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CHARACTERIZATION OF WEAK CONVERGENCE
OF SIGNED MEASURES ON [0,1]

GORAN HOGNAS

0. Introduction.

In [1, p. 65] Paul Lévy considers the following problem:

By the Riesz representation theorem a bounded linear functional L on the
space of continuous real-valued functions on [0,1] can be characterized in
terms of a function K of bounded variation on [0,1]. The correspondence
between K and L is given by the Stieltjes integral

1
Lf = L f(OdK(1)

where fis any continuous function on [0, 1]. Let K now depend on a parameter
s

1
L f= J SO dK(1) .

The problem of Lévy.is to find the (necessary and sufficient) conditions on the
family {K,} under which L f is a continuous function of s.
I would like to thank the referee for his suggestions and comments.

1. Notations and preliminary results.

Let X denote the closed unit interval [0,1] and C=C(X) the space of
continuous real-valued functions on X. If C is endowed with the usual
supremum norm, denoted | - |, it becomes a Banach space. Let C* be the dual
of C, i.e. the set of all bounded linear functionals on C. C* is a Banach space
when the norm ||L| of an element L € C* is defined by

ILIl = suplLfI/ILf1l -
feC

By the Riesz theorem, see for instance [3, p. 131], C* is isomorphic to the set
# of bounded signed measures on the measure space (X, %) where 4 is the o-

Received June 15, 1976.



176 GORAN HOGNAS

algebra of Borel sets. The correspondence between L € C* and u € # is given
by

Lf=jfdu, fecC.

Moreover,

LI = Nel(X)

where ||u| is the total variatiin of p.
Let u* and u~ denote the positive and negative parts, respectively, in the
Jordan-Hahn decomposition of u: ‘

p=pt—pT, gl =pt
Let K be the distribution function of u defined by
1 K(x) = p[0,x], xeX.

If K* and K~ denote the corresponding distribution functions of u* and u~,
respectively, then

K=K'-K™.

K is a function of bounded variation since K* and K~ are non-decreasing on
[0, 1]. The linear functional Lf, also denoted puf or | fdu, can then be written as
a Stieltjes integral

1

1 1
j SOdK () = Lf(t)dK*(t)—J f@dK™ ().
0

0

Conversely, every function of bounded variation on [0, 1] defines, by the above
formula, a bounded linear functional on C and thus a bounded signed measure
uwe H.

Two modes of convergence in .# will be considered, strong and weak
convergence. The net y, in . is said to converge strongly towards p iff

[t — pll(X) — O
and u, converges weakly to u iff

u.f— uf forevery feC.

The strong and weak convergence of u, to u will be denoted by u, —» u and
U, — U, respectively.
From the definition of norm in C*=.# we immediately get

V)] luf—pgl < lplX)If—gll, wne#; figeC.
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For completeness, we state the following easy result about strong convergence:

ProposiTION 1. @) p, = p = u, — p.
b) p, 5 p = (K,—K)*(1), (K,—K)"(1) > 0 where K, and K are the
distribution functions of u, and u, respectively.

Proor. a) If fe C and p, —> u then

e f=1f] £ Npta—ul (XIS — 0.
b)
He =5 <= [l —pll(X) = 0

had (#a_"")+(X)7 (nua—”)_(X)—) 0
= (K,—K)"(), (K,—K)"(1)— 0.
RemARk. [KS —K*|, |[K; =K~ || > 0 does not suffice to guarantee

U, — p (and hence, of course, |K,— K| — 0 does not either) as is shown
by the following example:

K;, =K~ =0 (n=12,..)
K(x) =x, xel[01],
K,,(x) = k/n, xe€[(Rk—1)2n,k/n[ (k=1,2,...,n)
Ky, (x) = 2(x—(k=1)/n)+ (k—=1)/n, x e [(k—1)/n, (2k—1)/2n[
K, (0 =0, K,,(1)=1.
In this case, (K,—K)* (1)=1 for all n.

2. Weak convergence of signed measures on X.

If p, is a weakly convergent net in .# then the net of norms | u,|/(X) is
uniformly bounded (Banach-Steinhaus theorem). In this chapter we shall
therefore assume that the nets of signed measures considered are uniformly
bounded in norm by some constant, which we shall take to be 1. As we shall see
in the course of this chapter this assumption is crucial to many of the results.

Consider a net y, in .# with u, — 0. The aim of the subsequent discussion is
to find the implications of this convergence to the distribution functions K,.
The assumptions of uniform boundedness made above imply K, (1), K7 (1)< 1.

ProrosiTioN 2. Put |K,| =sup {|K,(x)| l 0=x=Z1}. Suppose |u,l(X)=1.
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Then
IKal > 0 = p,— 0.

Proor. Let ¢>0 and f e C. Since fis uniformly continuous there is a 6 >0
such that

©) Sup fG)=fl <e.

