each
y(x, .) is then a primitive form on K(G).

The following result is fundamental for the Lévy—Chintschin formula on
MAP groups.

THEOREM 1. On any (locally compact) MAP group there exist Lévy functions.

SKETCH OF THE PROOF. 1. Let G, be an open Lie projective subgroup of G
and suppose that there exists a Lévy function y, for G,. For any D € Rep (G)
we have D| G, € Rep (G,). Let us define

y(x,D) := 0 for xeCG,,
y(x,D) := y,(x,D|G,) for xeG, .

Then it is easy to see that y is a Lévy function for G.

2. Thus without loss of generality we may assume that G itself is a Lie
projective group. In this case we have proved the existence of a Lévy function
for G in [7, Satz IIL.5]. But on the one side we constructed there a Lévy
function with the somewhat artificial domain G x Rep (G,), and on the other
side the proof was based on the incorrect Lemma III.12 in [7]. These
difficulties can now be overcome with the aid of the following two lemmas.

LemMMA 1. Let G be a (MAP) Lie group. Then there exists a D € Rep (G) such
that the kernel of D is a discrete subgroup in G. If {X,,...,X,} is a base for
Z(G) then the vectors (X ,D)(e),. .., (X, D)(e) are linearly independent (over C).
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LeMMA 2. Let G be an arbitrary MAP group and let y be a Lévy function for
G. Let K be a compact normal subgroup in G such that G/K is a Lie group,
{X\,....X\} a base for L(G/K) and {xi,...,x,} a system of canonical
coordinates for G/K in 2(G/K) adapted to {X 1,. .., X,} (cf. [7, 111, § 1)]. Finally
let p denote the canonical mapping from G to G/K.

Then there exist functions y,,. . .,y € €°(G) such that

k
y(x, Dop) = Z.l yi()(X;D) (@)

for all D € Rep (G/K) and x € G. Furthermore there exists a neighbourhood
U € B(G) such that y;(x)=x;(p(x)) for all x € U.

Now the existence of a Lévy function for G can be established by an
appropriate modification of the proof for the existence of a Lévy mapping (in
[8, Satz 4.2]). A complete proof will be contained in the forthcoming book [4].

CoROLLARY. Let y be a Lévy function for G and C a compact subset in Rep (G).
Then there exist a neighbourhood U € B(G) and a function f € 9 ,(G), f(e)=
such that

ly(x,D)*|| £ f(x) forall xeU and DeC.

Proor. Let G, be an open Lie projective subgroup of G and y, a Lévy
function for G,. Since D — D| G, is a continuous mapping there exists by (LF
3) and (LF 5) a neighbourhood U € B(G), U< Gy, such that

y(x,D) = logD(x) = 7,(x,D|G,) forall xeU, DeC.

Thus without loss of generality we can assume that G is a Lie projective group.

Let K, p and C be as in remark 1 (corresponding to C). Moreover we use the
notations introduced in lemma 2. Then by this very lemma there exists a
U € B(G) such that

k
ly(x, Dep)’ll < [ max ||(X. D)@ I(X;D)(e) ll] Z (x;°p)*(x)

SiLjsk

for all x e U, D=D-p e C.

But D — (X,D)(é) is continuous on Rep(G/K). [If (X)r is the one
parameter subgroup in G/K corresponding to X; then D(x)=expt(X.D)().
This proves the statement (cf. [7, Lemma I1.5]).] Therefore the exists a constant
¢>0 such that

IXD)@)| <c forall DeC (1Sish).
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Since g=Y*%,(x;°p)* € 2,(G), gl(e)=0, the assertion follows with
f=(k.c.0).g

Finally we need a family of special functions: For any D € Rep (G) let f}, be
the function defined by
fo(x) = Re[Tr (E,p)—D(x))] (all xe G).
Obviously f, € K. (G), f5=fp, f/p=2n(D) and
"ker (D) = {xe G : fp(x)=0}.

LemMa 3. (i) For any D € Rep (G) we have
I5(D(x)+ D(X) = E,p)l < fp(x) forall xeG.

(ii) There exists a constant ¢>0 such that for any D € Rep (G) we have

1
n—sz(x") Sc.fp(x) forall neN and xe G.

Let y be a Lévy function for G and C a compact subset in Rep (G).

(i) There exist a neighbourhood U € B(G) and constants ¢,,c, >0 such that

eIy, DYl < fp(x) £ colly(x, DYl for all xe U,DeC.

(iv) There exist a neighbourhood U € B(G) and a constant c¢3>0 such that

ID(x) = Eypy—y(x,D)|| < ¢3.fp(x) forall xe U, DeC.

