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GEOMETRIC INTERPRETATIONS
OF THE GENERALIZED HOPF INVARIANT

ULRICH KOSCHORKE' and BRIAN SANDERSON

1. Introduction and statement of results.

There is a well-known procedure, due to Pontrjagin and Thom, which
identifies the homotopy group =,.,..(S"*™) with the bordism group of r-
dimensional submanifolds of R"*"*™ with framed normal bundles. Expressed
in this language, the m-fold suspension homomorphism

E™ 7,1 0(8") = Tpppim(S"™)

is induced by the inclusion R"*"<R**"*™ Thus an element in the image of E™
can be represented by an embedding g: M" — R"*"*™ together with a framing
g:v(g) —=-> &"*™ (=trivial (n+m)-bundle) of the normal bundle v(g) of g,
having the following properties

(€) g(M") < R™*" and

(3) the composition

gy E" < gtr@em —E, y(g) £ gt
is given by the obvious inclusion id.

In this paper we will study intermediate situations, namely framed
embeddings where only one of these additional properties is required, and we
will measure to what extent the other property fails to hold. This will lead to
two geometric interpretations of the generalized Hopf invariant of Whitehead
[13] and James [5] and, more generally, of the EHP-sequence of Whitehead
and James.

Most of our results can be summarized as follows.

MAIN THEOREM. Assume 0<r<2n—2 and m=0. Then there is a commuting
diagram
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where all horizontal sequences are exact, and all vertical arrows are
isomorphisms.

Here the middle sequence is the EHP-sequence of James [5]. The other
terms are bordism groups and homomorphisms (defined below) which give the
desired geometric interpretations. For m=1, the square involving the
geometric Hopf invariant €H,, was already established and beautifully applied
by R. Wood [15].

We now proceed to describe the terms occuring in the diagram above. €™ is
the bordism group of pairs (M, g), where M is a closed smooth r-dimensional
submanifold of R"*", and g is a framing of its normal bundle in the higher-
dimensional space R**"*™ As already noted in [15], the J-homomorphism
provides examples of such pairs.

In order to determine whether (M, g) satisfies also the condition (3),
consider the “second component” g,: e™ — &"*™ of g. Let u: e" — ¢"*™ be a
homomorphism over M xI which restricts to g, over M x {0}, and to the
natural inclusion id over M x {1}. If & has no singularity, then the class [M, g]
lies in the image of the forgetful homomorphism E"° — €™ Hence the (non-
degenerate) singularity of # provides a measure for the deviation. We can
extract the following data (see section 2 for the details):

(i) an (r—n)-manifold X (the locus of points where  fails to be injective);

(ii) a sub-linebundle A of &™ over X (the kernel bundle of @), or, equivalently,
amap h: X - P"1; and

(iii) a (stable) isomorphism h: TX@A"=¢" (derived from the tangent map of
# and from g).

Triples of this type give rise to the normal bordism group Q,_,(P™"*; n4) (cf.
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[8]), and we define the singularity Hopf invariant by
CH,((M,g]) = [X,4,h] .

To obtain an alternate description, consider g, as a map into the Stiefel

manifold V,,,, ,,=50,,,/80, Up to homotopy, g, factors through the
canonical map i,

g, = ioj: M —b PrtmTyPrTl iy

n+m,m

(see section 2 or [6]). Now recall that P"*™~1/P"~! is the Thom space of the
nontrivial bundle A" over P™~!. Making j transversal to P™ !, we get the triple

(X =P, h=jIX, h: TX®I" ~ TM|X = ¢)

which also represents the singularity Hopf invariant.
Both versions of this construction lead also to the isomorphism ¢ of (1.1)
which is a variation of the singularity isomorphism of [8, § 5]. In particular,

o = tpei': M, (SO, 4 8O,) = T, (Vyimm) = 7, (P7"71/P7Y)

I

Q._.(P" 1 nd),

where tp is the obvious Thom-Pontrjagin isomorphism.