Construct a partition of X into N disjoint intervals I,:
Iy = [xo,x(], Ip = Ix,x5),- -, In = Ixn_15X,]
where O0=x,<x;<...<xy.,<xy=1 and
X—Xe—g < 0 (k=1,2,...,N).

Note that u,J, =K, (x,)— K, (x,-1)
Approximate f with a step function g constant on the I,’s such that

If—gl <& and gl = IfIl,

e.g.
g =inf{f(x)| xel}.

The assumption ||K,|| — 0 implies that || K || <¢&/N for a larger than some a,.
Then,

N
gl = Y lghlua )l < 2e|f]
k=1

since
lglh = 11 and |u, ()l = 2]1K,] .

(2), the triangle inequality and the uniform boundedness of ||,/ (X) now yield
luafl < eQIFI+ I (X)) = e@ISI+1)

for «=a,. Hence p,f— O.

ProPOSITION 3. Let |p |(X)S1. If (31K dx — 0 and K, (1) — O then
Ha — 0.

Proor. Choose ¢ >0 and f € C and construct the same partition of X into N
intervals as in the proof of the preceding proposition.
For a large enough (a=ay)

J IK,dx < ¢5/2N and K,(1) < &N
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whence
4 m{|K,|>¢/N} < 6/2

where m denotes Lebesgue measure.

Consider the partition of X into N half-open (with the exception of I,)
intervals. For every a = a, we are able to construct a new partition consisting of
at most 2N half-open intervals in the following way: Let x be a point of
division for the original partition. If |K,(x)| < ¢/N then x will also be taken as a
point of division for the new partition. If |K (x)|>¢/N, then, by (4), there are
points to the left and to the right of x, respectively, where |K,|<¢/N. By (4), it is
possible to choose these two new points of division within Jx—6/2, x+d/2[.
Thus the new partition is made up of halfopen intervals of length <. Choose
g as in the proof of Proposition 2. Then

lu.gl < 4dellgll = 4ell fl

and hence
o f1 < e@fI+1).

Let m denote Lebesgue measure and ¢y, the point mass at 1. Put
(5) m = m+ey, .
Then Proposition 3 may be written

CoroLrary. K, — 0 in L,(m) = u, — 0.

ReEMARk. K, (1) is just the total mass p,(X).

Proposition 3 shows that [|K,|dm — 0 is a sufficient condition for u, — 0.
We shall now try to see whether it is also a necessary condition. (Trivially,
K,(1) - 0 is a necessary condition).

LEMMA 1. Let a be a positive real number. Suppose that there is a net K, of
distribution functions such that the sets {x | K,(x)>a} all contain an interval of
length greater than some positive constant b. Then there is an interval I, of
positive length, such that

Ic {x| K, (x)>a}
Jor a subnet K, of K,.
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ProoF. Let y, be the midpoint of an interval of length =b contained in
{K,>a}. Let y be a limit point of the net y,. Then there is a subnet K, of K,
such that

[y—ga y+§:|n [091] = {K‘,‘>a} .

LeEMMA 2. Let a be a’positive constant and p, a net of (uniformly bounded)
signed measures on X such that all {K,>a} contain an interval I of positive
length. Then u, - 0.

Proor. If p,(X)=K, (1) + O there is nothing to prove. We shall therefore
assume that p (X) — 0.

Put I=]c,d]. Then, for o greater than some a,, we have: ,[0,x]>a for all
x €I and p,1d,1]< —3a/4.

Take N>2/a. There exist f, € C with 0<f,<1, f,=1 on the interval
[0,x,_,] and f,=0 on [x,, 1], where

X =c+(k—=1)d—c)/N (k=1,2,...,N).

Put Ji=]x,-1, %]
Suppose that y, — 0. Then there is an «, such that

«>a = |pfil <a/d (k=12,...,N)

mﬂ=j ﬁ@ﬁjﬂwa
[0, xk-1] J

Ka(xk—l)+J‘J f;‘dﬂa .
Since K,(x)>a for all x € I we get

—%>Jﬁ%%—£ﬂ%;—mw
Jk k

hence
e (J) > 34

and therefore
N N
e (1) 2 #{(U Jk) = Y p;(J) > 3aN > 3

contradicting |,/ 1.
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Let 1b,b+a[ be an interval =[—1,1] (a>0). Let y, ,,,(K,) denote the
number of downcrossings of K, through the interval ]b, b+ a[, see [2, p. 127].

LEMMA 3. 7 44 4.(K)<a™ 1.

Proor. Suppose that there exist 0=<t, <t,<... <ty =1 such that K,(t,,_,)
>b+a and K,(t,)<b (k=1,...,N). Consider

N
ﬂa(U ]tzk—latzk]> < —Na.
k=1

Since [|pu,l <1, we get Na<1, that is, N<a™'. Hence y, ,,,(K)<a™'.

