ON MONOMIAL p^a-REPRESENTATIONS
OF FINITE p-GROUPS

JØRN B. OLSSON

In his paper [2] D. L. Johnson studied minimal faithful permutation representations of finite groups. If G is a finite group, a homomorphism of G into a symmetric group is called a permutation representation, and we let $\mu(G)$ denote the smallest possible degree (dimension) of a faithful $(1-1)$ permutation representation of G.

In the present note we study a natural generalization of this, monomial p^a-representations. These were first studied by H.-P. Jacobs in his thesis [1], written at Universität Dortmund under the supervision of Professor R. Kochendörffer. This note also contains an apparently new description of the rank of a finite p-group (in terms of intersections of subgroups), which may be of some independent interest.

Let a be a nonnegative integer, p a prime integer and n a positive integer. If $\text{Sym}(n)$ is the symmetric group on n letters and Λ denotes wreath product, the group $\mathbb{Z}_{p^a}\wr \text{Sym}(n)$ may be considered as the group of $n \times n$ complex monomial matrices, whose nonzero entries are p^ath roots of unity. If G is a finite group, a homomorphism M of G into $\mathbb{Z}_{p^a}\wr \text{Sym}(n)$ is called a monomial p^a-representation of G (of degree n). If M is $1-1$, it is called faithful. A faithful monomial p^a-representation of G is denoted briefly a FM (p^a) of G. A FM (p^a) of G of smallest possible degree is called minimal and is denoted briefly a FMM (p^a) of G. The degree of a FMM (p^a) of G is denoted $\mu(G, p^a)$. Thus $\mu(G, 1) = \mu(G)$ in Johnson’s notation.

A monomial p^a-representation of G is in particular a monomial representation of G and is therefore a direct sum of transitive monomial p^a-representations of G. Any transitive monomial representation of G is similar to a representation T^G induced from a linear representation T of a subgroup H of G, and it is a monomial p^a-representation of G, if and only if, $H/\text{Ker } T$ is cyclic of an order dividing p^a. (Since $H/\text{Ker } T$ is isomorphic to a subgroup of \mathbb{C}, it is cyclic. Moreover the values $T(x)$, $x \in H$, occur as entries in the monomial matrices $M(g)$, $g \in G$, where $M = T^G$. Thus $T(x)$, $x \in H$, have to be p^ath roots of

Received March 3, 1976.
unity.) It is easily seen, the kernel of $M = T^G$ is just the G-core of $K = \text{Ker} \ T$, that is, $\cap_{g \in G} K^g$.

For our purposes it is most convenient to describe an arbitrary monomial p^a-representation of G as a sequence

$M = \{ (H_1, K_1), \ldots, (H_r, K_r) \}$,

where for $1 \leq i \leq r$, H_i and K_i are subgroups of G, $K_i \lhd H_i$, and H_i/K_i is cyclic of an order dividing p^a. This signifies that M is similar to $\sum_{i=1}^r T_i^G$, where T_i is a linear representation of H_i with kernel K_i. The kernel of M is then just the G-core of $\bigcap_{i=1}^r K_i$, and the degree of M is $\sum_{i=1}^r |G: H_i|$. We call r the length of M.

If G is a group of p'-order, then a monomial p^a-representation of G is just a permutation representation of G. Since we have in the definition of a monomial p^a-representation already chosen a prime p, we restrict our attention to the case where G is a finite p-group.

Let G be a finite p-group $\neq 1$. We let $d(G)$ denote the rank of G. An intersection set for G is a set of subgroups $\{L_1, L_2, \ldots, L_s\}$ of G such that

$$\bigcap_{i=1}^s L_i = 1, \quad \text{and for } 1 \leq j \leq s \quad \bigcap_{i=1 \neq j}^s L_i \neq 1.$$

(For $s=1$, this statement means just $L_1 = 1$.)

