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ON SECOND DERIVATIVES OF
CONVEX FUNCTIONS!

R. M. DUDLEY

Abstract.

A Schwartz distribution T on R¥ is a convex function iff its second derivative
DT is a nonnegative k x k matrix-valued Radon measure p. Such a pu is
absolutely continuous with respect to (k — 1)-dimensional Hausdorff measure.
Neither Lebesgue decomposition of measures nor Riesz decomposition of
subharmonic functions preserves convexity. Pointwise second derivatives are
also considered.

1. Introduction.

L. Schwartz [15, p. 54] showed that a distribution on R! is a convex
function iff its second derivative is a nonnegative Radon measure. In that
case (but not for k>1, as will be seen) every Radon measure u=0 is the
second derivative of a convex function.

We recall some definitions. Given a subset 4 of a finite-dimensional real
vector space V such that A is included in the closure of its interior, 2(A) will
denote the space of all C* real-valued functions on ¥ with compact support
included in A. Given a function f on a subset of V and v € V, the directional
derivative of f at x in the direction v is defined (when it exists) by

D,f(x) = I;In (f (x+ho)—f(x))/h .
0
We say f, — fin 2(A) iff there is a compact K = A such that all f, have
supports in K, and for any m and v(1),...,v(m) € V,

D.;u) ce Du(m)(fn“f) -0
uniformly on A. Then the space of distributions 2'(A) is the set of all real linear
forms T on 2(A) such that T(f,) — T(f) whenever f, — fin 2(A).
If we choose a translation-invariant (Lebesgue, Haar) measure dx on V, then
any locally integrable function f defines a distribution [ f] by
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160 R. M. DUDLEY

[f1e) = Jfgdx, ge2(4).

We will say T, — T in 2'(A) iff for every g € 2(A), T,(g) — T(g).

Given an open set U, a Radon measure on U is a set function defined on all
Borel sets with compact closure included in U, and countably additive on the
Borel subsets of each compact K< U.

Let U be a connected open set in V. A measurable function f: U — R is
called convex iff

flex+(1-0y) S tf )+ A-0f(y) for'0stsl

whenever tx+ (1—t)y € U for all ¢ € [0, 1].

If 4 is a measure absolutely continuous with respect to v (v(B)=0 implies
u(B)=0), we write u<v. If u and v are singular we write ulv. Lebesgue
measure on R* will be called A*.

We will define Hausdorff measures [9, pp. 169-171]. The diameter of a set S
is

diam$ := sup{|x—y| : x,ye S}.
Let c(m):=n"2/(2"I' (14 (m/2))). If A=R* and 6>0, let

@, s(A) 1= c(m)inf { Y. (diamS)" : G countable ,
SeG

Ac | S, and diamS<é6 VS e G}.
SeG

Let

H,,(A) := sup ¢s(4) = lim ¢,(4) .
6>0 510

Then for 0Sm<k, H,, is a regular measure on the Borel sets of R¥, called m-
dimensional Hausdorff measure. H,=A* on R¥ [9, p. 174].

For any real-valued signed measure u we have a Jordan decomposition
p=p*—p". Let |ul:=p" +p".

Let (V;]-]) and (W, | - ||) be two normed linear spaces. Let L(V, W) denote the
set of all continuous linear maps of Vinto W. For a function f from a subset U
of Vinto W, the (Fréchet) derivative f'(x) at x is defined (when it exists) as an
element of L(V, W) such that

If W) =f)=f X y—x) = o(y—x])

as y— xe U, yeU. For V and W finite-dimensional, as they will be
throughout this paper, the choice of norm does not matter. We use the usual
Euclidean norm.
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If fis convex on an open set U<V, D, f(x) exists for all x e U and v e V. If
V=R¥ and all the first partial derivatives offox; j=1,...,k, exist at a point
x (ie. if Dy f(x)=—D_,; f(x) where v(j) is the jth unit vector), then f'(x)
exists and its components are df/0x; [13, p. 101].

On each line parallel to the x; axis, df/0x; exists except at most on a
countable set. Let

E := {x: f’(x) is undefined} .

Then A*(E)=0. In fact, Ec U, 5, K, where K, are compact and H, _, (K,) <00
(Anderson and Klee [3, Theorem 3.1 p. 353]).

If fis convex, it is locally Lipschitzian [14, p. 86 Theorem 10.4], [13, p. 93].
In other words, D, f(x). is bounded for x and v in compact sets, so f'(x) is
locally bounded (cf. the proof of Theorem 2.1, Claim IV below). This fact will
be used several times in the sequel.