G€P,, is defined as follows. If (X,A,h) represents,an arbitrary class in
Q,_,(P™""1; nl),embed X into R" and identify a tubular neighbourhood with A"
via h. Each element y in the sphere bundle S(1") determines in an obvious way "
a line in R" and hence a reflection [, flipping this line around; thus we get an
automorphism [ of ¢". Also, realize A as a subbundle of ¢", and use the resulting
reflections to definé another automorphism Iy of ¢" first over X, and then, by
pullback, over S(4"). Now consider S(4") as a submanifold of R"*"~!, framed by

g VSR = & s g

where the very first bundle to the left is trivialized via outward pointing
vectors. Put

€P,([X,4,h]) = [S(2").8] -
Note that €P,, factors through !:" 1.

r—1

Finally, let # denote the forgetful homomorphism

n:Epm— G0 = (ST
For identifications such as the one to the right, we use the folowing general
procedure. Represent an element of 7,(S%) by a smooth map f: §* — §% and
choose a regular value z € S7— {} to obtain the framed manifold f~ 1(2) in SP
—{*} =RP. Here the stereographic projection from the north pole * is also
used to orient S9.
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The €-sequence has the following variant. Define "€}>™ to be the bordism set
of triples (M, B, g), where M and g are as before and B M is an embedded r-
ball outside of which g, is given by id. A bordism of M is required to contain
an isotopy of B. Thus [g|B] € n,(S0,,,.,50,) is a well-defined bordism
invariant, and we denote its image under ¢ by ‘€H,,([M, B, g]). The map from
€»° to ‘@™ is obtained from unlinked disjoint union with a trivial sphere
which contains the needed ball.

Now we come to the terms in the lower half of diagram (1.1). 3™ denotes
the bordism group of triples (M, g, g), where

(i) M is closed r-manifold;
(i) g=1(g;,82): M — RC*M*m js a smooth embedding such that g,: M
— R"*" is an immersion; and
(i) g,: v(g,) —=> &
This corresponds to the requirement (J) of the introduction.

We want to measure to what extent (M,g,g,) fails to satisfy also the
requirement (€). Clearly the trouble lies at the selfintersections of g,. We may
assume that they occur only at transverse double points. Then their locus
forms a closed (r —n)-manifold X. For each x € X, the two points x', x" € g; *(x)
have different images under g, and hence determine a line 1, < R™. Thus we get
a bundle A<¢™ over X. Furthermore, the normal space of X has an natural
splitting

v (X,R™™" = R"(x)®R"(x") .
Here e.g. R"(x") denotes the normal space of X in the sheet through x'; it gets a
frame e),...,e, from the normal framing of the other sheet. Now we map

e;—e! to the unit vector in i, on the side of x', and we map e;+e] to 1,
i=1,...,n This leads to canonical isomorphisms v(X,R"*" = A"®¢" and

h: TX®A"@e" = &*".
We define the double point Hopf invariant by
3Hm([M’gs gl]) = [Xs /1, h_] .
Next recall that [z, ¢,] is represented by
L=28"1x{0}U{0}xS8" ! < 8§ ! (<R}xRY
with standard framing. Further observe that this framed manifold remains
unchanged when we switch the factors Rf=R", i=1,2. Now, given an arbitrary
class [X,A,h] € 2,_,(P""!;nA) and x € X, each orientation of 1, determines a

diagonal of A} xR", and we obtain an isomorphism A} x R"=~Rf} xRj, well
defined up to switches. Thus we can realize L first in A3 xR and then in
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A1xR"™ 1 using the stereographic projection from (O0,...,0; l/i, 0,...,0).
Performing this construction in each fiber, we obtain a framed submanifold of
A" x R"~1 and hence of R"*"~ !, since we can use h to embed the total space A"
as open set in R". This generalized composition with [1,1,] defines the
homomorphism 3P,

Finally, the homomorphism 1 is obtained by completing the framing g, to a
framing of v(g) in the obvious fashion. According to the main theorem, 1 is an
isomorphism. In particular, up to bordism, framed embeddings into R"*"*™
can be compressed to immersions into R"*" in a way compatible with the
framing. When the target group of 1 is in the stable range, this follows readily
from immersion theory. However, for r=n+m, it is not obvious why an
immersion should be the projection of an embedding.

For m=1, we have the following variant of 3™ Let "3 ! be the bordism set
of quadruples (M, B, g,,&,), where g,: M — R"*" is an immersion framed by
g, and Bc M is a closed embedded r-ball such that g,|B and g, | M — B are
embeddings. A bordism of M is again required to contain an isotopy of B.

