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RESULTS ON BANACH IDEALS AND
SPACES OF MULTIPLIERS

HANS G. FEICHTINGER

0. Introduction.

There are many Segal algebras on a nondiscrete, locally compact abelian
group which are defined by means of conditions on the Fourier transforms of
their elements. The most important examples of this type are the Banach
algebras

A,(G) = {f]| fe}G), fe ’G)}, 1<p<c.

These spaces as well as several generalizations have obtained much interest in
the literature (cf. [4], [5], [20], [23] and others). For a survey of results
concerning the A,(G)-algebras as well as for a great number of further
references the reader is referred to the article of Larsen [21].

In this paper a class of Segal algebras including the spaces mentioned above
is to be discussed (section 3). Earlier results in this direction are extended and
some of the proofs are simplified. The treatment is based on a method (section
2) that also gives results for Banach algebras which are the intersection of a
Beurling algebra and a Segal algebra (section 4). Furthermore we characterize
several spaces of multipliers.

1. Notations and terminology.

A Banach space B is called a (left) Banach module over a Banach algebra A if
it is a (left) module over A in the algebraic sense and satisfies |ab|g
<|lall4|Ibllg for all a € A, b € B. The closed linear span of AB={ab| a € 4,
b € B} in B is called essential part B, of B. B is called essential if B,= B. If the
Banach module B is continuously embedded in 4 and the module operation
- is given by the multiplication in A we call B a (left) Banach ideal of A. In
particular, B is a Banach algebra itself. Results on dense Banach ideals are
to be found in the papers of Burnham ([1]-[3]). He calls them abstract
Segal algebras and in [6] and [27] they are called normal ideals. A special type
of Banach ideals of I!(G) are the Segal algebras in the sense of Reiter [24,
section 4]. A dense Banach ideal of I} (G) is a Segal algebra iff it is essential (see
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[27]). For facts concerning Segal algebras and Beurling algebras the reader is
referred to [23] and [24].

For two Banach modules B,, B, over A we write simply (B,,B,) for the
Banach space of module homomorphismus form B, into B, i.e. the space of all
bounded linear operators satisfying T (ab)=aT (b) for all a € A, b € B,. These
operators are often called (right) multipliers from B, into B,. If B, and B, are
Segal algebras or Beurling algebras it can be shown by standard methods that
T is a right multiplier if and only if it commutes with left translations. For
results concerning multipliers of Banach algebras on abelian groups see [20].

C®(G) (C°(G)) denotes the space of all bounded continuous functions on a
locally compact group (vanishing at infinity) with the supremum norm. The
space K(G) of continuous functions with compact support is dense in C°(G).
For convenience we shall often write C° or L? instead of C°(G) or L*(G)
(Lebesgue space with respect to the left Haar measure on G). Further
unexplained notation is taken from [23], [24] and [31], Chapter 15.

2. The main result.
For later reference we state the following assumptions:

(1) A is a Banach algebra, continuously embedded and dense in another
Banach algebra A,;

(2) A has bounded, two-sided approximate units;

(3) B is a proper Banach ideal of A4,;

(4) AN B is dense in A.

THEOREM 2.1. Suppose A, A,, B satisfy (1)— (4). Then

i) ANB is a proper, dense Banach ideal of A;
il) AN B is an essential Banach ideal of A if B is an essential Banach ideal of A,.

Proor. Since A and B are both complete and continuously embedded in
A, AN B is a Banach space with respect to the norm || f|4np: =14+ fll5
That AN B is a proper subspace of A will follow from Lemma 2.2. The density
is a consequence of (4).

In order to prove ii) we observe that it follows from (1), (2) and (4) that A has
bounded left approximate units (4,) S 4 N B and that automatically ||u,| 4, < C,
and

lim, |u,f—flla, = 0 forall fe 4, .

Since B is an essential Banach ideal this implies lim, |u,g — g||p="0 for all g € B.
This shows that AN B has left approximate units, in particular AN B is an
essential Banach ideal of A.
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LEMMA 2.2. Let A, A, satisfy (1). If A has bounded right approximate units it is
not contained in any proper (algebraic) left ideal of A,.

Proor. We may consider A, as an essential right Banach A-module with
respect to multiplication. By the use of the factorization theorem for Banach
modules ([15], 32.22) condition (2) implies 4, = A, A. Therefore the inclusion
A<l for a left ideal IS A, implies IS A=A, A< A,I<], that is I=A,.

CoroLLARY 2.3. (cf. [1]) A proper dense Banach ideal B of a Banach algebra
A, cannot have bounded right approximate units.