The second Fréchet derivative is defined by taking limits, if they exist, as
y— xe U\E, ye U\E. (For y € E, we could also use any element of the
subgradient at y [14] in place of f’(y).) Even on R!, there are continuous
convex functions f such that E is dense. Then f” would be nowhere defined if
the definition was not adapted, e.g. as above. In this sense existence of /" (x) a.e.
for f convex on R* was proved by Busemann and Feller [7] for k=2 and by
A. D. Alexandrov [2] for k=3.

Second partial derivatives 0%f/0x,0x; will also be defined as limits through
the set where 0f/0x; exists. Their matrix for 1<i, j<k is called the Hessian
wherever it exists.

2. The set of convex functions is closed.

THEOREM 2.1. For any connected open UcV, {[f]:f convex on U} is
sequentially closed, i.e. if [ f,] & Te 2'(U), f, convex, then T=[ f] for a unique
convex f.

Proor. Any convex g is continuous (e.g. [13, p. 93]). Thus [g] is a
distribution. Convexity is a local property, i.e. if g is convex on open sets U ; for
each j, it is convex on their union. So we may assume U is convex.

ConvenTION. In what follows, tasuma means “taking a subsequence, we may
assume ...”.

Let M be a countable dense set in U. Tasuma f, converge pointwise on M to
an extended real-valued function f. Let f:=limsup,_ f, on U.

CLamMm L f(x)< 400 for all x e U.

Maht. Scand. 41 - 11



162 R. M. DUDLEY

Proor. If not, tasuma there is a p € U such that f,(p) — +o0o. We take a k-
simplex S U, i.e. a convex hull of k+1 points such that none is in the linear
variety spanned by the others, with one vertex at p. Then tasuma there is a
vertex g of S such that

1) f,(@=max (f,(s) : s € S) for all n.

Let Y be the reflection of S in the point ¢ (we may assume Y< U). Then by
convexity, f,(t)= f,(¢q) for all t in ¥, so f, — + oo uniformly on Y, contradicting
[f.] — T (take g € 2(Y) with g=0, not identically 0). So Claim I is proved.

Ciamm IL. f(x)> —o0 for all x e U.

Proor. If not, then f,(u) = —oo for some u € U. Take another simplex P
< U with u in the interior of P. Since limsup f, < + 00 at each vertex of P,
convexity implies that for any neighborhood W of u with W included in the
interior of P, and any N < +o00, f,(w)< —N for all w € W if n is large. Again
this contradicts convergence of [ f,], and proves Claim II.

So f is finite valued, and convex, hence continuous.

Cramm II1. f, — f everywhere on U.

Proor. If not, let lim inf f,(v) < f (v). Tasuma f,(v) — y<f(v). Then limsup f,
is convex, finite valued by I and 1II, hence continuous, contradicting f, — fon
M, proving IIIL

Cramm 1V. f, — funiformly on compact subsets of U.

Proor. If not, take x, - x € U with f,(x,)+ f(x). Tasuma

f;t(xn) —>)yE [—009 OO], Y*f(x) )

SO

() = £/ 1x — x| = +00.

We can assume the x, are all in some simplex S<U with a vertex at x. If
y>f(x), then the f, are unbounded on S, specifically on segments from x
through x, to the opposite face of S, by convexity. But this contradicts
boundedness of f, on the vertices of S. So y< f(x). Let Y be the reflection of S
through x. We can assume Y U. Convexity implies that f, are unbounded on
Y, again a contradiction, proving Claim IV.

By IV, T=[f], proving Theorem 2.1.
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In this paper we do not need a topology on &' except for convergence of
sequences. The usual topology on 2’ can be defined as the finest locally convex
topology consistent with the convergence of sequences defined above. For a
fixed compact KcU, 2(K) with relative topology is a metrizable Montel
space. Thus by a result of J. H. Webb [17, Prop. 5.7] any sequentially closed set
in 2'(K) is closed. Since convexity is a local property, {[ f] : fconvex} is closed
in 2'(U), although not every sequentially closed set in 2'(U) is closed [8].

Now let W be a finite-dimensional real vector space with usual topology. Let
2'(U, W) be the set of all (sequentially) continuous linear maps from 2(U) into
W. For any fe 2(U), v— D, f is linear from V into 2(U). Given any
Te 2'(U, W), we define its (Fréchet) derivative DT by

(DT)(f)v) := —=T(D,f).
Then DT e 2'(U, L(V, W)), where L(V, W) is the vector space of all linear maps
from V into W. We also write

(D,1)(f) = = (DT)(f)(v) .