In this setting the double point Hopf invariant "3H, is simply given by
the transversal intersection g,(B)Ng,(M—B), framed in the ball g,(B)
by —g,|M — B. Furthermore, "3™! is mapped to J™' by slightly lowering
the x,, ,,-values of g,(B) in R"*"*1,

Our results give two quite distinct interpretations of the (generalized)
Whitehead product and especially of the (generalized) Hopf invariant.
Consider e.g. the situation in which Hopf originally defined his invariant, i.e. m
=1 and r=n, and represent an element [f] € m,,.,(S"*") by the framed
submanifold M"=f~! (regular value) in R2"**. The singularity interpretation
describes H, ([ ]) as the mapping degree of g§,: M — S”", where we assume that
M is already embedded in R?*", and g,(x) is the normal vector
(0,...,0,1) € R¥"*! expressed in terms of the normal (n+1)-frame at x e M
(see also [7, Lemma 6.1], and [15]). On the other hand, in the double point
interpretation we have to compress M" to an immersed manifold in R?". Then
H,([f]) is the sélfintersection number; it is a well defined integer even for n
odd, since the last component in R?"*! distinguishes an “upper” and a “lower”
sheet at each double point. (See Figure 1).

Note that the particular example in Figure 1 is quite exceptional: e.g. a
framed immersion of an n-manifold in R?" with odd intersection number can
occur only in dimension 1, 3 or 7. This is equivalent to Adams’ result on
elements of Hopf invariant 1.

If we drop the metastable range condition r<2n—2, then many of the
vertical arrows in (1.1) may fail to be bijective or even defined. (Actually, we
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Figure 1. Singularity versus double point Hopf invariant for the same homotopy class.

can show that precisely those arrows continue to be bijective for all n,r>0
which are marked as isomorphisms in (1.1).) However, all five horizontal
sequences continue to be exact and to have a specific geometric interpretation,
provided we replace the third terms by suitable substitutes (which will be
different for each sequence). For example, if we replace Q,_,(P™"!; ni) by
7,(SO, +m SO,) in the very top line, we obtain an exact sequence (at least for n
= 3) which can be identified canonically with a homotopy sequence involving
the spaces F,,,, F, SO,,, and SO,. On the other hand, replacing
Q,_,(P""1; nd) by 3% in the very bottom line, we get

(1.2) A SRR TR U

which is canonically isomorphic (at least for n=3) to the homotopy sequence
of the fibration F,c G, ,, -2— S Here F, denotes the space of based maps S"
— S" of degree 1, and the subspaces SO, and G, are given by suspensions of
orthogonal, resp. arbitrary unbased, maps on $" ! of degree 1. (Observe that
G, is written as “G,_,” in [S]). Spheres are based by their north poles
(0,...,0,1), and function spaces by their unit.

Our proofs use only differential topology and very basic methods .of
homotopy theory, with the exception of the following slightly strengthened
form of James’ key result in [5].

THeOREM 1.3. The homomorphism (induced by the inclusion)
(P: nr(SOn+m’ Son) - nr(Fn+m’ Fn)
is bijective for r<2n—2 and onto for r=2n-1.

We will outline a geometric proof in section 3. There we will also discuss the
first and the fifth sequences of (1.1). The other two geometric sequences are
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developped very parallelly in sections 2 and 4. However, for the 3-sequence we
need an additional crucial piece of information: we have to know how
singularities can be deformed into double points. This is provided by the
isotopy theorem in section 5, which seems to be of independent interest.

In this paper we have restricted our attention mainly to the metastable
range. In a further paper [9] we will remove this restriction. Then triple,
quadruple, etc. points of immersions (as well as higher kernel dimensions at
singularities) will enter the picture and lead e.g. to higher Hopf invariants. Our
starting point will be the observation that many of the well-established models
for loop-spaces can be viewed in a certain sense as “Thom spaces for
immersions”.

2. Singularities of frame deformations.

Throughout the paper we will assume that m=0 and n,r>0. Additional
assumptions will be stated explicitly in the propositions. In the text of sections
2 and 4, however, we will often assume r<2n—2 without specifically
mentioning it; we need this condition for various embedding, isotopy and
destabilization arguments.

