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ON A CERTAIN CLASS OF POLYTOPES
ASSOCIATED WITH INDEPENDENCE SYSTEMS

A. B. HANSEN

Abstract.

A class of centrally symmetric polytopes associated with independence systems is
studied. We characterize the weak Hanner polytopes among them and show that the
pair of antiblocking polytopes introduced by D. R. Fulkerson is equivalent to a pair of
facets of dual centrally symmetric polytopes. Finally new proofs of results of V. Chvatal
are presented.

1. Introduction.

Let P be a centrally symmetric polytope in R". P is called a weak Hanner
polytope (WHP) or a CL-polytope if P=conv (F U — F) for every facet F of P.
In this paper we study a certain class of polytopes: Let J be an independence
system (L.S.) on a finite set X ={v,,...,v,}, that is, a set of subsets of X with the
property that T<S € J implies T € J. With every S € J we associate the point
xs=(1,x3,.. ,x5) e R"* 1 withx$ =1, [x3 = —1],if v; € S, [v; ¢ S, respectively].
By P; we denote the convex hull of the points {+xg, S € J}. In section 2 we
study some properties of P; and give a characterization of those P,’s which are
weak Hanner polytopes. In section 3 we show that the pair of antiblocking
polytopes associated with J, which was introduced by D. R. Fulkerson in [3],
is equivalent to a pair of facets of the dual pair P, and P¥. This together with a
result of Fulkerson leads to the statement (in Theorem 6) that P; is a WHP if
and only if J is the set of independent subsets of vertices in a perfect graph.
Section 4 is devoted to sub-1.S.’s and in the last section we present some new
proofs of results due to V. Chvatal.

2. Weak Hanner polytopes.

Let J be an independence system (1.S.) on a finite set X ={v,,v,,...,0,},
neN, that is J is a set of subsets of X containing all singletons {v;}, i
=1,2,...,n, and so that if S € J and T<S then T € J. We denote by P; the
centrally symmetric polytope
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) P, = conv{i(—f{,’+2 y e?)| SGJ} c R+
v;eS
where f3=,(—1,1,...,1), and €/=,(0,0,...,1,...,0),, i=0,1,...,n. Let

Xt = —fo+2 Y er.

v;eS

Clearly
(V)] 0.P; = {£x5| SelJ}.

where 8, P; denotes the set of vertices of P. Let 6,:R"** — R"*! be the linear
transformation defined by

A3) 0./0 = e, O.(—fo+2e) = ¢, i=12,....n.
0, is clearly non-singular and its inverse is given by the (n+1)x (n+ 1)
symmetric matrix
~1 1 1 | O |
1 1 -1 -1 ... -1
1 -1 1 -1 -1
)" =
1 -1 -1 1 -1
1 -1 -1 -1 ... 1

The vertices of §,P; are the points

4) 0¢(6,P)) = {i<(|5|—1)8'6+ ) e?) | Se J} :
v;eS
Indeed,
©) 0,x5 = 9n<—f'6+2 )Y, e?)
v;eS

0,.<—f6 +2 Qel-fO+ ISIfB>

veS

I

(SI—-1)es+ Y, ef .

v;eS
We shall omit the index “n” on 6,, f3, e and x§, whenever it won’t lead to a
misunderstanding. Observe that since (J (the empty set) and all singletons {v;},
i=1,2,...,n, are in J, the points
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O %o =fo ey = —for 2 e Xy = ot 20
are vertices of P;, so the points
(7 —Oxg = eg, Oxpy = ey, ..o, Oxpyy = e,

are vertices of 6P;.

Let Q be any centrally symmetric polytope in R". We denote by Q* the dual
polytope

) 0* = {yeR"| (x,y)=1, Vxe Q}

where (-,-) is the usual scalar product in R". Q is called a weak Hanner
polytope (WHP) or a CL-polytope if Q=conv(FU —F) for every facet
(maximal proper face) F of Q. It is well known and easy to show that the dual
of a WHP is a WHP. We denote by 0.Q the set of vertices of Q.

Since eg, e,. . .,e, € 0P;, we have that

©) OP)* < {y e R"™ 1| |(y,e)|<1,i=0,1,...,n} & 1.