In particular, given a coordinate system (x,,...,x,) on ¥, we have
(0Tyox)(f) := —T(df/ox) ,

the usual definition of partial derivatives of a distribution.

If Te 2'(U,R), the second derivative D?’T:=D(DT) maps 2(U) into
L(V, V"), where V':=L(V,R). Here L(V, V') can be identified with the space B(V)
of all bilinear forms b: V x V— R, via b(v, w)=a(v)(w) for a € L(V,V’),v,w € V.

3. Positive second derivatives.

Let B* (V) denote the set of all nonnegative symmetric bilinear forms on
V x V, that is, the set of all b € B(V) such that b(v,v)=0 and b(v,w)=b(w,v)
for all v,w e V. If S € 2'(U, B(V)) and S(g) € B* (V) for each g € 2(U) with
g0, we write $>0.

THEOREM 3.1. Given Te 2'(U,R), T=[f] for some convex f iff D*T>>0.
Before proving the theorem we will give some alternate forms of it. For any
finite-dimensional real vector space Y, a Y-valued Radon measure p (as defined

in section 1) defines a distribution [y] € 2'(U,Y) by [u] (g):=§gdu. Then:

PROPOSITION 3.2. A>>0 iff A=[u] for some Radon measure p with values in
B* (V).
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Proor. The “if” part is immediate. For the converse, if A>>0, and K is a
compact subset of U, thereis an h € 2(U) with h=1o0n K and h=0 [15, p. 22].
Then for f, g € 2(K),

—(suplf—ghh < f—g < (sup|f—ghh.

Thus A is continuous on Z2(K) for the supremum norm, so A=[u] for some
Radon measure p [15, p 25]. Then by dominated convergence, u(C) € B* (V)
for any compact C < U, and hence for any Borel set C with compact closure in
U.

In terms of a basis of V, giving coordinates x,,. .., x,, elements of B* (V)
become nonnegative definite symmetric matrices. Thus the following is
equivalent to Theorem 3.1:

THEOREM 3.3. Given T e 9'(U,R), T=[ f] for some convex [ iff {0*T/0x,0x;} is
a matrix {y;} of real-valued Radon measures p;;on U, i, j=1,.. ., k, such that for
each Borel set B with compact closure included in U, {y;;(B)} is a nonnegative
definite matrix.

Proor. We use regularization [15, pp. 165-169]. Let ¢, € 2(V) be an
approximate identity, [¢,] — 6, where d,(f):=f(0), with ¢,=0 and the
support of ¢, decreasing to {0}. We take the convolutions Tx¢,. Then if
T=[f1], f convex, T+p,=[f*¢,] where f*¢, are C* convex functions. Thus
D*(fx¢,) are C* functions with values in B* (V) [13, pp. 100, 103]. Thus

D*([f1*e,) = [D*(f*9,)] > 0.

The set {4 e 2'(U,B(V)): A>0} is clearly sequentially closed, [fx¢,]
— [f], and D? is a continuous linear map, so D*T>>0.
Conversely if D>T>>0, then

(D*T)x¢, = D*(Txg,) > 0,

so that the C* functions f,:= Tx¢, are convex [13, pp. 100, 103]. Since [ f,]
— Tin &', T=[f] for some convex f by Theorem 2.1.

4. Disintegrations.

We quote for later use a theorem implied by known ones. e.g. [6, Proposition
13 pp. 39-40], [11]

THEOREM 4.1. Let C, D be compact metric spaces and h a continuous map of C
into D. Let u=0 be a Radon measure on C and v=poh™*! on D. Then there is a
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map y — p, from D into Radon measures 20 on C with p,(C)=p,(h~'{y})=1
for all y and /,t=jyy dv(y), that is for every u-integrable Borel function f,

J fdu = j U f(X)duy(X)]dV(y).
C D C

If ¢ is another Radon measure with v<g, so that v=_gp for g=dv/dg, we can
write

U= Jg(y)uy do(y) .

If u is a signed measure, we take its Jordan decomposition p=p* —u~ and let
jWl=pu*+u~, v=|ulch™!. Then since u*<|u| and p~ <|u|, there is a
disintegration

“4.2) po= juy dv(y) .

We call the measures pu, fiber measures for u. They are determined only a.e.

).

5. Pointwise derivatives.

We will need to connect pointwise and distribution derivatives. The
following may well be known. A proof is included for lack of a reference. Let
M= Hac + Using where p,.<4* and l‘sing-L/q'kv

THEOREM 5.1. Suppose g is a locally integrable function on R* and for some j,
0[g]/0x;j=p where p is a signed Radon measure. Then for some g;=g a.e. (A9,
the pointwise derivative dg;/0x; exists a.e. (1) and equals dy,/d*.

