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ON MONOMIAL p°-REPRESENTATIONS
OF FINITE p-GROUPS

JORN B. OLSSON

In his paper [2] D. L. Johnson studied minimal faithful permutation
representations of finite groups. If G is a finite group, a homomorphism of G
into a symmetric group is called a permutation representation, and we let u(G)
denote the smallest possible degree (dimension) of a faithful (1—1) per-
mutation representation of G.

In the present note we study a natural generalization of this, monomial p*-
representations. These were first studied by H.-P. Jacobs in his thesis [1],
written at Universitdit Dortmund under the supervision of Professor
R. Kochendorffer. This note also contains an apparently new description of the
rank of a finite p-group (in terms of intersections of subgroups), which may be
of some independent interest.

Let a be a nonnegative integer, p a prime integer and n a positive integer. If
Sym (n) is the symmetric group on n letters and { denotes wreath product, the
group Z {Sym (n) may be considered as the group of n x n complex monomial
matrices, whose nonzero entries are p°th roots of unity. If G is a finite group, a
homomorphism M of G into Z ,«{Sym (n) is called a monomial p°-representation
of G (of degree n). If M is 1—1, it is called faithful. A faithful monomial p*-
representation of G is denoted briefly a FM (p°) of G. A FM (p®) of G of smallest
possible degree is called minimal and is denoted briefly a FMM (p®) of G. The
degree of a FMM (p°) of G is denoted (G, p?). Thus u(G, 1)= u(G) in Johnson’s
notation.

A monomial p°representation of G is in particular a monomial
representation of G and is therefore a direct sum of transitive monomial p*-
representations of G. Any transitive monomial representation of G is similar to
a representation T induced from a linear representation T of a subgroup H of
G, and it is a monomial p®representation of G, if and only if, H/Ker T is cyclic
of an order dividing p°. (Since H/Ker T is isomorphic to a subgroup of C, it is
cyclic. Moreover the values T(x), x € H, occur as entries in the monomial
matrices M (g), g € G, where M = TS, Thus T(x), x € H, have to be p°th roots of
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unity.) It is easily seen, the kernel of M =TC is just the G-core of K=XKer T,
that is, N, g K*.

For our purposes it is most convenient to describe an arbitrary monomial
p“-representation of G as a sequence

M = {(H,K)),...,(H,K,)},

where for 1 <i<r, H; and K, are subgroups of G, K;<tH,;, and H;/K; is cyclic of
an order dividing p®. This signifies that M is similar to ¥7_, T¢, where T} is a
linear representation of H; with kernel K;. The kernel of M is then just the G-
core of 7_, K,, and the degree of M is 37_, |G: H,. We call r the length of M.

If G is a group of p’-order, then a monomial p®-representation of G is just a
permutation representation of G. Since we have in the definition of a monomial
p“-representation already chosen a prime p, we restrict our attention to the case
where G is a finite p-group.

Let G be a finite p-group 1. We let d(G) denote the rank of G. An
intersection set for G is a set of subgroups {L,,L,,...,L;} of G such that

1

Li=1, andfor1 <j<s (L #*1.
1 =1
*j

(For s=1, this statement means just L, =1.)

The intersection rank of G is the maximal number of elements in an
intersection set for G and is denoted d(G). An intersection set for G with d(G)
elements is called maximal. As usual, Q(G) is the subgroup of G generated by all
elements of order p-in G.

ProrosITION 1. Let G be a finite p-group. Then the intersection rank of G
coincides with the (ordinary) rank, that is, d(G)=d(G).

Proor. If A4 is an abelian subgroup of G of rank r, thatis, A=4; x ... x A4,,
where 4,,..., A, are cyclic, define for 1 Si<r

A= AyX . XA XA X .. XA, .

It is easily seen that {4,,...,4,} is an intersection set for G. It follows that
d(G)<d(G). On the other hand, let {L,,...,L,} be an intersection set for G. We
show by induction on r, that G contains an abelian subgroup of rank r. This
will prove d(G)<d(G). For r=1, the claim is trivially true. Since L, N ... NL,
=1, there exists an i, | £i<r, such that Q,(Z(G))$L,~, say QI(Z(G))$L1.
(Here Z(G) is the center of G.) From the definition of an intersection set it
follows, that {L, NL,,L, NL,,...,L, NL,} is an intersection set for L,. By the
induction hypothesis L, contains an abelian subgroup A of rank r—1. Let
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ze€ Q,(Z(G)), z¢ L,. Then |z]=p and {(z)NA={z)NL,=1. Moreover
[{z>,A]=1, because z € Z(G), so {z) and A form a direct product in G.
Obviously (z) x A has rank r. This proves Proposition 1.