It is now very difficult to characterize (4,4N B) in terms of (A4, A) and
(Al’ B)

THEOREM 2.4. Suppose (1)-(3) is satisfied. Then for every left A,-module C,
(4, C) is the restriction of (A,,C). In particular,

(A,ANB) = (4,4A) N (4,,B)|,4 -

Proor. It follows from (1) that a linear operator from A4, to C gives an A-
module homomorphism as restriction iff it is an 4,-module homomorphism.
Thus no confusion arises if we don’t specify what kind of multipliers we mean.

Since one inclusion is trivial the assertion follows from the fact that any
Te (A, C) can be extended to an operator on A, due to condition (1) and the
equality

IT(Nlc

lim, | T(fu)lc = lim, [| /T (u,)lc
If1Laysup IT @lc = ISl ITIC, -

lIA

3. Applications to Segal algebras.

Among the various possible applications of the results of section 2 the
construction of.a class of Segal algebras on an abelian group G seems to be the
most interesting one. We only mention here those facts which are either new or
provide simple proofs for known results. In this section we shall use results on
Banach function spaces in the sense of Zaanen [31], Chapter 15. A Banach
space of (equivalence classes) of measurable functions on G is called a Banach
function space (with respect to the Haar measure) iff it is an L*(G)-module
under pointwise multiplication.

THEOREM 3.1. Let F be a Banach function space on G such that K (G) is dense
in F and C°NF is a proper subspace of C°(G). Then we have
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i) SF(G) = {f| fe L'(G), fe F}
is a proper Segal algebra on G with the norm
LA = 1/ + 171

and (I}, Sg) can be identified with

Mo 5 (G) = {u| pe M(G), jie (C°%F)}
i) If F is reflexive as a Banach space the equality

(L', Sp) = Mp(G) = {u| peM(@G), peF)

holds. If, furthermore, FNC°(G) is contained in 12(G), (L!,Sg) and Sp are
isomorphic as Banach algebras.

Proor. We set A=F'(G)={f|fe L}(G)} |fllp=]fll;, A'=C°(G) and B
=C%G)NF with

Ikl = Al +1IRlEF-

Then conditions (1)-(4) are fullfilled, because F!(G) N K (G) is dense in F*(G) as
well as in K(G) and F'(G) has bounded approximate units. Theorem 2.1
implies that F1(G) N F is a proper, dense, essential Banach ideal of F*(G). Since
the norm given by | fll, + 7w+ 7lr and [ fl=1f1l;+ 7|l are equivalent,
(SF(G), |1 1) is a proper Segal algebra on G. By the use of the equations

(C°%C°NF) = CPN (C°F)

and (L!,I})=M(G) (Wendel’s theorem, [20], Theorem 0.1.1) the characteri-
zation of (L, Sy) follows from Theorem 2.4.

In order to prove ii) we observe that we have (C,, F)=F for reflexive Banach
function spaces (considered as C°-modules, cf. [26, p. 474]). The last assertion
follows from the fact that u € M(G), fi € I*(G) implies p=f e L} N I2(G).

It is obvious that Sg(G) is [strongly] character invariant (fe Sp implies
xf € Spforall y e G[and ||xf|l=fI];cf. [11, section 3] for these definitions)
if F is translation invariant (h € F implies L h € F [and | Lh| = ||h| ] for all
y € G). In view of Theorem 3.1 it is of interest to have a characterization of
(CS, F).

LeMMA 3.2. (C% F) can be identified with the Banach space
F = {f| kf e F for all k € K(G) and
I£17 = sup[kfllg; k € K(G), Ikl S1]< 00} .
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The proof is left to the reader. It is not difficult to see that F is just the local
closure Ic F of F in the sense of Schaeffer [22, section 22]. Thus it coincides
with the second associate space (=second Kothe dual) of F. Consequently
(C°, F) coincides with F if F has the weak Fatou property (see [31, section 65]).
For example I?(G), 1<p<oo has this property. Since any reflexive Banach
function space has this property (see [31, section 73]) we have another proof
for the equality (C° F)=F for reflexive spaces.

Using remark B of [11, section 4] it is easy to characterize the L!-
relative completion

S¥'(G):= {f| f=L'—limf,, sup| f,| <oo}
of Sg(G).

CoRrOLLARY 3.3. §;* (G)=S#(G).

ExampLEs. The most important examples are of course obtained by using F
=I17(G), 1 <p< oo, or more generally the Lorentz spaces L(p,q)(G). It is well
known that these spaces are reflexive for 1 <p,q<oo (see [16, pp. 259-262]).
Therefore Theorem 3.1 extends and simplifies the proof of known results
concerning the algebras A(p,q)(G) and A?(G) (cf. [5, 1.12-3.14], [19], [21]).
Corollary 3.3 extends Theorem 4 of [4].