Proor. Let D € Rep,, (G) and let a,(x),. . ., a,(x) be the eigenvalues of D(x).
Since D(x) is a unitary matrix we have o;(x)=expi3;(x) with 3;(x) € [—mn,n].
Thus

o) = Y (1—cos9;(x).
15jSm
(i) Since D(x) is diagonalizable we get
(D0 +DT)~Eyll = max cos §,(9~1] < fp(x)-
Sjsm

(ii) There exists a constant ¢ >0 such that

1

Ez—(l—cos n¥) £ c.(1—cos9) forall neN and 3 e [—n,x]

(see [1, p. 183]). Since o;(x")=a;(x)" we get

;lf(l—cos 9;(x") = ;lz—(l—cos (n9;(x))) £ c(1—cosI;(x))
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(1<j<m) and thus
1
FfD(x") Zc.fp(x) forall neN (xeG).

_(iii) Without loss of generality we may assume Cg<Rep,, (G) for some
m € N. Let D € C be arbitrary but fixed. By (LF 3) and (LF 5) there exists a
neighbourhood U € B(G) such that

D(x) = expy(x,D), [D(x)—E,| <1
and

7(x,D) = logD(x) = — ), £~ D(x)—E,) forall xeU.
k=1

Therefore 7y(x,D) is diagonalizable simultaneously with D(x), and
31(x),...,3,(x) are the eigenvalues of y(x, D). This gives us

Iy, D = Iy(x,D)I* = max 8;(x)* .

1Sjsm

By minorizing U we can assume in addition that
19,x)) £ — forall xe U, 1<j<m

V e
(cf. (LF 3)).
For |9|= 1/21/g the elementary inequalities
2 92
9— < 1-cosd = >

hold. From this we get for all x e U:

2 m m
=folx) £ 3 Z 9;(x)* = 7,0 max 9;(x) = Ellv(x,D)ZH .
(iv) Choose U as in (iii). Then for x € U we have |y(x,D)[|<1 and

ID(x)—E,—y(x, D)l =

1 k
lké:z 'l;_!’y()@ D)

1
y(x,D)* Y, —y(x,D)}"?
k=2 k!

IA

e. H)’(x,D)Mz .
The assertion follows by (iii).
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For every compact subset C of Rep (G) we define the function F¢ by F¢
=Suppec fp- Fc is a positive bounded lower semicontinuous function on G.

LEMMA 4. Let n be a Lévy measure for G (definition 1.3). Then for any com-
pact subset C in Rep (G) the function F is n-integrable.

Proor. By lemma 3, (iii) and the corollary to theorem 1 there exist a
neighbourhood U € B(G) and a function fe 2, (G), f(e)=0, such that Fc(x)
<f(x) for all x € U. Since on the other side F. is bounded the assertion
follows.

DEerFINITION 3. A positive Radon measure n on G* is called a weak Lévy
measure for G if

G*

for all compact subsets C in Rep (G) and if #(C U)< + oo for all U € B(G).

REMARKS. 5. By lemma 4 any Lévy measure is a weak Lévy measure.

6. On a Lie projective group G the concepts of Lévy measure and weak
Lévy measure coincide; moreover a positive Radon measure # on G* such that
n(CU)< + o for all U € B(G) is a Lévy measure if and only if | fj dn < + oo for
all D € Rep (G). [If G is a Lie group and ¢ a Hunt function for G (see [7, II1, §
1]) there exist D € Rep (G), U € B(G) and ¢ >0 such that ¢(x)Zc. fp(x) for all
x € U: This follows with the aid of lemma 1 (cf. part 2 in the proof of [6,
Lemma II1.9]).]

ProrosITION 1. Let y be a Lévy function for G and n a weak Lévy measure for
G. Then for every f € K(G) the integral

¥,(f) := —J‘G‘ [/ X)=f(e)—7(x, /)In(dx)

exists. , is a real linear functional on R(G) and is continuous (considered as a
mapping on Rep (G)).

Proor. The existence of y,(D) for D € Rep (G) follows from lemma 3, (iv)
and (LF 2).

Let D, € Rep (G) and >0 be given. We choose a compact neighbourhood C
of D,. By lemma 3, (iv) and by | Fcdn< + oo there exists a neighbourhood
U € B(G) such that
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o™

J 1D(x) = Enpy —7(x, D)lIn(dx) <
U\{e}

for all D € C. By n(CU)< 400 and by (LF 1) there exists a neighbourhood C,
of D,, Cy, < C, such that

JC ’ [(Do(x) = D(x)) = (y(x, Do) = (x, D)) 11 (dx)

<&
-2

for all D € C,. Together we get ||y, (Do) —¥,(D)|| S¢ for all D € C,,.

Now we are in the position to prove the Lévy—Chintschin formula on MAP
groups.

THEOREM 2. Let G be a (locally compact) MAP group, y a Lévy function for G
and (), a convolution semigroup on G.
(i) For any f e K(G) the limit

V() = lim> j [f(©)—f1du,
tlo t

exists. Y is a continuous real linear functional on K(G).

