ON MONOMIAL p^a -REPRESENTATIONS OF FINITE p-GROUPS

JØRN B. OLSSON

In his paper [2] D. L. Johnson studied minimal faithful permutation representations of finite groups. If G is a finite group, a homomorphism of G into a symmetric group is called a permutation representation, and we let $\mu(G)$ denote the smallest possible degree (dimension) of a faithful (1-1) permutation representation of G.

In the present note we study a natural generalization of this, monomial p^a -representations. These were first studied by H.-P. Jacobs in his thesis [1], written at Universität Dortmund under the supervision of Professor R. Kochendörffer. This note also contains an apparently new description of the rank of a finite p-group (in terms of intersections of subgroups), which may be of some independent interest.

Let a be a nonnegative integer, p a prime integer and n a positive integer. If Sym (n) is the symmetric group on n letters and n denotes wreath product, the group $Z_{p^a} \ge Sym$ (n) may be considered as the group of $n \times n$ complex monomial matrices, whose nonzero entries are p^a th roots of unity. If G is a finite group, a homomorphism M of G into $Z_{p^a} \ge Sym$ (n) is called a monomial p^a -representation of G (of degree n). If M is 1-1, it is called faithful. A faithful monomial p^a -representation of G is denoted briefly a FM (p^a) of G. A FM (p^a) of G of smallest possible degree is called minimal and is denoted briefly a FMM (p^a) of G. The degree of a FMM (p^a) of G is denoted $\mu(G, p^a)$. Thus $\mu(G, 1) = \mu(G)$ in Johnson's notation.

A monomial p^a -representation of G is in particular a monomial representation of G and is therefore a direct sum of transitive monomial p^a -representations of G. Any transitive monomial representation of G is similar to a representation T^G induced from a linear representation T of a subgroup H of G, and it is a monomial p^a -representation of G, if and only if, H/Ker T is cyclic of an order dividing p^a . (Since H/Ker T is isomorphic to a subgroup of G, it is cyclic. Moreover the values G(G), G is G in the monomial matrices G in G in

unity.) It is easily seen, the kernel of $M = T^G$ is just the G-core of K = Ker T, that is, $\bigcap_{g \in G} K^g$.

For our purposes it is most convenient to describe an arbitrary monomial p^a -representation of G as a sequence

$$M = \{(H_1, K_1), \ldots, (H_r, K_r)\},\$$

where for $1 \le i \le r$, H_i and K_i are subgroups of G, $K_i \triangleleft H_i$, and H_i/K_i is cyclic of an order dividing p^a . This signifies that M is similar to $\sum_{i=1}^r T_i^G$, where T_i is a linear representation of H_i with kernel K_i . The kernel of M is then just the G-core of $\bigcap_{i=1}^r K_i$, and the degree of M is $\sum_{i=1}^r |G: H_i|$. We call r the length of M.

If G is a group of p'-order, then a monomial p^a -representation of G is just a permutation representation of G. Since we have in the definition of a monomial p^a -representation already chosen a prime p, we restrict our attention to the case where G is a finite p-group.

Let G be a finite p-group ± 1 . We let d(G) denote the rank of G. An intersection set for G is a set of subgroups $\{L_1, L_2, \ldots, L_s\}$ of G such that

$$\bigcap_{i=1}^{s} L_i = 1, \quad \text{and for } 1 \leq j \leq s \quad \bigcap_{\substack{i=1 \ i \neq j}}^{s} L_i \neq 1.$$

(For s=1, this statement means just $L_1=1$.)

The intersection rank of G is the maximal number of elements in an intersection set for G and is denoted $\overline{d}(G)$. An intersection set for G with $\overline{d}(G)$ elements is called maximal. As usual, $\Omega(G)$ is the subgroup of G generated by all elements of order p in G.

PROPOSITION 1. Let G be a finite p-group. Then the intersection rank of G coincides with the (ordinary) rank, that is, $\tilde{d}(G) = d(G)$.

PROOF. If A is an abelian subgroup of G of rank r, that is, $A = A_1 \times ... \times A_r$, where $A_1, ..., A_r$ are cyclic, define for $1 \le i \le r$

$$\hat{A}_i = A_1 \times \ldots \times A_{i-1} \times A_{i+1} \times \ldots \times A_r$$

It is easily seen that $\{\hat{A}_1,\ldots,\hat{A}_r\}$ is an intersection set for G. It follows that $d(G) \leq \tilde{d}(G)$. On the other hand, let $\{L_1,\ldots,L_r\}$ be an intersection set for G. We show by induction on r, that G contains an abelian subgroup of rank r. This will prove $\tilde{d}(G) \leq d(G)$. For r=1, the claim is trivially true. Since $L_1 \cap \ldots \cap L_r = 1$, there exists an $i, 1 \leq i \leq r$, such that $\Omega_1(Z(G)) \not\subseteq L_i$, say $\Omega_1(Z(G)) \not\subseteq L_1$.

