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ON THE FUNCTION f SUR

JONATHAN TENNENBAUM

The sequence

1 1 1
(@ = Z;l-z—, (@) = Zn—3, (@ = Z;;,.--

bears in some respects an analogy with the sequence of Bernoulli numbers B,
=1, B,=—1 B,=1%,.... For the Bernoulli numbers appear in expressions for
the coefficients of polynomial solutions to the difference equation

fE+)-f(x) =

k=0,1,2,..., whereas for k= —m, m=2, this equation has the solution
i 1
0= = L

whose Laurent expansion at the origin is

m(m+1)

—:—M—C(m)+mC(m+l)x—— {m+2)x*+ .

If, following this analogy, we replace B, by {(k+2) in the well-known formula

X < By ,
1= X a”

e —

we obtain the entire function

S L(k+2)
(1) G(x) = Y -—k-'——x".

k=0 ‘
This function has apparently not been studied, and in view of its connections
with important functions in analysis and number theory, it seems worthwhile
to give here a number of results coneerning ®(x), together with a proof of the
functional equation for Riemann’s zeta function, to which the study of ®(x)
leads naturally.
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To begin with, by substituting 322, 1/n**2 for {(k+2) in (1) and reversing
the order of summation, one finds

© 1
)] Gx) = Y e
n=1 N
This expression shows that ®(x) is almost periodic in every half-plane Re x < a;
in fact, if N is divisible by 2,3,...,K and Re x=<a, then

°° 1
IG(x+2niN)—6G(x)| <2 Y —17e°'/” = o(E) as K — 00.
n

n=K+1

It follows that every root ¢ of the equation ®(x)=c gives rise to an infinite
sequence of roots {g,}%% -, such that g, is very nearly equal to ¢+ 2miNk,
where N is the least common multiple of some sufficiently large initial segment
of the positive integers. On the other hand, since ® is an entire function of
order 1, and is clearly not of the form e*+ ¢, for c,, ¢, constants, it follows by
Hadamard’s theory of entire functions of finite order that &(x) takes on every
complex value. These facts show in particular that the sum 3, 1/|o|, taken over
all zeroes ¢ of ®(x), diverges. From Hadamard’s factorization theorem we
conclude that G(x) has an everywhere convergent product expansion of the
form

3) ae® [ (1 ——g)e""’ :
The values of «, f and 3, 1/¢* (k>2) are easily computed in terms of {(2), {(3),
{(4),... using (1) and (3); one finds in particular
q{€) 1 {03*-{)L¢
5y {4

«=1{Q2), p=

wy 7o P

After these remarks I leave aside the interesting question of the distribution of
zeroes of ®(x), as well as the connection between the values of ®(x) and the
multiplicative structure of the integers, which is reflected for example in the
formula:

.1 X 1

lim — Y ®Qnink) = ), —.

K— 00 K k=1 din d

The function IT(s){(1—s) is easily expressed as an integral transform of G(x).
Starting from Euler’s integral for the factorial function,

4 I(s) = fm e *x*dx (Res=g>-1),
0

we make the substitution x =u/n, multiply both sides by n°*~!, and sum over
n=1,2,... to find
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®) M —s) = f " {6 (— ) du,
0

valid for —1 <o <0. This formula is analogous to the classical expression

©) IR = f X {e..l_l}u“‘du (0>1)

0

which one finds by making instead the substitution x=nu in (4). Comparison
of (5) and (6) leads to the functional equation for {(s), as will be shown below.

First it is useful to have an estimate for & (—u) when u is a large positive
number. This is provided by the Euler—Maclaurin formula, applied to the
function

1
f@ = pe_"/ti

00 1 00 1 q B d r—ll 00
7 Zemum = | Lemw 1y (5] e | +R
N X e Jl 2€ dt+r;1 (—1) r!li(dt) 2€ :| +R,

1

e a1,
Rq = q J\l Bq(t—[[]){<a> t—ze /}dt .

One sees easily by induction that (d/dt)" 1/t* e " is of the form

1 u\ _,
mﬂ(;)e "

where P, is a polynomial of degree r. It follows immediately from (7) that

where

1
®G(—u) = ;+Rq+0(u“'1e'“) as u — 00 .

® 1 u
e[ e

c “ _
T j AP le dy

1
()

since the second integral converges for u=00. Therefore

Furthermore

IR e vt dt

IIA

d

(8) ®(—u) = %+0(£> as u — +00

for every q.
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Using this estimate it is easy to derive from (5) a partial fractions expansion
for II1(s){(1—s5). We write (5) as

9 HEEA-s) = r {u(ﬁ(—u)}us_‘du—§+~ro {(uG(—u)—1}u* "1 du
] 1

and evaluate the first integral by termwise integration of

G(—uwu! = i tk+2)

(_ 1)kus‘k—1
K=o k!

to obtain

x 1)
() (1—s) = __§.+ 5 (k+2) (=)

” —_ -1 s—1
o k! s+k+1+J‘1 {“6( u) }u du ,

where by (8) the integral on the right is an entire function of s.