The intersection rank of G is the maximal number of elements in an intersection set for G and is denoted $\tilde{d}(G)$. An intersection set for G with $\tilde{d}(G)$ elements is called maximal. As usual, $\Omega(G)$ is the subgroup of G generated by all elements of order p in G.

Proposition 1. Let G be a finite p-group. Then the intersection rank of G coincides with the (ordinary) rank, that is, $\tilde{d}(G) = d(G)$.

Proof. If A is an abelian subgroup of G of rank r, that is, $A = A_1 \times \ldots \times A_r$, where A_1, \ldots, A_r are cyclic, define for $1 \leq i \leq r$

$$\tilde{A}_i = A_1 \times \ldots \times A_{i-1} \times A_{i+1} \times \ldots \times A_r.$$

It is easily seen that $\{ \tilde{A}_1, \ldots, \tilde{A}_r \}$ is an intersection set for G. It follows that $d(G) \leq \tilde{d}(G)$. On the other hand, let $\{L_1, \ldots, L_r\}$ be an intersection set for G. We show by induction on r, that G contains an abelian subgroup of rank r. This will prove $\tilde{d}(G) \leq d(G)$. For $r=1$, the claim is trivially true. Since $L_1 \cap \ldots \cap L_r = 1$, there exists an i, $1 \leq i \leq r$, such that $\Omega_i(Z(G)) \nmid L_i$, say $\Omega_i(Z(G)) \nmid L_1$.

(Here $Z(G)$ is the center of G.) From the definition of an intersection set it follows, that $\{L_1 \cap L_2, L_1 \cap L_3, \ldots, L_1 \cap L_r\}$ is an intersection set for L_1. By the induction hypothesis L_1 contains an abelian subgroup A of rank $r-1$. Let
\(z \in \Omega_1(Z(G)), \ z \notin L_1. \) Then \(|z|=p\) and \(\langle z \rangle \cap A = \langle z \rangle \cap L_1 = 1. \) Moreover \([\langle z \rangle, A] = 1, \) because \(z \in Z(G), \) so \(\langle z \rangle \) and \(A \) form a direct product in \(G. \) Obviously \(\langle z \rangle \times A \) has rank \(r. \) This proves Proposition 1.

Let us note the following trivial result.

Lemma 2. Let \(G \) be a finite \(p \)-group, \(L \neq 1 \) a subgroup and \(L_1, \ldots, L_r \) subgroups of \(L. \) The following statements are equivalent

I. \(\{L_1, \ldots, L_r\} \) is an intersection set for \(G \)

II. \(\{L_1, \ldots, L_r\} \) is an intersection set for \(L \)

III. \(\{L_1 \cap \Omega_1(G), \ldots, L_r \cap \Omega_1(G)\} \) is an intersection set for \(\Omega_1(G). \)

Now we return to monomial \(p^a \)-representations. As in Proposition 2 of [2] we of course have

Lemma 3. Let \(G \) and \(H \) be finite groups. Then

\[
\mu(G \times H, p^a) \leq \mu(G, p^a) + \mu(H, p^a).
\]

In the rest of this work \(G \) denotes a finite \(p \)-group \(\neq 1. \)

Lemma 4. Let

\[
M = \{(H_1, K_1), (H_2, K_2), \ldots, (H_r, K_r)\}
\]

be a FMM \((p^a)\) of \(G. \) Then \(\{K_1 \cap Z(G), K_2 \cap Z(G), \ldots, K_r \cap Z(G)\} \) is an intersection set for \(Z(G) \) and \(G \) is isomorphic to a subgroup of \(\prod_{i=1}^r G/(K_i \cap Z(G)). \)

Proof. Let \(N_i = K_i \cap Z(G), 1 \leq i \leq r. \) Now \(M \) is faithful if and only if the \(G \)-core of \(K_1 \cap K_2 \cap \ldots \cap K_r \) is 1 and this is obviously equivalent to

\[
K_1 \cap K_2 \cap \ldots \cap K_r \cap Z(G) = 1.
\]