(Here Z(G) is the center of G.) From the definition of an intersection set it follows, that $\{L_1 \cap L_2, L_1 \cap L_3, \ldots, L_1 \cap L_r\}$ is an intersection set for L_1 . By the induction hypothesis L_1 contains an abelian subgroup A of rank r-1. Let

 $z \in \Omega_1(Z(G))$, $z \notin L_1$. Then |z| = p and $\langle z \rangle \cap A = \langle z \rangle \cap L_1 = 1$. Moreover $[\langle z \rangle, A] = 1$, because $z \in Z(G)$, so $\langle z \rangle$ and A form a direct product in G. Obviously $\langle z \rangle \times A$ has rank r. This proves Proposition 1.

Let us note the following trivial result.

LEMMA 2. Let G be a finite p-group, $L \neq 1$ a subgroup and L_1, \ldots, L_r subgroups of L. The following statements are equivalent

- I. $\{L_1, \ldots, L_r\}$ is an intersection set for G
- II. $\{L_1, \ldots, L_r\}$ is an intersection set for L
- III. $\{L_1 \cap \Omega_1(G), \ldots, L_r \cap \Omega_1(G)\}\$ is an intersection set for $\Omega_1(G)$.

Now we return to monomial p^a -representations. As in Proposition 2 of [2] we of course have

LEMMA 3. Let G and H be finite groups. Then

$$\mu(G \times H, p^a) \leq \mu(G, p^a) + \mu(H, p^a)$$
.

In the rest of this work G denotes a finite p-group ± 1 .

LEMMA 4. Let

$$M = \{(H_1, K_1), (H_2, K_2), \ldots, (H_r, K_r)\}$$

be a FMM (p^a) of G. Then $\{K_1 \cap Z(G), K_2 \cap Z(G), \ldots, K_r \cap Z(G)\}$ is an intersection set for Z(G) and G is isomorphic to a subgroup of $\prod_{i=1}^r G/(K_i \cap Z(G))$.

PROOF. Let $N_i = K_i \cap Z(G)$, $1 \le i \le r$. Now M is faithful if and only if the G-core of $K_1 \cap K_2 \cap \ldots \cap K_r$ is 1 and this is obviously equivalent to

$$K_1 \cap K_2 \cap \ldots \cap K_r \cap Z(G) = 1$$
.

(If $K_1 \cap K_2 \cap \ldots \cap K_r$ contains a nontrivial normal subgroup of G, this normal subgroup has a nontrivial intersection with Z(G).) So as M is faithful, $N_1 \cap N_2 \cap \ldots \cap N_r = 1$. If for some i, $1 \le i \le r$,

$$N_1 \cap N_2 \cap \ldots \cap N_{i-1} \cap N_{i+1} \cap \ldots \cap N_r = 1$$
,

then $\{(H_1, K_1), (H_2, K_2), \ldots, (H_{i-1}, K_{i-1}), (H_{i+1}, K_{i+1}), \ldots, (H_r, K_r)\}$ is a FM (p^a) of G. This contradicts that M is minimal. So $\{N_1, \ldots, N_r\}$ is an intersection set for Z(G). Since $N_1 \cap \ldots \cap N_r = 1$, the homomorphism $x \mapsto (xN_1, \ldots, xN_r)$ from G to $\prod_{i=1}^r G/N_i$ is 1-1.

As an extension of Theorem 3 of [2] and Hauptsatz 6 of [1] we offer the following:

THEOREM 5. Let $a \ge 1$. The length of a FMM (p^a) of G is at most d(Z(G)). If p is odd, it equals d(Z(G)), and if p = 2, there exists a FMM (2^a) of G of length d(Z(G)).

PROOF. Let $M = \{(H_1, K_1), (H_2, K_2), \ldots, (H_r, K_r)\}$ be a FMM (p^a) of G, let $\Omega = \Omega_1(Z(G))$, and define $L_i = \Omega \cap K_i$, $1 \le i \le r$. By Lemma 4 and Lemma 2 $\{L_1, L_2, \ldots, L_r\}$ is an intersection set for Ω . Thus by Proposition 1, $r \le d(\Omega) = d(Z(G))$, proving the first statement of Theorem 5. Since $\{L_1, L_2, \ldots, L_r\}$ is an intersection set for Ω , $L_i \not\equiv \Omega$ for $1 \le i \le r$. Suppose $|\Omega: L_i| = p$ for all $i, 1 \le i \le r$. Then in the chain

$$\Omega \supset L_1 \supset L_1 \cap L_2 \supset \ldots \supset L_1 \cap L_2 \cap \ldots \cap L_r = 1$$

each subgroup has index exactly p in the preceding. It follows, that $|\Omega| = p^r$. This means that d(Z(G)) = r, so we have done in this case.