In particular all vertices of (0P;)* are in the n+1— cube C"*!. We can show

LemmA 1. If y= (Yo, V1,- - -» V) is a vertex of (0P))*, then y,= + 1.

Proor. Assume that |y,|<1. We claim that y can be written
y = 3(L+you+3(1—yo)w
with u,w € (6P;)* and u,= —w,=1. Indeed, define u and w as follows:
() up=—wo=1
(i) If v, e S € J and (Ox5,y)=1 put
up = (1+y)) ' Qyityo—1, wi =1,
(iii) If v; € S € J and (fxg,y)= —1, put
u;- = —1, w, = (1-y) 'Qui+yo+1).

Observe first, that all coordinates of u and w are defined at least once in (i), (ii)
and (iii). Indeed, u, and w, are defined in (i), and since y is a vertex of (8 P))*, y
lies in the intersection of n+ 1 linearly independent facets of (6 P))*, defined by
n+1 linearly independent vertices of §P;. Hence for every i=1,2,...,n there is
an S € J so that v; € S and (6xg,y)= +1. To show that (ii) and (iii) give the
same u; and w; when the conditions overlap, let S, T € J with v; € SN T, so that
(Oxg, y)= — (6x7,y)=1. Since S\{v;}, T\{v;} € J, we have

(GXS\{ui}’ Y) é 1 and (GXT\{.);},)’) g -1.
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Now

(10) 2 = (6xs5,y)— (0x1,y)

((|S|—1)eo+ y e,-,y>-((ITI—1)eo+ )y eﬂ)

v;€S v;eT

)’o+J’i+<(|S|—2)eo+ )y ejay>_

v;eS\{v;}

_YO_YI'_<(|T|“2)€0+ Y ej’Y)

UjET\{Vi}

(OxS\{v.'}s Y) - (oxT\{ui}, )

S1—(-1) =2

50 (8Xg\(y,¥)=1. This implies that

(11) 0 = (x5, 5) — (Oxs\(o>Y) = Yo+DVi»

SO y;= —Y,. Inserting y,= —y, either in (ii) or (iii), we obtain u;= —1 and w;

=1. To show that u and w as defined above are in (0P,)*, we only have to
check whether

[(u,0x7)l =1 and [(w,0x7) =1

for every T € J. By symmetry it suffices to show that u € (6P;)*. Let now

TelJ. If T=, then Oxr= —e, and (0x7,u)= —1, so assume that v; e T. If
u;= —1, then

(exT,u) = (GXT\{W},M) .
We may therefore assume that u; is defined by (ii) for all i with v; € T. Thus

(12) (Oxr,u) = <(IT|~1)eo+ ) e;,u)

vieT

= |T|=1+ 3 (1+y0) ' Qyi+yo—1)

v;eT

= (1+yo)"(lTl—1+yolT|—yo+2 Y Y.-+onTI-ITI)

vieT

= (1+y0)"<2<(|T|—1)y0+ ) Yi>+)’o'1)

vieT

= (L4+y0) ' (20x1, ) +yo—1)_
S (I+y0) '(+y) =1
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We still have to show that (6x7,u)= —1. Let v; € T. Since u; is defined by (ii),
there is an S € J with v; € § and (0xg,y)=1. Then S\{v;} € J, so

(13) Yo+ )i

(GXS’ Y)— (oxS\{vi}’y)
1_(0xS\{vi}’y) =0

This gives that

\14) (Oxr,u) = |T|=14+(1+yo)™" Y Qyit+yo—1)

vEe

2 |T|—1+(1+y) " ZT(‘,Vo—l) 2 -1

Since clearly y=14(1+yo)u+%(1 —yo)w, we are done.

LEMMA 2. The following two statements are equivalent
(a) Py is a WHP
(b) 0.(6P)* < o.C"*!

Proor. Assume first (a) and let y=(y,, ¥y,- . -, Va) € 0.(0P;)*. Since being a
WHP is preserved under linear equivalence and the duality mapping, (0P,)* is
a WHP. Let 0<i<n. Since ¢; € 0,0P;,

F; = {ze (0P)*| (z,e)=1}
is a facet of (OP))*, so

(0Py)* = conv(F; U —F).