(If \(K_1 \cap K_2 \cap \ldots \cap K_r \) contains a nontrivial normal subgroup of \(G, \) this normal subgroup has a nontrivial intersection with \(Z(G). \)) So as \(M \) is faithful, \(N_1 \cap N_2 \cap \ldots \cap N_r = 1. \) If for some \(i, 1 \leq i \leq r, \)

\[
N_1 \cap N_2 \cap \ldots \cap N_{i-1} \cap N_{i+1} \cap \ldots \cap N_r = 1,
\]

then \(\{(H_1, K_1), (H_2, K_2), \ldots, (H_{i-1}, K_{i-1}), (H_{i+1}, K_{i+1}), \ldots, (H_r, K_r)\} \) is a FMM \((p^a)\) of \(G. \) This contradicts that \(M \) is minimal. So \(\{N_1, \ldots, N_r\} \) is an intersection set for \(Z(G). \) Since \(N_1 \cap \ldots \cap N_r = 1, \) the homomorphism \(x \mapsto (xN_1, \ldots, xN_r) \) from \(G \) to \(\prod_{i=1}^r G/N_i \) is \(1-1. \)
As an extension of Theorem 3 of [2] and Hauptsatz 6 of [1] we offer the following:

Theorem 5. Let $a \geq 1$. The length of a FMM (p^a) of G is at most $d(Z(G))$. If p is odd, it equals $d(Z(G))$, and if $p=2$, there exists a FMM (2^a) of G of length $d(Z(G))$.

Proof. Let $M = \{(H_1, K_1), (H_2, K_2), \ldots, (H_r, K_r)\}$ be a FMM (p^a) of G, let $\Omega = \Omega \cap (Z(G))$, and define $L_i = \Omega \cap K_i, 1 \leq i \leq r$. By Lemma 4 and Lemma 2, $\{L_1, L_2, \ldots, L_r\}$ is an intersection set for Ω. Thus by Proposition 1, $r \leq d(\Omega) = d(Z(G))$, proving the first statement of Theorem 5. Since $\{L_1, L_2, \ldots, L_r\}$ is an intersection set for Ω, $L_i \leq \Omega$ for $1 \leq i \leq r$. Suppose $|\Omega: L_i| = p$ for all i, $1 \leq i \leq r$. Then in the chain

$$\Omega \supset L_1 \supset L_1 \cap L_2 \supset \ldots \supset L_1 \cap L_2 \cap \ldots \cap L_r = 1$$

each subgroup has index exactly p in the preceding. It follows, that $|\Omega| = p^r$. This means that $d(Z(G)) = r$, so we have done in this case.

Suppose now $|\Omega: L_i| > p$ for some i, say $|\Omega: L_1| > p$.

Let $\hat{H}_1 = \Omega \cdot H_1$. As $\Omega \leq Z(G)$, we have for the commutator groups

$$[\hat{H}_1, \hat{H}_1] = [H_1, H_1] \leq K_1.$$

It follows that $K_1 \triangleleft \hat{H}_1$, and that \hat{H}_1/K_1 is abelian. Moreover, by an isomorphism theorem

$$\hat{H}_1/K_1 = \Omega H_1/K_1 \cong \Omega K_1/K_1 \cong \Omega / \Omega \cap K_1 = \Omega / L_1.$$