Suppose now $|\Omega: L_i| > p$ for some i, say $|\Omega: L_1| > p$.

Let $\hat{H}_1 = \Omega \cdot H_1$. As $\Omega \subseteq Z(G)$, we have for the commutator groups

$$[\hat{H}_1, \hat{H}_1] = [H_1, H_1] \subseteq K_1$$
.

It follows that $K_1 \triangleleft \hat{H}_1$, and that \hat{H}_1/K_1 is abelian. Moreover, by an isomorphism theorem

$$\hat{H}_1/K_1 = \Omega H_1/K_1 \supseteq \Omega K_1/K_1 \cong \Omega/\Omega \cap K_1 = \Omega/L_1.$$

Now Ω/L_1 is elementary abelian of order at least p^2 , so \hat{H}_1/K_1 is not cyclic. By the theory of finite abelian groups we can choose a subgroup $\hat{H}_1 \subseteq \hat{H}_1$, such that

$$\tilde{H}_1/K_1 \cong H_1/K_1 \times A/K_1$$
,

where $|A: K_1| = p$. Then obviously $H_1 \cap A = K_1$, so

$$\tilde{M} = \{(\tilde{H}_1, H_1), (\tilde{H}_1, A), (H_2, K_2), (H_3, K_3), \dots, (H_r, K_r)\}$$

is a FM (p^a) of G. Thus the degree of \tilde{M} is greater than the degree of M, i.e.,

$$2 \cdot |G: \tilde{H}_1| \ge |G: H_1|.$$

This is impossible when p is odd. When p=2, equality is possible, so that \tilde{M} and M have the same degree. But the length of \tilde{M} is greater than the length of M. By repeating the above argument we can eventually get a FMM (2^a) of G of length d(Z(G)). This proves Theorem 5.

Let us note, that in the case G is abelian we have the following trivial Corollary to Theorem 5:

COROLLARY 6. Suppose G is abelian, $a \ge 1$. If there exists a subgroup H of G, such that $\{(H,1)\}$ is an FMM (p^a) of G of maximal length, then G = Z(G) is cyclic.

(When p is odd one can drop the condition on maximal length in Corollary 6, but not for p=2. See Satz 10 in [1].)

A subgroup H of G is called *primitive*, if there does not exist two subgroups L, N of G with $L \neq H$, $N \neq H$ and $L \cap N = H$. Since we are assuming that G is a p-group, $H \subseteq G$ is primitive, if and only if, $d(N_G(H)/H) = 1$. This is fairly easy to show. It can for instance be proved by using Proposition 1.

If $M = \{(H_1, K_1), (H_2, K_2), \ldots, (H_r, K_r)\}$ is a FMM (p^a) of G, one may ask whether the subgroups K_1, \ldots, K_r of G are primitive. For a = 0, 1, this is true by results of Johnson and Jacobs. However, for $a \ge 2$, it is generally false, as the following simple example shows. Let

$$D = \langle x, y \mid x^4 = y^2 = 1, y^{-1}xy = x^{-1} \rangle$$

be the dihedral group of order 8. As $Z(D) = \langle x^2 \rangle$ is cyclic, a FMM (2^a) of D has length 1 by Theorem 5. If it is $\{(H, K)\}$, then $K \cap Z(D) = 1$, so $K \cap \langle x \rangle = 1$. Now $\{(\langle y, x^2 \rangle, \langle y \rangle)\}$ and $\{(\langle x \rangle, 1)\}$ are both FMM (2^a) 's of D if $a \ge 2$. But 1 is not a primitive subgroup of D. A similar example exists for odd p. (Take a group of order p^3 and exponent p^2).

However, we can prove the following result for all $a \ge 1$, which puts some restriction on the K_i 's of a FMM (p^a) of G.

PROPOSITION 7. Let $M = \{(H_1, K_1), (H_2, K_2), \ldots, (H_r, K_r)\}$ be a FMM (p^a) of G of maximal length, $a \ge 1$. Let $1 \le i \le r$. If $N_i = N_G(K_i)$ and \tilde{N}_i is a subgroup of N_i containing $H_i \cdot Z(G)$, then $\{(H_i/K_i, 1)\}$ is a FMM (p^a) of \tilde{N}_i/K_i of maximal length. The center of \tilde{N}_i/K_i is cyclic. In particular, if N_i/K_i is abelian, it is cyclic.