Since y € 0.(6P;)* this implies that y € F;U —F; and therefore y;= +1.

Assume next that (b) is fulfilled. We shall show that (P,;)* is a WHP. Let F
be a facet and y= (yq, yy,- - -, V) @ vertex of (OP;)*. By (2) thereis an S € J, so
that '

F = +{ze (6P)*| (Oxs5,2)=1}.

Hence we need only to show that |(6xg, y)|=1. This will imply that 6.(6P,)*
< FU —F, so (BP;)*=conv (FU —F). By definition of (§P,)* we have that
[(6xs,y)|<1 and from the assumption that y € 3,C"*! we get that

(0xs5,y) = (ISI=Dyo+ Y, ¥

veS

is an odd integer. Therefore (fxg,y)= +1 and we are done.
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If J is an LS. on X, we denote by J the system
J={ScX| V,0" €S, v+v' {v,0'} ¢J}
= {ScX| VTeJ: |SNT|<1}.

Clearly J cj, but the following example shows that the inclusion may be strict:
Let

Ja = {@{11:{2}, {31, {1.2}, {23}, {1.3}} .

Then J 4 is an LS. on {1,2,3}, but J,={, {1}, {2}, {3}}, so T,=J U {{1,2,3}}.
We have

THEOREM 4. The following three statements are equivalent:
(a) Py is a WHP
(b) Py is a WHP and J=7
(9 Py=(0P))*

ProOF. Let us first prove that (a) implies (c), so let xg € Py and Oxr€ OP;.
Then

(15) (xs5,0x7) = <~—f0+2 Y e, (ITI—Deo+ Y, ej>

v;eS v jeT

= (|T|—1)(—f0,eo)+(—fo, > e,->+2< DI e,-)

vieT v;eS vieT

= TI-1-|T]+2 ¥ 1
veSNT

=2ISNT|-1.
Since |SN T € {0,1}, we have |(xs, 0x7)| <1 and therefore x5 € (P,)*. To show
that (P,;)* < Pj, observe that

ae(HPJ)* < aeC"+1
by Lemma 3. Hence every point in d.(0P;)* is on the form xg for some S< X.
Now let xg € 0.(0P))*. We need only to show that S € J, so let v;,v; € S with

i%j. Then
(Bx{,,l._,,j},xs) = (eo+e+e,xs) =3,

so {v;,v;} ¢ J, and we are done.
(a) follows easily from (c) and Lemma 2, because

3.(0P))* = 8,P; = 3,C"*1.
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Assume now that (a) holds. Then by (c), (P;)*=P; so Pj is a WHP. This
proves the first part of (b).
To show the second part of (b), observe that 6 is symmetric, so by (c),

(16) Py = (0P)* = (0%)"'Pf = 07'P}
(16) together with the fact that P; is a WHP gives that

Pj = (0P)* = (007'P)* = Pf* = P;.

Assume finally that (b) holds. Then, by the equivalence of (a) and (c), P and
therefore P; is a WHP.

3. Anti-blocking polytopes and graphs.

In [3] Fulkerson introduced the powerful notion of anti-blocking polytopes:
Let A be a non-negative m x n-matrix in which no column consists entirely of
zeros. Let P4 be the convex hull in R" of the rows in 4. The antiblocker of P, is
the polytope
(17) Py={yeRl| VxePy (x)<1)

If J is an LS. on X ={vy,...,0,}, the incidence matrix of J is the matrix
A= {a5| Sel,i=12,...,n},

where ag;=1 if v, € S and ag;=0if v; ¢ S.

To simplify the notation, we regard R" as the subspace of R"*! spanned by
e},...,e" and take (¢%,...,e" as the standard basis of R". Let now ¢@,:R"*!
— R"*! be the affine transformation defined by @,(x)=2x—1+2ej), where
1=(1,1,...,1). Then we have:

LEMMA S. Let J be an 1.S. on X ={v,,. . .,v,} and let A be the incidence matrix
of J. Then

@) @.Pq = {xeP;| (x,ep)=1}
(b) Py = {ye (0,P)*| (ye)=1}
(c) P, has integral vertices if and only if 0.(0,P;)* <d,C"*'.

