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A NOTE ON DUAL BANACH SPACES

STEN KAIJSER

Abstract.

We prove a simple criterion for a Banach space to be a dual space, and we
give some corollaries and applications to known dual spaces. Our theorem
generalizes formally a theorem of Dixmier [3].

0. Introduction.

I have for a long time used “compactness of the unit ball” as a test of duality,
believing it to be absolutely trivial to verify that a Banach space whose unit
ball is compact for some linear Hausdorff topology is a dual space. I have,
however, never seen this fact explicitly stated and when I finally decided to
prove it, it turned out to be simple, but nevertheless the proof involves
surprisingly deep theorems of functional analysis. Furthermore, I believe that
at least the martingale version of the H'-BMO duality would probably have
been discovered earlier if it had been recognized from the start that BMO is a
dual space [4].

We shall prove the following

THEOREM 1. Let B be a Banach space, and let E be a set of linear functions on
B such that

(i) E separates points of B, and
(ii) the closed unit ball U in B is compact for the weak topology given by the set
E.

Then B is a dual space and the predual of B is the closure in B’ of the linear span
of the set E.

Proor. Let F be the norm closure in B’ of the linear span of the set E. F is
then a closed linear subspace of B’ so by the Hahn-Banach theorem the adjoint
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S’ of the embedding S: F — B’ maps the closed unit ball of B” onto the unit
ball of F’. We shall prove that the restriction of S’ to the unit ball U of B
(considered as a subspace of B”) maps U injectively onto the unit ball of F’ and
it follows then that S’'|z maps B isometrically onto F’ so that B is indeed a dual
space. Let therefore f' be an element of the unit ball of F’ and let b” be a
representative for f’ in B”. Since U is dense in the unit ball U” of B” for the
weak topology with respect to B’ there exists a net {b,},.4 in U such that
{b,b'> — (b",b") for all b’ in B". However, for the weak topology given by E
which coincides on U with the weak topology given by F, U is compact. There
exists then a convergent subnet {b;} ;.5 converging to b, € U. But this simply
means that for all fin F {b,, f)=<b", f) and this proves that §’ maps U onto
the unit ball of F'. Since the set E separates points in B the map S’ is also
injective and this proves the theorem.

ReMaRk. It follows from the assumptions that there is a separated duality
between the Banach spaces B and F, and by the construction of F we also have

£l = sup IKf,6DI.
Ibis1

Without the compactness assumption it is, however, not in general true that
Ibllg=supjsy<11<{f,b>|. (Consider e.g. the duality between B=c, and F the
subspace of I' of all {a,}g>, such that 3 a,=0.)

COROLLARY 1. Let K be a compact convex balanced subset of a locally convex
vector space E and let
Ex = {e€ E| for some t>0,t-ee K} .
Ey is a Banach space with unit ball K and this space is a dual space. The predual

of Ex is the completion of E' for the norm given by the duality with Eg.

SpeCIAL CASE 1. If K is a closed bounded convex and balanced subset of a
reflexive space, then Eg is a dual space.

SPECIAL CASE 2. If E=V' and K=S° where S is a convex balanced
neighborhood of 0 in V, then Ex is a dual space. (S° denoting the polar set in E.)

2. Examples.
We shall give some more or less well-known applications of our criterion.

a) Let M,d be a metric space and let A(M) be the Banach space of all
functions f on M such that
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D S loo=5uPpmem |Lf (M) <00
(i) O(f)=5uPm, +m, (1f (my) =1 (m2)l)/d(my, m;) < oo.

Then A(M) is a dual space with the norm | f|| =max (|| f || o, 6(f)). The closed
linear span in A’ of the point masses on M is the predual [1], [9], [8].

b) Let M be a convex compact space, let E be the space of all bounded
functions on M and let K=P— P, where P is the set of all positive convex
functions on M that are bounded by 1. Then Eg is a dual space.

¢) BMO is a dual space. The Banach space BMO was defined by John and
Nirenberg [7]. There exist several definitions of BMO that are all equivalent
but that give slightly different norms. Furthermore, BMO may be defined both
for martingales and for functions on R" [5], [6].

Since the space BMO (R) is typical we only consider that space and to
simplify the proof we define BMO (R) as follows:

Let fe L2 (R) (ie. for every set E of finite measure e L?(E)), and let for
every interval I

E/(f) = %Lfdx, E}(f) = E/(If-E/()P) .

Then f e BMO if sup; (E7(f))* <.

Defining | f |lgmo =sup; (E?(f))? it follows that a constant function has
norm 0. We consider therefore BMO as a subspace of L} /mod constants.
Letting E be the reflexive space L3 /mod constants, and K the unit ball of
BMO it is immediate that K is a bounded and closed subset of E, and there-
fore by special case 1, BMO is a dual space. In order to obtain a representa-
tion of the predual we observe that for every interval I,

(E}(f)F = sup{E/(fe) | gePi},

where

i’: = {ge L*(I)| E/(g)=0 and E/(g)<1}.