First we discuss the €-sequence. Consider pairs (M, g) where M is a compact
r-dimensional submanifold of

RY" = {x e R™*"| x,,,20},
possibly with boundary 6M =M MoR"*" and
g: V(M, Rr++n)®£m _=, gntm

is a framing of the normal bundle of M in R""*™ such that the “second
component”

gz: 8m — 8n+m (=£n®£m)

restricts, over ¢M, to the identical inclusion id. Two such pairs (M, g) and
(M', g') are called bordant if there is an (r+ 1)-dimensional submanifold N of
R%*"x R with a framing G of its normal bundle in R%'"*™ x R such that (i) 6N
=NMER " xR (the symbol N means transversal intersection); (ii) G restricts
to id on g™ |éN; (iii) N N (R,*" x I) is compact and (iv) at each level R"'" x {t},
where t <1, respectively t >%, N and G are given by (M, g), respectively (M, g).
The resulting set of bordism classes is made into a group rel €™ via unlinked
disjoint union. The corresponding absolute group €™ is defined the same way,
but with no boundaries allowed.
There is a homomorphism

GH™: rel €™ — Q, _,(P""*; ni)
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defined as follows. Given a class [ M, g1, consider a (non-degenerate) morphism
i: &" — "™ over M x I which restricts to g, over M x {0} and to id over M
x {1} UOM x I. The singularity X of i comes with the kernel bundle 1 <¢™ and
an isomorphism h: TX@A"=¢" extracted from the tangent map of # and from
the stable framing of TM (for details see [8]. To specify h more precisely,
deform the canonical isomorphism

TX@A"™™ = TX® (AQCoker)® (A®Im)

11

TM|X®TI| X®(ARKer')
& DUARIND(A®Ker)
& @ A"

[

until it is of the form A’ @Id;», and define
h=Ro(ld®—1d): TX@1" MO e | rxgin F, ¢

the correction term —Id;», which matters only when n is odd, would be quite
unnatural in [8], but it is very convenient here.) Another characterization of
these data is given below. The normal bordism class €H™ ([M, g]) of (X, 4,h)
depends only on [M,g].

This procedure also defines the isomorphism ¢ in (1.1); just replace M by D"
and g, by elements of

[(Dr’ Sr_l)’ (Vn+m,m9 ld)] = nr(SO (n+m)9 SO (n)) .

Returning to the previous situation, let us use the singularity data to
describe the following standard form of g,. There is an embedding identifying
the total space of A" with an open subset of M — 0M such that g, =1|&" over A"
and g,=id everywhere else; here we define the automorphism [ of &"*™ (over
A" A*" as base space, A* the dual of 1) as follows: for any y € A}", where
xeX, I, is the reflection of R"*™ determined by the line
{(y(v),v) e R"®R™ | ve A} In other words, on a fiber A% (of the tubular
neighbourhood A" of X in M) I is given by a very natural map into the
projective space of R"@A, <=R"*™: at the center of A} this map takes 4, as its
value, and along each ray it rotates towards the line in R” determined by the
ray.

It follows from the homotopy classification theorem of [8] (cf. also [6], 8.1)
that we can always deform g, into standard form. The triple (S, A, k) involved in
the construction (where h destabilizes to identify v(X, M) with A") represents
M, zg].

Now we can isotop M in R","" until the closure of A" lies at a certain fixed
(%,+1,0,...,0)-level and the rest of M takes lower x,, ,-values.
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Figure 2. A bordism from M to the model M.

Pushing the complement of this closure down to negative x, , ;-values (cf. Fig.
2) then leads to a bordism from (M, g) to the following model (M, g). M is a
closed tubular neighbourhood of some embedding of X into R’". Using h, we
can identify its interior with the total space of A". Thus, we have in particular
an automorphism [ of &"*™ over M as above. Moreover, we can represent the
bundle A over X as a subbundle of &"; the resulting reflections extend to an
automorphism Iy of ¢" over all of M. Now we define the framing g by

§: V(M, Rr+n+m) - 8n+m lo(Ix xid) £n+m.

]

the correction term Iy guarantees that g| X ~Id. Finally we lift all but oM to
positive x,, ;-levels.