Proor. (a) Let S € J. Then

n

(18) P, Y el =2Y =Y ef+2¢e

v;eS v;eS i=0

e+ ef— Y e =x3
v;eS veX\S
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This proves (a).
(b) Let z=(0,z,,...,2,) € R" Then ¢,z=(1,2z,—1,...,2z,—1). Also,

(19 zeP,=VSelJ: <z, Y e?) <1 and Vi=1,...,n: z

v;eS

Now, let S € J and 1<i<n. Then

(20) <z, Y e}) Sle ) z
vjeS

v;eS

lIA

1

< |S|—1+ 2 2z;—=1) =1
vjeS
< (@nz,0,x5) < 1
and

(21) z;20<«2z-12 —1
< (@2, 0,x],y) 2 —1.

Note that if 2z;— 1 = =~ 1 for all i, then (¢p,z, 6,x%)= — 1 for all S= X, so (20) and
(21) give that z € P, if and only if ¢,z € (6,P,)*. Since every

Yo € {y € (enPJ)*I (y’e?)):l}

can be written y,= ¢,z for some z € R", we are done.
(c) Follows easily from (b).

The above lemma shows that when A is the incidence matrix for an L.S., the
notion of antiblockong pairs of polytopes is equivalent to the usual duality of
centrally symmetric polytopes. Observe also that in view of Lemma 5 the fact

that if P, is a WHP then J =J (see Theorem 4) has been observed by Padberg
[6]. Fulkersons theory of antiblocking pairs of polytopes has been very useful
in graph theory: Let X ={v,,...,v,} be a finite set and G= (X, E) a loopless
non-directed graph on X without multiple vertices, i.e., Ec X@, where X® is
the set of two-points subsets of X. G is said to be a clique (complete) if E= X,
A subset Sc X is called independent if ENS® = . The graph (S, ENS?) is
called the subgraph of G induced by S. The complement of G is the graph G
= (X, XP\E). The stability number «(G) is the maximal cardinality of a stable
set of vertices of G and the covering number @ (G) is the minimum number of
cliques in G covering X. G is called (a-)perfect if a(G')= @(G’) for every induced
subgraph G’ of G. In [4] Lovasz proved that if G is perfect, then G is perfect,
and in [5] he proved the following characterization of perfect graphs: G is
perfect if and only if w(G')w(G’) 2|G'| for every induced subgraph G’ of G. Here
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(G) denotes the maximal cardinality of a clique in G. Using the theory of
antiblocking polytopes Fulkerson proved (see [7]) that if A is the incidence
matrix for the independent subsets of G, then G is perfect if and only if P, has
integral vertices. An alternative proof based on results of Lovatz is given by

Chvital in [2]. Observe that if J is an LS. on X ={v,,...,v,} then J =7J if and
only if J can be represented as theset of independent sets in a graph on X.
Using Lemmas 2 and 5 and Theorem 4 we have therefore,

THEOREM 6. Let J be an 1S. on X. The following two statements are
equivalent
(a) Py is a WHP.

(b) J can be represented as the set of independent subsets of vertices of a
perfect graph on X.

4. Induced sub-LS.’s.
Let J be an LS. on X={v,,...,v,} and let X'< X. The LS.

(S| S < X, SeJ)

is called the sub-LS. of J induced by X" and i$ denoted by J | X'. We note for
future reference the identity

(22) JIX =J|X

LEMMA 7. Let J be an 1.S. on X ={v,,...,v,} and J' the sub-1.S. of J induced
by X'={vy,...,v}, 1Sk<n. Then

@ If y=(1,y1,- - ., i) € 0e(6,Py)*
then y=(1,y.,. ., Yo—1,. .. —1) € 3. (8,Py)*.
(b) If y= (YOo.V1»~ . "yn) € (G"P_])*, then yl=(y0’y1’- . 'ayk) € (BkPJ')*~