Let us note the following trivial result.

LeEMMA 2. Let G be a finite p-group, L=+ 1 a subgroup and L,,. . ., L, subgroups
of L. The following statements are equivalent

L. {L,,...,L,} is an intersection set for G
II. {L,,...,L,} is an intersection set for L
1. {L,NQ,(G),...,L,NQ,(G)} is an intersection set for Q,(G).

Now we return to monomial p®-representations. As in Proposition 2 of [2]
we of course have

LEmMMA 3. Let G and H be finite groups. Then

u(Gx H,p%) = u(G,p°)+u(H, p%) .
In the rest of this work G denotes a finite p-group 1.

LeEmMMA 4. Let
M = {(HI’KI)’ (H27 K2)a- Rl (HnKr)}

be a FMM (p*) of G. Then {K,NZ(G), K,NZ(G),....K,NZ(G)} is an
intersection set for Z(G) and G is isomorphic to a subgroup of
i=1G/(K;NZ(G)).

Proor. Let N;=K;NZ(G), 1 <i<r. Now M is faithful if and only if the G-
core of K, NK,N...NK, is 1 and this is obviously equivalent to

K,NK,N...NK,NZG) =1.

(If K, NK,N...NK,contains a nontrivial normal subgroup of G, this normal
subgroup has a nontrivial intersection with Z(G).) So as M is faithful,
N,NAN,N...NN,=1.If for some i, 1 Sis<r,

N,AN,N ...ON,_, ANy, N...ON, =1,

then {(H,K,),(H;,K,),...,(H;_,K;_),(H;+ 1, K1), ., (H,K))} is a
FM (p?) of G. This contradicts that M is minimal. So {N,,...,N,} is an
intersection set for Z(G). Since N;N...NN,=1, the homomorphism
X+ (xN,,...,xN,) from G to [i-,G/N;is 1—1.
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As an extension of Theorem 3 of [2] and Hauptsatz 6 of [1] we offer the
following:

THEOREM 5. Let a= 1. The length of a FMM (p°) of G is at most d(Z(G)). If p
is odd, it equals d(Z(G)), and if p=2, there exists a FMM (2%) of G of length
d(Z(G)).

Proor. Let M={(H,K,), (H,,K},),. .., (H,,K,)} be a FMM (p°) of G, let Q
=Q,(Z(G)), and define L;=QNK,, 1<i<r. By Lemma 4 and Lemma 2
{Li,L,,...,L,} is an intersection set for Q. Thus by Proposition 1, r<d(Q)
=d(Z(G)), proving the first statement of Theorem 5. Since {L,,L,,...,L,} is an
intersection set for Q, L, $Q for 1<i<r. Suppose |Q: Lj=p for all i, 1<iZr.
Then in the chain

QoL oL, NL,> ...oL,NL,N...NL =1

each subgroup has index exactly p in the preceding. It follows, that |Q|=p".
This means that d(Z(G))=r, so we have done in this case.

Suppose now |Q2: L|>p for some i, say |Q2: L,|>p.

Let H,=Q-H,. As Q< Z(G), we have for the commutator groups

[ﬁl’ﬁl] = [Hl’Hl]

In

Kl-

It follows that K,<tH,, and that H,/K, is abelian. Moreover, by an
isomorphism theorem

H/K, = QH,/K, 2 QK,/K, =~ Q) QN K, = Q/L, .

Now Q/L, is elementary abelian of order at least p?, so H,/K, is not cyclic. By
the theory of finite abelian groups we can choose a subgroup H, < H,, such
that

HI/KI ~ H\/K,;xA/K,,
where |4: K,|=p. Then obviously H; N A=K, so
M = {(Hla H]); (gla A), (HZs K2)9 (H3’ K3)’~ DRE} (Hrs Kr)}
is a FM (p% of G. Thus the degree of M is greater than the degree of M, ie.,

2:|G: H,| = |G: H,| .

This is impossible when p is odd. When p =2, equality is possible, so that M
and M have the same degree. But the length of M is greater than the length of
M. By repeating the above argument we can eventually get a FMM (2°) of G of
length d(Z(G)). This proves Theorem 5.
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Let us note, that in the case G is abelian we have the following trivial
Corollary to Theorem 5:

CoROLLARY 6. Syppose G is abelian, a= 1. If there exists a subgroup H of G,
such that {(H,1)} is an FMM (p*) of G of maximal length, then G=Z(G) is
cyclic.