There is a number of further examples, e.g. weighted [P-spaces, Lorentz and
Orlicz spaces or amalgams of such spaces with a sequence space, such as the
spaces A(A, X) considered in [10]. Using these spaces one obtains among
others the algebras S, studied by Unni ([30]). The Segal algebras treated in
[27] and Example 16 of [3] are included in our considerations as well. It is left
to the reader to write down further examples.

It is remarkable that the Segal algebras defined in this section cannot have
(weak) factorization nor may they contain other Segal algebras with
factorization (cf. Corollary 2.5 of [13]). We conclude this section with
characterizations of several spaces of multipliers.

THEOREM 3.4. Let G be a noncompact abelian group and let Sg(G) be as in 3.2.
Then
(Sp L) = M(G)

if F has absolutely continuous norm (with respect to the Haar measure on G), in
particular if F is reflexive as a Banach space.
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Proor. The proof is not stated explicitely here because it is merely a slight
modification of the proof of Theorem 6.3.1 given in [20]. The only remarkable
property of LP(G) that has been used in this proof is Lebesgue’s theorem on
dominated convergence, but an equivalent theorem holds just for Banach
function spaces with absolutely continuous norm (see [31, section 72, Theorem
2]). That any reflexive Banach function space F has this property follows from
section 73 of [31].

COROLLARY 3.5. Let G be a noncompact, abelian group and let F be a reflexive
Banach function space on G. Then we have

(Sp,S*) = M(G) and (S% L) = (5%5%) = M(G)

for any Segal algebra S* 2 Sg(G), in particular (Sg,Sg) can be identified with
M(G).

Proor. The assertions follow from the inclusions
M(G) € (S, 8% < (Sk,L') = M(G)
M(G) < (8%5% < ($%, ') ¢ (S, L") = M(G) .

Corollary 3.5 shows that the results of section 3.5 of [20] may be considered
as a consequence of Theorem 3.4, because we have

4,(G) = Sp S L NCG) € L' NIX(G) for all p21 .

Corollary 3.5 can also be used to prove that Sg(G) is never a subspace of
Wiener’s algebra W (G) which can be defined for any locally compact group (cf.
[12]). It follows from the arguments of [7, p. 264] that any pseudomeasure with
compact support ¢ € P.(G) defines a multiplier from W(G) to L!(G). On the
other hand P,(G) is not contained in M(G) for any nondiscrete, locally
compact abelian group (cf. [18, Proposition 4.1]). Thus we have

COROLLARY 3.6. Let S be a Segal algebra with (S,L')~M (G) (for example
S2S8r(G), SF(G) as in 3.5). Then S is not contained in W (G).

We mention that this result can be extended to W?(G), 1 <p < o0, as defined
by Krogstad (cf. [18, Corollary 3.8]). Corollary 3.5 together with 3.6 gives a
partial answer to a question raised by Larsen [21, p.231].

4. Applications to Banach ideals of Beurling algebras.
In this section G denotes a general noncompact, locally compact group if not
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otherwise stated. The methods of Section 2 are applied to generate dense
Banach ideals of a Beurling algebra L.,(G).

THEOREM 4.1. Let B be a pseudosymmetric Segal algebra on G and let L, (G) be
a Beurling algebra. Then L.,(G)N B is a proper, dense, essential left Banach ideal
of L (G) with two-sided approximate units.

Proor. If B is pseudosymmetric, BN K(G) is dense in B as well as in L! (G)
(cf. [24]). Therefore Theorem 2.1 is applicable with A=L.(G) and 4, =L!(G).
The proof that L}, N B has right (two-sided) approximate units (which arg
necessarily unbounded in B) is the same as for pseudosymmetric Segal
algebras, using the continuity of y — R, fand of y —» L,f from G into L},N B
for all fe L, NB.

THEOREM 4.2. Let B be a Segal algebra on a locally compact abelian group.
Then LL(G)NB is a proper, dense, essential Banach ideal of L\ (G), if the
Beurling algebra L} (G) satisfies the condition of Beurling-Domar or if B is a
strongly character invariant Segal algebra.

Proor. If L (G) satisfies the condition of Beurling-Domar [23, Chapter 6],
then the set

{f| fe LL(G), fe K(G)}

is dense in L. (G) (FL(G) is a Wiener algebra on G in this case) as well as in B
(cf. [23]). Thus Theorem 2.1 is applicable. If B is strongly character invariant,
B is pseudosymmetric, because it is Banach module over F'(G) with pointwise
multiplication (cf. [11, Lemma 3.7 and 3.8]). Therefore Theorem 4.1 gives the
result in this case.