Proor. Let y'=(1,y,,. .., V) € 0.(6,Py)* and put y=(1L,yy,..., 0 —1,.. .,
—1). To show that y € (6,P;)*, let Se J. Then SNX' € J and

(23) O0,x%y) = ISI-1+ Y »

v;eS

=1Sl-1+ ¥ y+ Y ¥
veSNX' veS\ X’

= |S|-1-1S\X'|+ Y »
v;eSNX’'
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- ISNXI-1+ 3y
v;eSNX’

= (Bux§$nx»Y)

Since y' € (0,P))*, it follows that |(6,x%, y)| < 1. Next we show that y is a vertex
of (6,P))*. Since y,=1, there exist k + 1 linearly independent points {x% }¥_, in
P; with Sy= and

(0,5, ) =1, i=0,1,...,k.

Then the points {x§}¥-o U {x},3}}-x+, are linearly independent vertices of P,
and

13, 0.X8)] = 10/, 0,x§)l = 1 for i=0,1,.. .,k
and
[, 0pxfop)l = lyjl =1 for j=k+1,...,n,

S0 y € 0.(0,Py)*.

(b) Obvious.

Assume now that P; is not a WHP and choose a vertex y
=1, y1,. ..,V € 0.(0,P))*\0.C"*! by Lemma 2. Let

X,={veX]| lyl<l}.

We shall assume that X ,={v,,...,0,}, ISm=Zn. Let So= and §;={v;} for
i=m+1,...,n Then

|(Oxs,y)| =1 for i=0,m+1,...,n.

Since y € 0.(0P,)*, the linearly independent set xg,,Xs,,,,...,Xs, can be
extended to a linearly independent set {xs}]-, of vertices of P;, so that
|(fxs, V)| =1 for i=0,1,...,n.

LEMMA 8. Let J,y, X ,,m and {S;}!_, be as above. Then

(@ Sy,...,8, can be chosen in J | X .

(b) When S,,...,S,, have been choosen as in (a), then they are maximal
elements of J | X,.

()P, | X, is not a WHP.

Proor. (a) Choose {S;}7-, so that |S;|+ ... +]|S,| is as small as possible.
Suppose v; € S; for some 1<j<m<i<n. Then y;= +1, by definition.
If y;=—1, then
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Oxs) (0 = Oxs,—eg—e; = Oxg;+0xg,—Oxg,
and
I(eij\{vi}’y)l = I(Bij9y)_y0_Yi| = |(0xSpy)| = 17

so we can replace S; by S;\{v;} and still satisfy the above specifications, but this.
contradicts the minimality of |S,|+ ... +]S,].

If y;=1, then we will show that §;= X\X,, and therefore xg, is a linear
combination of xg,,Xs,,,,,. . -, Xs,, Wwhich contradicts the linear indepence of
{xs'}?zo. Indeed, if v, € S}, i%k, then {v,v,} € J. Therefore

|(0x{v.’,vk}’y)' = |y0+y1+yk| = |2+yk| é 1,

so since |y =1, y,=—1 and therefore k € X\ X,

(b) Choose ije {12, ...,m} such that v;¢S; We will show that
S;U{v;} ¢ J or, equivalently, that xg;y(, ¢ P;. It suffices to show that
(0xs;0{0}> ¥)> 1, since y € (OP))*. Now

(oijU{v;}’y) = (eij7y)+y0+yi > (Oxs]"y)

because y,=1 and |y;| <1, so we need only to show that (6xg,, y)=1. We know
already that (6xg;, y)= £ 1. Since

(Oxsja,V) = !Sjl“l'*‘ Z Vi

vkeS;

and y, > —1 for v, € S, it follows that (6xg;,y)> —1 and therefore (6xg;, y)=1.
(c) This follows easily from (a) and Lemma 7(b).

THEOREM 9. Let J be an 1.S. on X and X' X. If Py isa WHP, then P; x is a
WHP.

Proor. Follows immediately from Lemma 7(a).