The functions ®(x) and 1/(e*— 1), already related by an analogy and by their
appearence in (5) and (6), can be brought into even closer connection. I take as
point of departure the integral formula

¢ —ioo ex/z dz
G®(x) = quoo g O<c<])
which is easily verified using the calculus of residues. This integral can be
reduced to a Fourier integral, as follows. We deform the path of integration
into the path I' consisting of the segment (ioo, i8], the semicircle of radius &
around 0 in the half-plane Rez=0 and the segment [ —id, —ioc), where 0 <
<1, and add the equation

e® 1 1
= | SH-——+:bd
0 jr z? { 2m’z+2} ‘

e® 1 1 1
6k = jr rFa {ez"“ 1 2miz 5} dz

in which the function in brackets has a zero of order one at the origin. Letting
z=1/iy in the last integral, one finds

. 1 y 1 ixy
G(x) = —i J‘r' {——ez"/y-—l E;t—+2}e dy

where I” is the closed path consisting of the segment [ — 1/9, 1/8], together with
the semicircle ¢ of radius 1/6 around the origin lying in the half-plane Im y <0,
this path being traversed in the positive sense. Now when x is a real number

to obtain
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<0, the integrand is O(|y| ™ *e™™ ) on the circle ¢, from which it follows easily
that the integral over c tends to zero as the radius increases, so that, letting
0— 0,

® : 1 y 1 ixy
(10) (ﬁ(x) = j_oo I{W—EE*—E}e dy
o0 2n\ .
= ip| — |e™dy
Jo o)
where
1
v@ =Gty

Since ¢ is an odd function, (10) is equivalent to

(11 Sg“z(")(s(—|x|) = r <p<2—">sinxydy.
0 y

This result can be verified, at least formally, by substituting for ¢(2n/y) the
partial fraction expansion

and integrating termwise using the equation

1 [*® ysinxy sgn (x) x|
= ——"¢ .

o Br+)? y=-

In order to invert the relation (11), I first render the integral absolutely
convergent by an integration by parts:

© 2\ . ) " 2n 1
@o| — |sinxydy = lim | — )d| ——cosxy
0 y n=00 J 1/n y x
= lim| — gﬁ lcosnx+ (27tn)lcosx+1 T (T cosxyd
" poo P\ )% ¢ X nx )ynm dy(p y xyay
_}_+l ©f{d (2n d
=Ty, dy(p ) cosxydy .

By (11), it follows that

1 ©°fd (2
30-8=)-1) = [ { £ 0(2)hcossyay.
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4 (E) = O(L> as y — 00
ay?\y y? ’

the integral on the right converges absolutely, so that by Fourier’s theorem

Since

(12) d%;qo(%) = -11;!:) {x®(—x)—1}cosxydx .

This integral, which converges rapidly in virtue of the estimate (8), is also the
derivative of

1 [* 1. 1 (* . 1
;JO {x@(-x)—l};smxydx = ;L GS(—x)smxydx—-E sgn (y)

which has the value —1 for y=o0. Since ¢(2n/00)=0, (12) implies
1 2\ 1
® 7 )72

(13) ;J‘:} {x@(—x)—l}%sinxydx
1 y

& _1 2’

Finally I show how the functional equation for Riemann’s zeta function

(14) {(s) = 2‘1t"‘H(——s)sin<zt-2§>C(l—s)
follows from (5), (6), (13) and

1 . ® si
(15) ;H(—s)sm(?) = L —j:,—n;f-dy (-1<e<1).

First, in order to obtain integrals with a common domain of absolute
convergence, 1 use 1/s=[§u*~'du (6>0) to rewrite (9) as

(*oo

(16) @)(s) = {u(ﬁ(——u)—l}u’% (6>0).

JO

A similar process, applied to (6) instead of (5), gives

1 ({1 1] ,du
17 En(s)c(s)=“o {e“—l—;}u—u_ 0<o<1),

and the substitution y=u""! takes (15) into

(18) %H(—s)sin(-nz—s) = j: sin (—ll;)u’d—: (0O<o<1).
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The integrals in (16), (17), (18) all converge absolutely for 0 <o < 1. Next, let #
denote the family of all integrable functions f defined on (0, c0) and satisfying

J If(u)lu”g < 00, O<o<l1,
0 u
and let f and fxg be defined for arbitrary f,g € # by
79 = | s 0<o<y
JOo

and

?‘m d
(f+8)) = f(t)g(%){ O<u<oo).

Then it is easily seen that: (i) fxg € # and (f*g) =f g, and (ii) if h € & and
k (u) = ah(Bu) for constants a, B, >0, then k(s)=oaf~'A(s). Taking now

_1

e—1 u’

f) = uG(—u—1, g) = sin<%>, h(u) =
(13), (16), (17) and (18) imply:
(f*g)(u) = nh(2nu) ,
Jy = O@E)K(1-s), §(s) = %H(—S)Sin(§>, h(s) = %H(S)C(S),
from which the functional equation follows immediately in view of properties

(i) and (ii) above.
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