(When p is odd one can drop the condition on maximal length in Corollary
6, but not for p=2. See Satz 10 in [1].)

A subgroup H of G is called primitive, if there does not exist two subgroups
L,N of G with L+H, N+ H and LN N =H. Since we are assuming that Gis a
p-group, H =G is primitive, if and only if, d(Ng(H)/H)=1. This is fairly easy to
show. It can for instance be proved by using Proposition 1.

If M={(H,K,),(H,,K,),...,(H,K,)} is a FMM (p?) of G, one may ask
whether the subgroups K,,. . ., K, of G are primitive. For a=0, 1, this is true by
results of Johnson and Jacobs. However, for a=2, it is generally false, as the
following simple example shows. Let

D= <(xy| x*=y?=1y xy=x"1)

be the dihedral group of order 8. As Z(D)=<{x2) is cyclic,a FMM (2 of D has
length 1 by Theorem 5. If it is {(H, K)}, then KN Z(D)=1,s0 KN{x)=1. Now
{({y,x*),<{y>)} and {({x), 1)} are both FMM (2°'s of D if a=2. But 1 is not a
primitive subgroup of D. A similar example exists for odd p. (Take a group of
order p* and exponent p?).

However, we can prove the following result for all a=1, which puts some
restriction on the K;’s of a FMM (p°) of G.

ProposITION 7. Let M ={(H,K,), (H,,K,),. . ., (H,,K,)} be a FMM (p®) of G
of maximal length, a= 1. Let 1<i<r. If N;=Ng(K,) and N is a subgroup of N;
containing H;* Z(G), then {(H;/K;, 1)} is a FMM (p°) of N;/K; of maximal length.
The center of N;/K; is cyclic. In particular, if N;/K; is abelian, it is cyclic.

Proor. We assume i=1. Suppose that {(H,/K,,1)} is not a FMM (p°) of
N,/K,. It is obviously a FM (p%). Let
M = {(Rb gl), (R29 gz)a' LR} (Rv gt)}
be a FMM (p°) of N,/K,. If Z, is defined by Z,/K,=Z(N/K,) and R, S; by
Rj/K, = R, §;/K, =S, 1sjst,

J°
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then Z(G)= Z,, (since Z(G)< N, by assumption), and
*) Z,NS,NS,N...NS, =K, ,

(since M is faithful).
Now consider

M = {(R},S)),(R3S,),. .., (R,S), (H,, K,), (Hs, K3),. . ., (H,, K,)}
as a monomial p®-representation of G. By (*)
(S;N...NS) N (K,N...NK,) N Z(G)
= ((5;N...NS,NZYNZ@G)N (K,N...NK))
=K, NK,N...NK,NZ(G)
=1,

because M is faithful. Thus M’ is faithful. Moreover, since M is a FMM (p®) of
Nl/Kla

IN,: Hy| > [N;: Ry +IN,: Ry|+...+|N,: R/,
so multiplying by |G: N,| gives
IG: H,| > |G: R,|+|G: Ry|+ ... +|G: R .

We now have a contradiction to the assumption, that M is minimal. Thus
{(H,/K,),1} is a FMM (p°) of N,/K,. A similar argument shows, that since M
is of maximal length, the same is true for {(H,/K,,1)}. We can now apply
Theorem 5 to get the rest of the statements of Proposition 7.

If i € Z we define

() = p, ifi=0
Py =11, ifi<o.

We finish this note by computing u(G, p%), if G is abelian. (In [1], this was done
for d(G)=2 or a=1).

THEOREM 8. If a=1 and G is abelian of type (p™,...,p%), then
uG,p) = Y {p}.
j=1
Proor. Let M={H,,K,),(H,,K},),...,(H,K,)} be a FMM (p*) of G of

maximal length (cf. Theorem 5!). Let 1 <i<r. Since G is abelian, N;(K,) =G,
and therefore G/K; is cyclic by Proposition 7. It is easy to see, that
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IG: HJ = {'GLK"}-
14

By Lemma 4 we may consider G as a subgroup of [Tj-, G/K; By a well-
known theorem on abelian group we get, that after possibly reordering the
ajs, we have p%||G: K/, 1<i<r. Thus

G: K,
(e < {!} 1<izr

pﬂ

By assumption M is minimal, so

u(G,p?) = i |G: Hj| = z {leK } Z (p%=9)

proving one inequality. The other inequality is trivial for r=1, and for
arbitrary r it then follows from Lemma 3.

One final remark: It is easy to prove that for an arbitrary finite group G and
a=0

p°’u(G,p") 2 u(G) 2 u(G,p*)
and that these bounds are the best possible.
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