This model construction yields an inverse homomorphism of (EH',,?'. Hence
we have

ProposITION 2.2. The relative singularity homomorphism GH™ is an
isomorphism for r<2n-—2.

The relevance of this result stems from the fact that our relative bordism
group occurs in the diagram (2.3) of horizontal exact sequences.

Here it is convenient (and possible for arbitrary n,r > 0) to identify all terms
in the middle sequence with bordism groups of framed embeddings. E.g., given
[(flen(F,smF,), we get a map f,: D"xR"*™ — §"*™ which may be
assumed to have —x* € S" as a regular value. Now we interprete D" as the
positive half-sphere in R"*!, with tubular neighbourhood D" x R**™ in R’} "*™
in the obvious way, and in each normal slice R"*™ we push a neighbourhood
of —* in $"into a neighbourhood of 0 in R” x {0} by an ambient isotopy. Thus
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Q,_,(P"'; ni)

CH, P,
€ Hrcl ~

R (i cnm rel €™ (E'r"_ol - ...

I ]

. TE,(F,,) Tt,(F,,+m)"——'7T,(F,,+m, Fn) 7tr—l(Fn) e

Tyin(S) o 1y em(S™™) 2 7,(SO, 41, SO, Lo 1,y () — ..

Diagram (2.3)

fo 1(— #) becomes a framed submanifold of R",*"*™ whose boundary lies, and
is nicely framed, in 6R"" (Here we orient all spheres via the stereographic
projections from their north poles.) The resulting relative bordism class gives
the required geometric description of [ f] (compare also [3, 10.5]). Note that
the corresponding construction for =,(SO, ., SO,) factors through rel €™
All unnamed arrows in the diagram above stand for obvious forgetful or
boundary homomophisms. Clearly everything commutes here, in part due to
the very definition of James’ EHP-sequence (we identify 7, (F,)=€*°~n, (5%
according to our conventions). Moreover, both triangles in the square

Q,_, (P71, ni) rel €™
2.4) 0| =
7,(SO, ., SO,) 7, (F oy o F)

commute. The statements of the main theorem concerning the €-sequence
follow now from Theorem 1.3, diagrams (2.4) and (2.3), and the five lemma.
Furthermore, we obtain that n: €™ — r,,,,,(S"*™) is still onto for r=2n—1.

Remark 2.5. The straight top line in (2.3) is an exact sequence of group
homomorphisms for n>0 and arbitrary r. Moreover, EH™ (and hence GH,,),
as well as further singularity invariants corresponding to higher kernel
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dimensions, are also well-defined group homomorphisms for arbitrary r
(compare [8, 2.15]).

3. The homotopy of certain function spaces.

In this section we briefly outline a geometric proof of Theorem 1.3, based on
the work in [11]. Then we discuss the sequences in (1.1) which involve €™
and "3 !, Some familiarity with the homotopy groups of squares (and cubes)
of maps will be helpful, see e.g. § 0 of [11] or [14].

Proor oF THEOREM 1.3. Considering an exact sequence of the square
0. = (F,.+m F,.>
’ SO, +m SO,

we can reword 1.3 as follows:
(3.1 T,(Qnm) =0 for r<2n.

Now we know from [11, Remark (2) on p. 454] that
(3.2) ,(Fpi1,Gpe1) =0 for r<2n.
Moreover, we have the commutative diagram

- = 1,(80,+1,50,) = T,(F\i 1, Fo) = 1,(Qn0) = - ..

= "
: = B Gye1 F) = T (Fprs F) = 1(Fpi, Grad) = .

Thus we get 7,(Q, )=0 from the five lemma. The full result follows now by
induction over m from the exact sequence

nr(Qn, 1) - nr(Qn,m) — nr(Qn+1,m—l) .

RemARK 3.3. In [11] the proof that m,(F,,,,G,,,)=0 for r<2n is purely
geometric, involving first surgery and then engulfing. Thus we can establish
Theorem 1.3, and hence the EHP-sequence, in purely geometric fashion. In [5],
James proves that =,(F, ., G,.+,)=0 for r<2n—1 essentially.by first assuming
the exactness of an EHP-sequence.