5. Intersection, union and substitution of 1.S.’s.

Let J, and J, be 1.S’s on X, and X, respectively. Then J, NJ, is an LS. on
X,NX,and J,UJ,is an L.S. on X, UX,. Observe that if X' X, UX,, then

(24) U X = (J L (X, NX)YU (] (X, N X))

The following example shows that if P;, and P;, are WHP’s, P; n,, need not
be a WHP:

Let X, =X,={1,23,4,5} and
Ji = {@, {1}, {2}, {3}, {4}, {5}, {1.2}, {2,3}, {34}, {4,5}, {1,5}, {1,3}, {1,2.3}} ,
Jy = {@, {1}, {2}, {3}, {4}, {5}, {1.2}, {2,3}, {3.4}, {4,5}, {15}, {1.4}, {1.4,5}} .
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Then it is easy to show that P, and P;, are WHP’s and that
(1,0,0,0,0,0) € 0. (85P;,n1,)*.

In view of Lemma 5(c) the following two theorems are equivalent to results
that have been proved in [2] (See also [1] and [4]). We shall however furnish
them with easy geometric proofs based on Lemma 2.

THEOREM 10. Let J; and J, be 1.S.’s on X, and X, respectively. If P;, and Py,
are WHP’s and X, N X, € J,NJ,, then Py ;, is a WHP.

Proor. Suppose X=X,UX,={v,,...,v,} and assume P; ,;, is not a
WHP. By Lemma 1 and Lemma 2 choose a vertex

y = (l,yl,' . "yn) € ae(ePunlz)*\aeC"+1 )
and let
X, ={v,eX| lyl<l, 1ZiZn}.
Then PJll(Xlan) and Ple(inXy) are WHP’s and
X, NX)NX,NXx)e, | (X;NX)NJ, | (X,N X)),
but
Py xinxpusalxanxy = Puiuiax,
is not a WHP (see Lemma 8(c)). We can therefore assume that X = X.
Now let S,,S,,...,S, be as in Lemma 8 (with m=n). Assume that
X\X; = {v,-. 0}, X \Xy = {Vps1se 0 sVpig)
and
Xl n X2 = {Up+q+l9' . .,U,,}
and let t=|X, N X,|=n—p—q. Arrange the sets {S;}!_, so that S,...,S, € J,
and §,,,,.. .,S!,Ae J,, and let M be the incidence matrix for S,,...,S,. Since
Oxs,, 0xs,,. . .,0xs,_are linearly independent, M is non-singular. In particular,
the first p and the next g columns of M are linearly independent, so we must
have p<r and g<n—r. Let now y'=(1,y1,...,Yp Vpsg+1>- - -»Va)- By Lemma
7(b),
, def
Y € 0P )*= Q.
(Note that (J,UJ,)| X,=J,, since X, NX, € J,).
Furthermore, for i=0,1,...,r we have S; € J, and
|(0p+rx§‘+"y’)| = I(B,,xg,.,y)l = 19

so y' lies in the intersection F of r+1 independent facets of Q. Therefore,
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(25) dimF £ 1+p+t—(1+r) = t+p-r.

If r=p+t, then F={y'}, so y’ € 0.Q, but this contradicts the assumption that
P;, is a WHP. Hence r<p+t. By symmetry we have n—r<g+t, so

(26) p<r<p+t.

Since 0,F =0,0 =0,C?*** ! and |y;|<1,i=1,2,...,n, the coordinate functionals
€pig+1s- - -» €, CANNOL be constant on F and their maximal values on F must be
1. Choose z,,...,z, € 0. F with

(ep+q+,~,z,~) = 1, i=1,2,...,t.

Since X, NX, € J; we have |(0,,,x%;hx, z)|<1. Now

t
27) (0p+txi’rhxz’zi) =t—1+ Z (ep+q+j’zi)
ji=1

t
t+ Z (ep+q+j’zi) g 1
i

because |(e,4q+2)|<1. Hence (e,444),2z)=—1for j=1,2,...,t, j#*i, so the
points z,,. . ., z, are affinely independent. Hence dim F =t —1. By (25) and (26)
we also have dimF <t—1, so

(28) dimF = t—1.