LemMma 4. If j |K,|ldx — 0, then there exist positive constants a and b and a
subnet K, of K, such that the sets {K, >a} contain intervals of length 2b.

Proor. If [|K,/dx — 0, then either

jmax{Ka,O}dxHO or J‘max{—Ka,O}dx—vo.

Suppose that | max {K,,0} dx — 0. Then there exists a positive number a and a

subnet K, of K such that | max {K,,0} dx > 5a, which guarantees that the set
{K, >4a} has positive measure 2¢>a.

Put N=y,, 3,(K,). NSa~! by Lemma 3. Then there exist 0=t, <t,<...
<t,ny=1 such that

Ku’(tZk—-l) > 3a and Ka'(tZk) < 2(1, k=1,. . .,N .
Consider u, =inf{t>0|K, ({)>3a}. We have u, <t,. If u,=inf{t>u, | K, (1)
<2a}, then u, <t,. The right continuity of K,. implies u; <u, and also t; <u,
(since otherwise y,, 3,(K,)= N +1). Proceeding in this way, we define (with u,
=0)

qu_l = inf{t>u2k_2] Kar(t)>3a}

Uge—y = inf{t>uy_, | Kp(®)<2a}, k=1,.. N
which have the property

0Ly =t <uyy, i=1,..,2N-1,
The right continuity of K,- now enables us to choose the t;’s in such a way as to
satisfy (with t,=0)

L2 St <ty-y = Ky(t) S 4a
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and
tyyoy St <ty = Ky(t) >a, k=1,...,N.

(Take e.g. typ_ =ty _, if K, (uy,_,)>3a, otherwise t,, _, =u,,_,+¢, where
£¢>0 is small enough.)

Let ' be the infimum of the set {t>1t,y| K, ()>3a}; if the set is empty, put
w' =1. Our choice of N guarantees that K, =2a on [u/,1].

If 1 —u' 2c, then {K, =2a} contains an interval of length c, and ¢>b where
b=a?/2. If, however, 1 —u’ <c, then we use

N
{Ke>4a} = U [ta-1tul Vv, 1]
k=1
and
m{K, >4a} = 2c

to conclude that at least one of the intervals [t,,-,¢,[ must have length
>c/N.

But [ty,_ 1, tul ={K, >a}. Thus {K, >a} contains an interval of length
>c/N>a?2=h.

ProOPOSITION 4. [|K,|dx$0 = pu, 5 0.
Proor. Follows directly from Lemmas 4 and 2.

THEOREM. Let m' be the measure defined in (5). Then the net p, of uniformly
bounded signed measures converges weakly to 0 if and only if IIKJ dm' — 0,
where K, is the distribution function corresponding to u,.

Proor. Follows directly from Propositions 3 and 4 and from the fact that
K,(1) 4 0 = pu, 0.

COROLLARY 1. Let S be a topological space and {K, | s € S} a family of
functions of bounded variation on [0,1] with {u, I s € S} the corresponding
family of signed measures on ([0,11,%8). Then the following statements are
equivalent:

(i) The function s rv pg is weakly continuous.
(i) For every f e C[0,1] the function

e r S(©dK (1)
0

is continuous.
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(i) Vs € S: lim,_,, [ |K,—K,|dm' =0 and the variation of K, is bounded in a
neighbourhood of s.

With the aid of Corollary 1 we shall also prove the following well-known
result

COROLLARY 2. Let {K} be a family of increasing functions (i.e. {u} is a family
of measures). Then the following statements are also equivalent:

(i) The function s v pg is weakly continuous.
(i) Vs e S: lim,_ K, (t)=K(t) for every point of continuity for K, and
lim, ., K, (1)=K,(1)

Proor. We shall show that (ii) is equivalent to the following alternative
version of (iii) in Corollary 1:

JIKr—Ksl dx — 0, K, ()= K1)

and the variation of K, is bounded in a neighbourhood of s.

Let t be a point of continuity for K, and suppose that K, (t) » K,(t) when r
— 5. In every neighbourhood U of s there is an r=r(U) such that |K, () — K(t)|
> a for some positive a. Take, for example, K,(t) — K,(t)>a. Then K, — K >a/2
on the interval I where K, <K (t)+a/2 and which has ¢ as its left endpoint.
(Recall that K is continuous at ¢t and K, is non-decreasing.) Hence

JIKr—Ksldx z sm(l),

NI

that is, [|K,—K,dx 5 0 asr — s.

On the other hand j |K,— K/ dx - 0 and the variation of K, (=K,(1) in this
case) bounded in a neighbourhood of s implies, by Lemma 4, that there is an
a>0 and an interval I such that, in any neighbourhood U of s,

uel = |K,uw—K,(u)| > a

for some r=r(U). Hence (ii) cannot hold since the set of points of continuity
for K, is a dense subset of [0,1].
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