REMARKS. 1) 4.2 is not a special case of 4.1 because a Segal algebra on an
abelian group need not be pseudosymmetric (cf. [25, Example 4]).

2) It would have been sufficient to suppose that B is character invariant
(Myf=yfe B for all fe B, x € G) and satisfies

o0

BD) n; l_{)_g”%(:H_B <oo forall yeG,
with |M, | being the operator norm of M, on B.

3) We mention that the ideal theorem (see [24, section 9, Theorem 1], [1],
and [9]) is applicable in the situation of Theorem 4.1 and 4.2. Thus the ideal

structure of L., N B is much the same as of L), (G). In particular,

Fy(G) = {f.feLl] and F,G)NB

Math. Scand. 41 - 21
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have the same Wiener sets (see [23, Chapter 2] for the definitions) and the
same Wiener-Ditkin sets (by the results of [2] or [9]). For example, it follows
from a result of Stegeman [29] that any closed subgroup of R" is a Wiener-
Ditkin set for F:vaﬂB(R") with w,(x)=(1+|x])%, 0<a<]1.

4) Using Lemma III. 1.5. of [28] it is easily shown that a proper inclusion

L., (G) < L,,(G)

leads to a proper inclusion L), NB< L., NB in the situation of 4.1 or 4.2.

At the end of this section we discuss the problem of identifying
(Ly,,L,,NB). Let us first assume that we have L! (G)<L. (G). Then by
Theorem 2.4 the problem is reduced to the determination of

(Lwis Lu,) = (Ly,, Ly,)

w12

and of (L, B). The first problem has been solved by Gaudry [14, Theorem 4].
He showed that

LY L) = ML(G) := {u u e M(G), jﬁ)d|,u|<oo}

with w(y)=sup, w(y~'x)/w(x). For many concrete examples w is equivalent
with w, e.g. in case

we(x) = (1+Ix])*,  «20,

on G=R" Characterizations of (L!, B) can be found in [11], cf. also [21], and
Theorem 3.2 of this paper. Instead of stating the corresponding theorems let us
illustrate the result by a typical example:

Let L!(R") be the Beurling algebra on R” defined by means of the weight
function w,, a20. Then we have for B, ;:={f | fe L'(R", fw, € L*(R")},
=20, 1<p<oo, (Ly, LiNB, )={u | uw, € M(R"), fiwg € LP(R")} for y=a.
Moreover for > n/2p this space can be identified with L; N B,, ; itself, because
fiwg € 'LP(R") implies fi € L*(R") for B>n/2p. For p=o0o, L*(R") has to be
replaced by C°(R”) in the definition of B, 4, but not in the identification of the
multiplier space. We mention again that similar results can be proved for Segal
algebras such as

B,;:={f| fe L'R", fwy/Z" € I"(Z,)}, 620, 1Sp<oo.

If LY (G) is not a subspace of L', (G), the situation changes completely,
because (L,,L),) is trivial in this case. We do not give the proof for the
general result here, because it is elementary, but somewhat lengthly. The
following result is sufficient for most concrete situations.

LeEmMMA 4.3. Let L, (G) be a proper subspace of LY, (G). Then (L, L.,)={0}.
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ProoF. Let Te (L},,L%,)) be given. Then Lemma IIL 1.5. of [28] implies
wy(x) = Ky IL,Tf 4,0, = Ky ITLyf |1, S KIT| ILyf 1,0,

< K, | T|K,w,(x) for all fe L}, (G).

This is not possible if L}, is a proper subspace of L. (cf. [23]).

5. Further applications.

A natural generalization of the results of Section 3 can be obtained by
replacing G by a noncompact, locally compact space X and F!(G) by a Wiener
algebra 4 on X. If A has bounded approximate units essentially the situation
of Section 2 is given and the main result applies. There is a great number of
such Wiener algebras, for example spaces of functions in C°(R") satisfying
several kinds of differentiability properties or Lipschitz conditions.

We do not give further details here. We only state a theorem that can be
considered as a direct generalization of Theorem 3.1 to non abelian groups.
A(G) (B(G)) denotes Eymard’s Fourier (Stieltjes) algebra on G. (See [8].)

THEOREM 5.1. Let G be an amenable group, and let F be a Banach function
space on G containing K(G) as a dense subspace. Then A(G)NF is a dense,
essential Banach ideal of A(G) and the multiplier algebra (A(G), A(G)NF) is
isometrically isomorphic with B(G)NF.
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