Math. Scand. 41 - 14
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Next consider the cube

The double rble of F,., here allows us to simplify the description of
7,+1(C, ), and to interprete its elements as homotopy classes of maps

[ DD, D DS ) > (Fuym SOpsm Fu SO, %),

where eg D" ={xeD"|x,20}. Now identify D" with the northern
hemisphere of S” and extend f trivially. We obtain a map f;, defined on the
tubular neighbourhood S"x R"*™ of §" in R"*"*™ and with values in S$"*™
After a suitable canonical deformation, we may assume that —* € S"*™is a
regular value of f,, and, moreover, that f; ! (— *) lies already in R"*" and the
second component g, of the induced framing is trivial outside of the (half-)ball
D', =f 5 !(— ). This construction defines a map

I“: 7tr%—l(cn,m) - .(g:,m
which commutes with the two obvious maps into n,(F,,,)=&"*™°,

PropOSITION 3.4. u is bijective for n>2 and onto for n=2.

This result relates ‘€™ to the following braid of exact sequences, valid at
least for r=2, where the arrows stand for the obvious forgetful or boundary

homomorphisms.
LA (0 (SOt ms SOn)/\nf_t(F n-1)
3.5) T4 1(Com) o (Fosm Fr)
n,(F,,)/ \\n,(F ..+,..)/' 7, (Qn. m)

~_
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If r £2n—2, the homotopy groups of Q;, ,, vanish according to (3.1), and hence
the remaining sequences are isomorphic (compare this with diagram (2.3)). In
particular, it can be seen that the forgetful map

.11: .&:’m - nr+n+m(sn+m)

is an isomorphism even for r=1.

Finally, we discuss the bottom sequence in (1.1). Embed S" as the unit sphere
in (X,,X,41,- - -» X, 4+ »-space, such that * corresponds to (1,0,. . .,0). Identify D"
with a small ball in (x,,...,x,)-space centered at —«, and extend in the
obvious way to identify D" x $" with a tubular neighbourhood of §" in R"*",
Now, given [ ] € =,(G,, ), f defines a map from this tube to S", and we may
assume that —* € S" is a regular value. Fit f~!(— ) together with a large
annulus in R" around D" x{—x}, and close by a faraway half-sphere in

{xeR™*!]|x,,,<0}, to obtain an r-manifold M which is immersed and
framed in R"*". The only double points lie at

fTH=9 0D x{s} = (pof) ' (—%).

Define g[ f] as the bordism class of M with B=D"x {x}.

ProvrosiTiON 3.6. The diagram of canonical maps
nr(GrH-l) —Q) .S;lll

Le

¥

nr(Fn-f-l) = S:+l’0

commutes. Furthermore, g is bijective for n=3 and onto for n22.

ProoOF. Given x € D" x { — *}, rotate {x} x $"in R"*"*! around the axis R" ™!
x {x,} x R" by 90° towards positive x, ., -levels. This leads to an isotopy
from the embedding D" xS"cR"*"cR"*"*! used above to the standard
embedding. This isotopy allows to deform the manifold M representing ol f],
to a framed submanifold of R"*"*! which corresponds to i,[f] under the
identification of section 2.

Isotopy arguments, together with the Thom construction, also yield the
second statement.

Now consider the braid of exact sequences of the triple (F,,q, Gy, F))



212 ULRICH KOSCHORKE AND BRIAN SANDERSON

//—\

7tr+l(Fn+1’ Gn+1) nr(sn) nr—l(Fn)
(3.7 T (Gt 1) T (Fps1,F)
n'(F") 7tr(F‘n+1) nr(Fn+15 Gn

\__/

If r<2n—2, the two outside groups in the antidiagonal vanish according to
(3.2), and hence the two diagonal sequences are isomorphic. In particular, i, is
bijective, and so is ¢ by Proposition 3.6, even for n=2. Now clearly all claims
concerning the "3-sequence in the main theorem are proved as soon as the
corresponding facts for the J-sequence are established.

ReMARK 3.8. In the non-metastable range, the antidiagonal sequences in
diagram (3.7) also allow interesting (PL-)geometric interpretations.

4. Double points of immersions.

It remains to discuss the 3-sequence. With one important exception the
development will be entirely parallel to the one in section 2.