(25), (26) and (28) give now that r=p+ 1. By symmetry we have n—r=q+1, so
since n=p+q+t,

(29) | r=p+1 and t=2.
This implies that F=[z,,z,]. Since (Bp,,,x&’:r'\ xp2z)=1 (see 27), i=1,2, also

(0p+txi’Tth’y,) = (ennglﬂXpy) =1.

We may then assume that one of the sets S,,...,S, say S, equals
X,NX,eJ, NJ,. If a<r [or a>r] we can arrange the sets S; so that the first
r—1 [or r+1 respectively] sets belong to J, and the remaining ones to J,. This
leads to a contradiction, since we have shown that in any particular partion of
{S;,...,S,} into two classes D, =J, and D,<J,, |D,| must equal p+1.

Let now J, and J, be I.S’s on X,; and X, respectively and assume that
X,NX,= and v e X,. We define an LS. on (X,\{v})UX, as follows:

UiJ2—0) ={S = X \{t)UX,| () SeJ, | (X,\{v}) or
(b) SN X, eJ, and
SNX)U{vyed,}.
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(J1,J, — v)is called the LS. obtained from J, by substituting J, for v. Observe
the following combinatorial lemma:
LEMMA 11. Let J,J,, X, X, and v be as above.
(@) If X'« X,\{v} UX,, then
UpJ» o)l X =, X, NX U, LI, NX)>0).
® UJo =0 = (il —0)

(c) Suppose J,=J, and J,=J, and let X!={v' e X,\{v} | {v,v}ed,)
Then

(UpJ,—»v)=J,|X{UJ, U (J1 L (X \{v}) .

Proor. (a). Follows immediately from the definition of (J,,J, — v).

(b). Suppose first that S € (J,,J, — v). Then S=S,US, with §; = X,\{v}
and S, X,. Let Te J,. Since v ¢ S, and T\{v} € (J,,J, — v),

IS, N T| < 1SN (T\{))] = 1,
so S;eJ L (X \{v}). If Te J,=(J,,J, — v), then
' SN TISISNTI S 1,
so S, € J,. Assume now that S,+f and let we S, and Te J,. Ifv ¢ T,
Te (J,J,—v) and |(S,U{YDNTISISNTI 1.
IfveT,
(T\{o}) U {w} € (U, 0, = 0),
so
(S, U {o}) N T] = [(S; U {w}) N ((T\{o}) U {w))]
SISNUT\{ph U {wh)l = 1.

We conclude that S € (J,,J, — v).

Next, let Se (J,,J, — v) and Te (J,,J, — v). In order to show that
Se (J,,J, — v) we must show that SN T|<1. Let S=S, US, and T=T, U T,
with §,, Ty X ,\{v} and S,, T, = X,. If S,= & or T,= ¢, then clearly |SN T
<1, because

S, el L (X,\{v}) and T, eJ,|(X;\{v}).

If S+ and T,+ ¥, then S; U{v} € J, and T, U{v} € J,. Hence
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IS, N Ty = (S, U{p) N (T, U {p})|-1 £1-1=0,
SO
ISNT| = |S; N Ty|+IS, N Tyl £ 0+1 = 1.

(c). Let first S € (J,,J, — v). Then S=S,US, with S; =X, and S, X,. If
S,=, then S € J; | (X,\{v}), so assume that S,=+ . Then S, U{v} € J, and
therefore

ScXiux,.
Let now Te J,|X1UJ,. If Te J,| X!, then
ISNT| =|$;NT| =1,
and if Te J,, then |SNT|=|S,N T|<1. Hence
SeJ,|X'UJ,.

Next let SeJ, | X{UJ,UWJ, | (X \{v}). If SeJ | (X,\{v}), then
S € (Jy,J, — v) by definition, so assume that

SeJ,|X'U7,.
Write S=S, US,with S, =X} and S,<=X,. If Te J,, then
IS;NTI=ISNTI =1,
0 S,€J,=J, Now let Te J,. If v & T, then
TN (S U ol = ITN S| £ 1

because TN X' e J, | X1=J,| X}. Ifve T, then TN X| = by definition of
X1, so

ITN (S, U{})l = 1.
Hence S e (J,,J, — v).