,geP},

P = {ge L*(R) | g has support in a compact interval I,

But this means that

I flBmo = SUP{UR fgdx

where
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ngdx =0, and gz S|P} .

It follows that the elements in the predual of BMO have a representation

h = Zaigi’ Z laj < o0, g;eP.

We observe finally that g € P implies ||g|.1g)<1 so that the unit ball of the
predual of BMO is contained in the unit ball of L' and all elements have
integral 0. Using the above approach the main difficulty in the proof of the
Fefferman duality of H! and BMO is the identification of the predual
constructed above with the space H! as given by some other definition.

REMARK. Our representation of H' is what Coifman-Rochberg-Weiss call
the representation in terms at atoms [2].

d) H'is a dual space. This lies deeper since it requires the F. and M. Riesz
theorem. One defines thus H! as the set of all distributions that together with
their Riesz transforms are measures.

3. Classes of spaces.

A) Various spaces of operators can by the same methods be proved to be
dual spaces.

The trace-class operators on Hilbert-space is a dual space. Apply special case
1 of the corollary to the Hilbert-space E of Hilbert—-Schmidt operators, and let
K be the set of all n in E such that

[Tt (ne)l < lellop -

(See [10].)

The fact that E'® F' is a dual space whenever one of the spaces E and F is
reflexive and one of E' and F’ has the metric approximation property lies
deeper and does not follow in a simple way from our general criteria.

On the other hand, such spaces as the set of all Hilbertian operators from E
to F', or all p-summing operators from E to F' as well as the space of bounded
quadratic forms, Hilbertian quadratic forms of H’'-quadratic forms on a
Banach space are easily proved by these methods to be dual spaces.

B) A general class of spaces to which our theorems are easily applicable is
the class of sequence spaces. Since the space JIyK, ie. the space of all
sequences (of numbers from the field K (=R or =C)) is a reflexive space, it
follows that if the unit ball of the sequence space B is a closed bounded subset
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of [In K then B is a dual space. Now the boundedness will usually be evident
so the problem is to decide whether the unit ball is closed, and since it is
certainly convex it is closed iff it is weakly closed. Now the dual of [TK is[ [ K
i.e. the space of all sequences with finite support. This means that B is a dual
space if it can be determined in terms of linear functions with finite support.
The guiding principle is that B is a dual space unless the definition requires
somewhere a o(1) condition. (The sequence {x,}i>, is o(1) if x, — 0.)

C) For Banach spaces of Lebesgue-measurable functions things are slightly
more complicated. First of all the “big space” L{,. is not even a dual space. This
implies that to use the corollary and in particular the special cases of the
corollary the given space B should preferably be contained at least in Lf_ for
some p> 1. However, if such a condition holds then the general principle is the
same as for sequence spaces, i.e. B is a dual space if the definition involves no
o(1). Alternatively, one may consider B as a subspace of M (R?) which is a dual
space. The conditions on B should imply uniform integrability and then the
o(1) principle usually applies.

D) We finally consider Banach spaces of continuous functions so let X be a
locally compact Hausdorff space and let B be a Banach space such that
Bc C(X). The main difficulty is of course that C(X) is usually not a dual
space — and if it is then the space B is probably a sequence space or a space of
measurable functions so that the space C(X) is probably just another name for
I* or L®. To avoid this case we assume that X is a metrizable space and if we
wish to apply our corollary we let B=Eg where K is a compact subset of
E=C(X). The difficult problems arise when E is given its weak topology so
that K is a weakly compact subset of C(X). These problems are, however, of a
much deeper nature than the problems considered in this note. We assume
then that K is compact for the norm topology in C(X) and in that case the
following proposition is worth mentioning.

ProPOSITION 1. Let X be a locally compact Hausdorff space, let K be a convex
balanced subsét of C(X) which is compact for the topology of uniform
convergence on compact subsets and let B=C(X)k. Then

(i) B is a dual space and the inclusion B&C(X) is a compact map,
(i) with respect to the metric d(x,y)=|0,—0,llp on X one has Bc A(X,d)
cC(X).

Proor. (i) follows from Corollary 1 and the definition of compact maps
while the first inclusion of (ii) follows from the definition of the metric d. It
remains to prove that A(X,d).c C(X) or equivalently that the topology on X
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induced by the metric d is weaker than the original topology, i.e. that the
identity map of X is continuous as a map (X, 1) (t the original topology) into
(X, 7, (r; the topology induced by d). Writing now

X %5 M(X) —> B

where ¢ is the map of X into M(X) given by d(x)=0, and i’ the adjoint of i:
B<C(X) we see that J is continuous for the original topology on X and the
weak *-topology of M(X) and i is continuous for the weak *-topologies of
M (j() and B'. Let now x € X and let N be a compact neighborhood of x, then
d(N) is a compact subset of M(X) and thus contained in a ball of radius R say.
But then i'oJ(N) is contained in a norm-compact subset of B’ and on norm-
compact subsets of B’ the normtopology and the weak *-topology coincide.
Therefore

i'cd: X - B

is continuous when X is given its original topology and B’ its norm topology,
and this proves the proposition.
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