Let rel 3™ be the relative bordism group of triples (M,g,g,), where the
compact r-manifold M is embedded by g=(g;,g;): M — R.'"*™ such that
g1 M — R’;" is an immersion with framing g,, and g(dM)=g(M)MoR"F"+™
lies already in R"*". The definition of 3H,, in section 1 extends naturally to this
relative group. Along the lines of section 2 we can prove:

ProrosiTION 4.1. The relative double point map
SH™: rel "™ — Q,_,(P™ ';nk)

is an isomorphism for r<2n—2.

An inverse is provided by the following model construction (see also Figure
3). Given [X,4,h] € Q,_,(P™"'; nj), embed X into R" and use h to identify a
tubular neighbourhood with 1". Next fix x € X and note that every orientation
of 1, determines an n-dimensional diagonal in A} xR", a vector z
=(20,0,...,0; 1,0,...,0) in this diagonal, and hence a “diagonal” n-ball with
center £-z and radius 1. Translating everything by the first base vector of R,

1)
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we obtain two balls B’ and B” which intersect each other transversally at
precisely one point. Now attach the two cylinders which join the boundary
spheres to their projection in A% x {0} x R*~!, and smooth corners. This does
not create any new selfintersections. Finally, frame the balls by the standard
basis of R", and extend this normal framing to the cylinders. Performing this
construction over each slice A7 of the tubular neighbourhood of X, we obtain a
framed immersion g, into R’;'" with selfintersection at X x {e,, ,}. Moreover,

we use the inclusion A<¢™ in the obvious way to decompress g, to an
embedding in R7F"+™

Figure 3. The model construction for double points.

The proof of that part of the main theorem which involves the J3-sequence
now proceeds along the lines of section 2 (use in particular the analogue of the
Diagram 2.2). However, there is one important additional difficulty: it is not at
all obvious that —®og ™ 'oJH™ coincides with the natural homomorphism
from rel 3™ to n,(F, 4+ F,). We also need to know that this homomorphism is
still onto for r=2n—1. We will fill these last gaps in the next section.

ReMARk 4.2. For n>0 (and r arbitrary) we have the obvious long exact
sequence involving the group rel 3™ Also SH'™® (and hence 3H,,), as well as
the corresponding invariants measuring triple, etc. points, are always well-
defined group homomorphisms.

5. Singularities versus double points.

Recall from section 2 that we can identify =,(F,,,,F,) canonically with a
relative bordism group of framed r-manifolds embedded in R%F"*™

ProPoSITION 5.1. For r<2"—2, the diagram
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eH
Q,_.(P"1; nd) — rel €™
-SH' | > =
rel S:I,M nr(Fn+m9Fn)

commutes (where the unnamed arrows denote the natural forgetful homomor-
phisms).

ProoF. Given any triple (X, 4, h) as in the discussion preceeding Proposition
2.2, consider the corresponding model (M, l); since we drop the correction term
(Ix xid), this model has the singularity data (X, 4,ho(Id x (—1d,))). We will
isotop the framed manifold M in R7'"*™ until at the end the complicated
framing | will have been “untwisted”, but in turn the projection of M into R’,*"
will have gained double points with data (X, 4, ko (Id x (—1Id;gg))). Both forms
of M determine the same element in =,(F,, ., F,), and the proposition will
follow.

It suffices to describe the required isotopy on a typical fiber of the disk-
bundle M. This is done below. Clearly, the whole procedure works for
arbitrary r as long as we start out from the model situation. Thus Theorem 1.3
implies that the bottom arrow in 5.1 is still onto for r=2n—1.

Now decompose R2"*1 =R" x 'R" x R into two copies R" and 'R" of n-space,
and a real line. Elements of these factors are denoted by (x,y), (x,)’) or z
respectively, where x,x’,z are real numbers, and y, )’ are (n— 1)-dimensional
vectors. Also let ¢: R"=~'R" be the identical map.

We frame the obvious embedding g°: R"<R?"*! via the isomorphism

g—O: v(gO) = an+1 - 8"+1 ,

which at (x,y) € R"is the reflection given by the line through (c(x, y),1) € R"*1.