(i) There exist a continuous primitive form Y, on K(G), a continuous
quadratic form W, on K(G) and a weak Lévy measure n for G such that the
Sollowing decomposition of Y is valid:

(LC) lﬁ = ¢1+‘//2+Wy,
or more explicitly

y(f) = l/’l(f)'*"/’z(f)_fc)( Lf(x)=f(e)—v(x, /)] n(dx)
Jor all f e K(G).

Proor. (i) The existence of ¥ follows from proposition 2.1. The continuity
of ¥ has been shown in [7, Lemma IL5].

(i) If A is the generating functional of (u),», then A(f)=—y(f) for
f € K(G). With the notation of proposition 2.1 we thus get

v(f) = *ﬁl(f)—/fz(f)—LX Lf—fe=T(f)dn.

By lemma 1.1 and remark 3.3
¥y = —4,|1K(G)

is a primitive form and
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¥y 1= —4,|R(6)

is a quadratic form on K(G). By proposition 1

Yi(f) = _‘l"'(f)_L, [f~fe~T()]dn = Lx (L) =, f)]dn

exists for all f € K(G). By (LM 3) (cf. lemma 1.2) and remark 4 /| is a primitive
form on K(G). Thus

‘l’ = ‘//’1‘*"//’1"*"//2‘*"/’4 = '//1+‘//2+'/’r,

where ¥, :=y/) + {7 is again a primitive form on K(G).
By proposition 1 and by part (i) of this theorem Yo:=y, +y, =y, is
continuous. For D € Rep (G) we have

lpl(D) = —y,(D) and '//2(15) = ¥,(D).
Thus we get

Y2(D) = L(Yo(Dy+ (D) = $(Wo(D)+yo(D)) .
This shows the continuity- of ¥, and of Y, =y, —{,.

The linear functional i introduced in theorem 2 is called the negative definite
form associated with the convolution semigroup (), g,

ReMARrk 7. Tt follows immediately from proposition 1 that conversely by
(LC) there is always given a continuous negative definite form i on RK(G). Thus
if G is a B-group, especially if G is a Moore group, then there exists a unique
convolution semigroup on G with the associated negative definite form y (cf.
[7, Satz 111.6]).

Finally we prove a formula for the quadratic form , in (LC) similar to the
equation (10) in [1, Theorem 18.19].

By K,(G) we denote the space of all mappings M = (m;)), <; j<. from G into
M(n, C) whose coefficients m;; belong to R(G). Obviously Rep, (G) is contained
in 8,(G), and &,(G)=K(G). If M € &,(G) also M* = (m}), <, j<, is in &,(G). If
M, M, € K,(G) their matrix product M, M, is also in &,(G).

Let  be a linear functional on &(G). Then ¢ can be extended uniquely to a
linear mapping from R,(G) into M(n,C) by ¥ (M)= (Y (m;))); <i j<n-

LemMaA 5. (i) If ¥ is a primitive form on & (G) then y(D")=ny (D) for alln e N
(D € Rep (G)).

(i) If ¥ is a quadratic form on K(G) then Y(D")=n*y(D) for all ne N
(D € Rep (G)).
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Proor. (i) If y is a primitive form on K(G) then
V(-8 = ¥(fgle)+f(el(g) forall fgeK(G).
It follows
V(M M) = y(M)M,(e)+ M, (e)y(M,) for all M, M, € K,(G).
Thus we get for D € Rep,, (G) by induction on n:
Y"1 = YD) +y(D) = ny(D)+¢(D) = (n+1)y(D).

(i) If ¢ is a quadratic form on RK(G) then it follows from the defining
functional equation (definition 1) for all M, M, € & ,(G):

(M M) +y (M M3) = 2[y (M )M, (e)+ M, (e} (M)] .
Since DD*=E,, and D*=D for D e Rep,, (G) we get by induction on n:
Y(D"* )+ (n=12(D) = Y(D"* )+ y(D""Y) = Y(D"D)+y(D"D*)
20D +¢(D)] = 2[n*y(D)+y(D)],
and thus y(D"*1)= (n+ 1)y /(D).

PRrOPOSITION 2. Let W be the negative definite form associated with the
convolution semigroup (u,),»o on G and Yy =y, +, +, the decomposition (LC).
Then for any D € Rep (G) we have

~

.1 .
¥,(D) = lim— (Y (D")+y/(D") .
nz1n
Especially \, is uniquely determined by W and thus by (i,),> 0.

ProOF. In view of lemma 5 we may assume without loss of generality Y =,
Furthermore we have

)’(x, (D*)n) = _y(x, D")

(remark 4). Therefore by lemma 3, (i) and (ii):

SOy = Lx (DG + D)~ Eypln(dv)
- f (4D () + D)~ Eypln(dv)
o

Ik

f —lffo(X")n (dx) = c. J Jp(x)n (dx)
G n G*
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for all n € N. By Lebesgue’s theorem we thus have

: 1 n yn _
}llél}n—z('//(l))ﬂ//(l) ) =0.
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