PROOF. We assume i=1. Suppose that $\{(H_1/K_1,1)\}$ is not a FMM (p^a) of \tilde{N}_1/K_1 . It is obviously a FM (p^a) . Let

$$\bar{M} = \{(\bar{R}_1, \bar{S}_1), (\bar{R}_2, \bar{S}_2), \dots, (\bar{R}_t, \bar{S}_t)\}$$

be a FMM (p^a) of \tilde{N}_1/K_1 . If Z_1 is defined by $Z_1/K_1 = Z(\tilde{N}_1/K_1)$ and R_i, S_i by

$$R_{i}/K_{1} = R_{i}, \quad S_{i}/K_{1} = S_{i}, \quad 1 \leq j \leq t$$

then $Z(G) \subseteq Z_1$, (since $Z(G) \subseteq \tilde{N}_i$ by assumption), and

$$(*) Z_1 \cap S_1 \cap S_2 \cap \ldots \cap S_t = K_1,$$

(since \bar{M} is faithful).

Now consider

$$M' = \{(R_1, S_1), (R_2, S_2), \dots, (R_t, S_t), (H_2, K_2), (H_3, K_3), \dots, (H_t, K_t)\}$$

as a monomial p^a -representation of G. By (*)

$$(S_1 \cap \ldots \cap S_t) \cap (K_2 \cap \ldots \cap K_r) \cap Z(G)$$

$$= ((S_1 \cap \ldots \cap S_t \cap Z_1) \cap Z(G)) \cap (K_2 \cap \ldots \cap K_r)$$

$$= K_1 \cap K_2 \cap \ldots \cap K_r \cap Z(G)$$

$$= 1,$$

because M is faithful. Thus M' is faithful. Moreover, since \overline{M} is a FMM (p^a) of \overline{N}_1/K_1 ,

$$|\tilde{N}_1: H_1| > |\tilde{N}_1: R_1| + |\tilde{N}_2: R_2| + \ldots + |\tilde{N}_2: R_t|,$$

so multiplying by $|G: \tilde{N}_1|$ gives

$$|G: H_1| > |G: R_1| + |G: R_2| + \ldots + |G: R_t|$$

We now have a contradiction to the assumption, that M is minimal. Thus $\{(H_1/K_1), 1\}$ is a FMM (p^a) of \tilde{N}_1/K_1 . A similar argument shows, that since M is of maximal length, the same is true for $\{(H_1/K_1, 1)\}$. We can now apply Theorem 5 to get the rest of the statements of Proposition 7.

If $i \in \mathbb{Z}$ we define

$$\{p^i\} = \begin{cases} p^i, & \text{if } i \ge 0 \\ 1, & \text{if } i \le 0 \end{cases}.$$

We finish this note by computing $\mu(G, p^a)$, if G is abelian. (In [1], this was done for d(G)=2 or a=1).

Theorem 8. If $a \ge 1$ and G is abelian of type $(p^{a_1}, \ldots, p^{a_r})$, then

$$\mu(G, p^a) = \sum_{j=1}^r \{p^{a_j-a}\}.$$

PROOF. Let $M = \{H_1, K_1\}, (H_2, K_2), \ldots, (H_r, K_r)\}$ be a FMM (p^a) of G of maximal length (cf. Theorem 5!). Let $1 \le i \le r$. Since G is abelian, $N_G(K_i) = G$, and therefore G/K_i is cyclic by Proposition 7. It is easy to see, that

$$|G\colon H_i| = \left\{\frac{|G\colon K_i|}{p^a}\right\}.$$

By Lemma 4 we may consider G as a subgroup of $\prod_{j=1}^{r} G/K_{j}$. By a well-known theorem on abelian group we get, that after possibly reordering the a_{i} 's, we have $p^{a_{i}} | |G: K_{i}|$, $1 \le i \le r$. Thus

$$\{p^{a_i-a}\} \leq \left\{\frac{|G\colon K_i|}{p^a}\right\}, \quad 1 \leq i \leq r.$$

By assumption M is minimal, so

$$\mu(G, p^a) = \sum_{j=1}^{r} |G: H_j| = \sum_{j=1}^{r} \left\{ \frac{|G: K_j|}{p^a} \right\} \ge \sum_{j=1}^{r} \left\{ p^{a_i - a} \right\}$$

proving one inequality. The other inequality is trivial for r=1, and for arbitrary r it then follows from Lemma 3.

One final remark: It is easy to prove that for an arbitrary finite group G and $a \ge 0$

$$p^a\mu(G, p^a) \geq \mu(G) \geq \mu(G, p^a)$$

and that these bounds are the best possible.

REFERENCES

- H.-P. Jacobs, Minimale monomiale Darstellungen endlicher Gruppen, Dissertation, Universität Dortmund, 1975.
- D. L. Johnson, Minimal permutation representations of finite groups, Amer. J. Math. 93 (1971), 857–866.

ABTEILUNG MATHEMATIK UNIVERSITÄT DORTMUND W. GERMANY