Isotory THEOREM 5.2. For any n21 there is a smooth deformation of g°
through embeddings g': R* — R2"*1 t € I, accompanied by a deformation g of
normal framings such that

(i) the projection of g' into R2*=R"x'R" is an immersion; its only double
point lies at the origin of R?", and in a neighbourhood the two sheets coincide with
the graphs of ¢ and —c; moreover, the two points of selfintersection have the
form (£ x,,0), and the sign of the x-value equals the sign of the z-component of
g ! ( i xO’ 0),

(i) the framing g* maps the last component of R*"*! identically into the last
component of "*!; in addition, at 0 € R*" both sheets are framed, via g*, by
—€y41,€n42:- - -» €2, Where e; is the standard basis vector;
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(iii) for all t € I, g' and g are invariant under the involution of R", R*"*! and
e"*! given by

(G5, 9), (xX'Y)2) = ((—x, =), (X', ), —2);

(iv) forallt € 1, g" and g° coincide outside of the unit ball of R"; also g' and g°
have the same limit behaviour along the rays through 0.

Proor. We need to specify g' only on the half-space
H = {(x,y) e R"| x=6}

for some small fixed 6> 0. Then, by (iii), g' is determined also for x< —4, and
we extend it over |x| < J by joining the values of (£, y), y € R*"1, linearly, with
subsequent smoothing of corners. (See also Figure 4).

Let ¢: R" — [0,1] be a symmetric smooth function with support in D",
which takes the value 1 in a neighbourhood of [—24, +26] x {0} and is
constant on each segment [ —26, +246] x {y}, y € R"~1. Consider the graph of

@ (c,1): R" > 'R"xR .

We use the parameter values 0<t<% to deform H vertically into this graph.
Next choose an isotopy of R" in the negative x-direction which pushes (8, y)
into ((1—2¢(4,y))d,y). Exploit the induced isotopy of our graph to deform

g’ |H into, g' | H. We may assume that g'(H) intersects the hyperplane x=0
for the first time at t=1.

If we use the natural smoothings, the resulting family g of embeddings has
the stated properties.

In order to cover it by an isotopy of framings, we need only to deform the
normal field v°=(g°)~*(0,0,1) suitably, and apply the homotopy covering
principle.

Along each ray {s- (x, y) | s20}, (x,y) a unit vector, v° rotates from —e,,,,
(at s=0) through —c(x,y) (at s=1) towards +e,,, ;. Our deformation will be
given essentially by the family of fields w': R" — R2"*! ¢t € I, such that, along
the same ray, w' rotates first from —cos (nt):e,,., +sin (nt)-e; to —c(x,y),
and then towards e,,,, as before. However, we have to reparametrize this
family with respect to the variables x and t. Let f: R" — R" be a symmetric
homeomorphism which preserves y-values and orientations, and which
stretches the set

D = {(x,y) e D"| |x|<26}

onto D". Using the time interval from 0 to 4, we deform v° into 1°-f via a
homotopy Id ~f. For <t <%, we define v'=w~!of. Finally, we use the time
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Figure 4. Construction of the isotopy g'. At the right-hand side, the image of the x-axis under g'.

parameters between % and 1 in order to deform w'o f linearly to the constant
normal field with value e,, .

It remains to show that ¢’ is never tangential to g'. Note that g preserves y-
values and that, on the other hand, the values of v do not involve e,,. . .,e,.
Therefore, we have to check only that v* is nowhere a multiple of G'=0dg’/0x.
For t<% or outside of D this is clear: G' involves e,, but ¢' does not. Also,
because of symmetries, we need to deal only with the case x 0. Thus fix >3
and consider a segment [0,20) x {y} for small y. Here g' is obtained, via
smoothing, from affine maps on the two sub-segments [0,d] x {y} and [4,26)
x {y}. Thus G’ is a linear combination, with non-negative coefficients, of the
two vectors

G'+ = ((I’O)a ((p(é,y),O), 0)
GL = ((®0), (0,2¢0(3,5) ) 2¢(3,y)

I
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where a>0 if t <. On the other hand, v* has the form

v = ((B,0), (=71 %, =727 ), 73 (2t —=1)),

where 7,,7,,7;>0 and, for t<%, B>0. The linear independence of G' and v'
follows easily.
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