Now Ω / L_1 is elementary abelian of order at least p^2, so \hat{H}_1/K_1 is not cyclic. By the theory of finite abelian groups we can choose a subgroup $\tilde{H}_1 \leq \hat{H}_1$, such that

$$\tilde{H}_1/K_1 \cong H_1/K_1 \times A/K_1,$$

where $|A: K_1| = p$. Then obviously $H_1 \cap A = K_1$, so

$$\tilde{M} = \{(\tilde{H}_1, H_1), (\tilde{H}_1, A), (H_2, K_2), (H_3, K_3), \ldots, (H_r, K_r)\}$$

is a FM (p^a) of G. Thus the degree of \tilde{M} is greater than the degree of M, i.e.,

$$2 \cdot |G: \hat{H}_1| \geq |G: H_1|.$$

This is impossible when p is odd. When $p=2$, equality is possible, so that \tilde{M} and M have the same degree. But the length of \tilde{M} is greater than the length of M. By repeating the above argument we can eventually get a FMM (2^a) of G of length $d(Z(G))$. This proves Theorem 5.
Let us note, that in the case G is abelian we have the following trivial Corollary to Theorem 5:

Corollary 6. Suppose G is abelian, $a \geq 1$. If there exists a subgroup H of G, such that $\{(H, 1)\}$ is an FMM (p^n) of G of maximal length, then $G = Z(G)$ is cyclic.

(When p is odd one can drop the condition on maximal length in Corollary 6, but not for $p = 2$. See Satz 10 in [1].)

A subgroup H of G is called *primitive*, if there does not exist two subgroups L, N of G with $L \neq H$, $N \neq H$ and $L \cap N = H$. Since we are assuming that G is a p-group, $H \leq G$ is primitive, if and only if, $d(N_G(H)/H) = 1$. This is fairly easy to show. It can for instance be proved by using Proposition 1.

If $M = \{(H_1, K_1), (H_2, K_2), \ldots, (H_p, K_p)\}$ is a FMM (p^n) of G, one may ask whether the subgroups K_1, \ldots, K_p of G are primitive. For $a = 0, 1$, this is true by results of Johnson and Jacobs. However, for $a \geq 2$, it is generally false, as the following simple example shows. Let

$$D = \langle x, y \mid x^4 = y^2 = 1, y^{-1}xy = x^{-1} \rangle$$

be the dihedral group of order 8. As $Z(D) = \langle x^2 \rangle$ is cyclic, a FMM (2^n) of D has length 1 by Theorem 5. If it is $\{(H, K)\}$, then $K \cap Z(D) = 1$, so $K \cap \langle x \rangle = 1$. Now $\{\langle y, x^2 \rangle, \langle y \rangle \}$ and $\{\langle x, 1 \rangle \}$ are both FMM (2^n)'s of D if $a \geq 2$. But 1 is not a primitive subgroup of D. A similar example exists for odd p. (Take a group of order p^3 and exponent p^2).

However, we can prove the following result for all $a \geq 1$, which puts some restriction on the K_i's of a FMM (p^n) of G.

Proposition 7. Let $M = \{(H_1, K_1), (H_2, K_2), \ldots, (H_p, K_p)\}$ be a FMM (p^n) of G of maximal length, $a \geq 1$. Let $1 \leq i \leq r$. If $N_i = N_G(K_i)$ and \bar{N}_i is a subgroup of N_i containing $H_i \cdot Z(G)$, then $\{(H_i/K_i, 1)\}$ is a FMM (p^n) of \bar{N}_i/K_i of maximal length. The center of \bar{N}_i/K_i is cyclic. In particular, if N_i/K_i is abelian, it is cyclic.

Proof. We assume $i = 1$. Suppose that $\{(H_1/K_1, 1)\}$ is not a FMM (p^n) of \bar{N}_1/K_1. It is obviously a FM (p^n). Let

$$\bar{M} = \{(\bar{R}_1, \bar{S}_1), (\bar{R}_2, \bar{S}_2), \ldots, (\bar{R}_t, \bar{S}_t)\}$$

be a FMM (p^n) of \bar{N}_1/K_1. If Z_1 is defined by $Z_1/K_1 = Z(\bar{N}_1/K_1)$ and R_j, S_j by

$$R_j/K_1 = R_j, \quad S_j/K_1 = S_j, \quad 1 \leq j \leq t,$$
then $Z(G) \subseteq Z_1$, (since $Z(G) \subseteq \tilde{N}_j$ by assumption), and

(*) \quad Z_1 \cap S_1 \cap S_2 \cap \ldots \cap S_t = K_1 ,

(since \tilde{M} is faithful).