We can now show the following theorem:

THEOREM 12. Let J, and J, be 1.S.’s on X, and X , respectively. If P; and Py,
are WHP’s, X, NX, = and ve X, then P, , ., is a WHP.

Proor. Let X =(X,\{v}))UX,={v,,...,v,} and suppose P, ;,., is not a
WHP. Let y=(1,y,,...,,) be a vertex of (0P, ;,-,)*, with |y, <1 for some i,
and let

X,={veX| lyl<l,1Zisn}.
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Then P.hl(X]ﬂXy)U{v}) and Ple(inXy) are WHP’S, ((Xlan)U{v})n
(X;NX )= and v e (X, NX)U{v}, but

Py, L axinxpuish.d2t x2nxm-n = Puin-nix,

is not a WHP (see Lemma 8 (c)). We can therefore assume that X =X. We
split X, into three disjoint sets, X; ={v} U X} U X}, where

Xi = {vieX\{o} | {vo} e},

Let X1={vy,...,v,}, X2={v,11,. ., 0p1g} a0d X5 ={V,1 001, - -, Vpiguss)> With
n=p+gq-+t. By Lemma 11(c),

UpJ, =)l (XTUX,) =J,lX1UJT,,
$0 Py, j,0] (x!UX, is @ WHP by Theorems 4 and 10. Now let
Q = (0"""Py, -0l xiux))*>
and let S,,...,S, be chosen in (J,,J, — v), so that S,= (¥ and
[(0,x5,y) =1 for i=0,1,...,n.

We can arrange S,,...,5,,sothat S;N X, + Ffori=1.2,...,rand S;N X, =
for i=r+1,...,n Put

y’ = (l’ylﬁ- . -,y’,,yp+q+1,- . .,y”) .

By Lemma 7(b), y € Q. Furthermore, for i=0,1,...,r we have S; e (J,,J,
— )} (X1UX,) and

(0p+txg.'+‘,y,)| = l(onx§i,Y)| = 19

so y' lies in the intersection F of r+ 1 linearly independent facets of Q. Since 6. F
c0,0<0,CP*'*! and |yj<1 for i=12,...,n, the coordinate functionals
€1,..1€p€,1,415-+-,€, Cannot be constant on F, and their maximal
[minimal] values on F must be 1 [ —1 respectively]. Now let

2= (L,z1,...,2pZp1q415---»Zn) € OcF .

Assume first, that z;=(z,¢;)=1 for some 1<i<p and let p+q+1=<j<n. Then
{Ui,')j} € (Jy,J,— U)l(X}UXZ), sO

|(0p+(x +1t 7)| = |1+zi+zj| = |2+zj| <1.

vi, v}

Hence z;= —1. It follows that z,,,,,=...=2z,= —1 for every z € 3 .F with
z;=1 for some 1Zi<p. Since e, 44, . ., €, are not constant on F, there is for
each p+q+1=<j<navertex z’ of F with z}=1and z{ = ... =z}, = — 1. We shall

show that the vertices z/ (p+q+1<j<n) all coincide with z", and therefore
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zi=1 for p+q+1<isn. Let p+q+1=<j<n and define w=(wy,w,,...,w,)
as follows: w;=0 for i=p+1,...,p+q and w,=zi—z" for i=0,1,...,p,
p+q+1,...,n Then w;=0 for 0<i<p+gq, so

6,x3,w) =0 for r+15k<n.
For 1<k=<r we have
(0,x8,w) = (0,4, x8"",2—2,) = 0.

It follows that w=0, hence z/=2z" Assume now that {v,v;} € J, for some
p+q+1=i<j=n. Then {v,v;} € (J,,J, = v)[(X]UX)), so

I(90+tvattuj}’zn)‘ 1.
But

[0+ eXforops 2 = 14242 = 3.
Therefore J,={J,{p+q+1},...,{n}}. This together with Theorem 4 and
Lemma 11(b) gives that J,={&, {p+q+1},...,{n}}, but then we must have
that J,={¢p,{p+q+1}} (thatis t=1),s0 Py, ;,.,,=P;,. Since P, is a WHP,
we are led to a contradiction.
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