Now consider

$$M' = \{(R_1, S_1), (R_2, S_2), \ldots, (R_t, S_t), (H_2, K_2), (H_3, K_3), \ldots, (H_r, K_r)\}$$

as a monomial p^a-representation of G. By (*)

$$\begin{align*}
(S_1 \cap \ldots \cap S_t) \cap (K_2 \cap \ldots \cap K_r) \cap Z(G) \\
= ((S_1 \cap \ldots \cap S_t) \cap Z_1) \cap Z(G) \cap (K_2 \cap \ldots \cap K_r) \\
= K_1 \cap K_2 \cap \ldots \cap K_r \cap Z(G) \\
= 1 ,
\end{align*}$$

because M is faithful. Thus M' is faithful. Moreover, since \tilde{M} is a FMM (p^a) of \tilde{N}_1/K_1,

$$|\tilde{N}_1 : H_1| > |\tilde{N}_1 : R_1| + |\tilde{N}_2 : R_2| + \ldots + |\tilde{N}_2 : R_t| ,$$

so multiplying by $|G: \tilde{N}_1|$ gives

$$|G: H_1| > |G: R_1| + |G: R_2| + \ldots + |G: R_t| .$$

We now have a contradiction to the assumption, that M is minimal. Thus

$$\{(H_1/K_1, 1)\} \text{ is a FMM } (p^a) \text{ of } \tilde{N}_1/K_1.$$ A similar argument shows, that since M is of maximal length, the same is true for $\{(H_1/K_1, 1)\}$. We can now apply Theorem 5 to get the rest of the statements of Proposition 7.

If $i \in \mathbb{Z}$ we define

$$\{p^i\} = \begin{cases} p^i, & \text{if } i \geq 0 \\ 1, & \text{if } i \leq 0 . \end{cases}$$

We finish this note by computing $\mu(G, p^a)$, if G is abelian. (In [1], this was done for $d(G) = 2$ or $a = 1$).

Theorem 8. If $a \geq 1$ and G is abelian of type $(p^{a_1}, \ldots, p^{a_r})$, then

$$\mu(G, p^a) = \sum_{j=1}^{r} \{p^{a_j-a}\} .$$

Proof. Let $M = \{H_1, K_1, (H_2, K_2), \ldots, (H_r, K_r)\}$ be a FMM (p^a) of G of maximal length (cf. Theorem 5!). Let $1 \leq i \leq r$. Since G is abelian, $N_G(K_i) = G$, and therefore G/K_i is cyclic by Proposition 7. It is easy to see, that
By Lemma 4 we may consider G as a subgroup of $\prod_{j=1}^r G/K_j$. By a well-known theorem on abelian group we get, that after possibly reordering the a_j's, we have $p^{a_i} \mid |G: K_i|$, $1 \leq i \leq r$. Thus
\[
\{p^{a_i - a}\} \leq \left\{ \frac{|G: K_i|}{p^a} \right\}, \quad 1 \leq i \leq r.
\]

By assumption M is minimal, so
\[
\mu(G, p^a) = \sum_{j=1}^r |G: H_j| = \sum_{j=1}^r \left\{ \frac{|G: K_j|}{p^a} \right\} \geq \sum_{j=1}^r \{p^{a_i - a}\}
\]
proving one inequality. The other inequality is trivial for $r=1$, and for arbitrary r it then follows from Lemma 3.

One final remark: It is easy to prove that for an arbitrary finite group G and $a \geq 0$
\[
p^a \mu(G, p^a) \geq \mu(G) \geq \mu(G, p^a)
\]
and that these bounds are the best possible.

REFERENCES

ABTEILUNG MATHEMATIK
UNIVERSITÄT DORTMUND
W. GERMANY