ProuF. We can assume j= 1. Restricted to the cube C:=Cy:=[—N,N 1 u
is a finite signed measure. Let
T(x) i= (Xg..»X, V= |ploT1,

and by (4.2) take a disintegration u= |p u,dv(y), where D:=[—N,NJ*"'. We
can identify each fiber T-'{y} with [—N,N]. It is enough to prove the
theorem on C.

LEMMA 5.2. v<1*~1 on D.

PrOOF. Let K be compact in D with 2~ (K)=0, take ¢, € 2(D) with ¢, 1k,
and let fe 2(C). Then
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L f(X)e,(Tx)du(x) = — J g(x)0(f (), (Tx))/0x, dx

—Jg(x) @,(Tx)(0f/0x)dx — O

as n— oo by dominated convergence. So [ f(x)1x(Tx)du(x)=0. Let L be
compact in C with p*(L)>0=pu"(L). Let f=f,,{ 1, to get

le(x)lK(Tx)du(x) =0.

Letting L increase gives [1x(Tx)du*(x)=0. Likewise, [1g(Tx)dpu~ (x)=0.
Thus

 V(K) = Jlx(Tx)dluI(x) =0
and the Lemma follows.

Let
hi= dv/dd*7',  j(x) := h(Tx)ur([—N,x,]).
Then [¢|jldi*<oco. For any ¢ € 2(C),

(@0L1/0x1) (@)

- L h(Tx)uz<([— N, x,1)(0p/0x,) dx

N
-L h(y) J y w,([— N, x,1)(09/0x,) dx, dy

N
j h(y)j o(t,y)dp, () dy = J(pdu.
D ~N

So d[j]/0x,=u and 0 j—g]/dx, =0. Hence for some fe £L(D,i*™ 1),
g(x) = j(x)+f(Tx) := g,(x) ae. on C[15, p.55].

Foreach y € D,t — p,([—N,t]) is differentiable for almost all t € [ - N, N] by
the classical Lebesgue theorem, and

du,([—N,t])/dt = (do,/dA*)(1)
where o, <A' and p,—a,1A". Thus a.e. (1Y),
0g,/0x, = h(Tx)(dor,/dA")(x,) .
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Both y,. and pgy,, have disintegrations with respect to v. Since v<A*"1,
Using,yL A" for almost all y. The density dp,./dA* provides a disintegration of y,.
with p,. ,<4' a.e. If v replaces 2*~! in the disintegration, each fiber measure is
multiplied by some constant h(y), so we still have p,. ,<4' a.e. Then, dg,/0x,
=du,,/d* ae.

Applying Theorem 5.1 to the first derivatives g=0f/0x;, we find that the
Hessian matrix of the pointwise second derivative is equal ae. to
d(D*[fao)/d 2"

Now we will see that there is no “Jordan decomposition” of second
derivatives which are measures:

PROPOSITION 5.3. There is a continuous function f on R? such that D*[f]
=[M], where M is a locally integrable matrix-valued function, but such that f+g
—h for any convex g,h, so [M]#%[u]—[v] for any nonnegative symmetric
matrix-valued Radon measures.pu,v with D*S=[u], D*T=[v], S, Te 2'(R?).

Proor. Let f(x,y):=x-In(x?+y?). Simple calculations give M locally
integrable. Here D[ f] is a function unbounded near 0, while for g, h convex,
D(g] and D[h] are locally bounded. The rest follows.

For k=1, a distribution T satisfies D>*T= u for some signed Radon measure
u iff T=[f]—[g] for some convex f,g (cf. [13, pp. 22-28]).

.Let g(p): =}:2"f(p—pj), where {p;} is a dense sequence in some ball and f
is as in Proposition 5.3. Then D?*[g] is a Radon measure but Dg is nowhere
continuous on the ball. Thus, to prove the Busemann-Feller-Alexandrov
theorem one must use not only that D?[ f] is a measure but also its positiv-
ity. Their proofs use a special construction for convex functions (the indicatrix).
It would be interesting to find other proofs.

6. Absolute continuity.

We prove absolute continuity of our measures with respect to (k—1)-
dimensional Hausdorff measure.

THEOREM 6.1. For any convex function f on an open set UcR¥
D*[f1<H,_,.

Proor. It is enough to prove (%[ f]1/0x,0x)(C)=0 if H,_,(C)=0, C
compact. We apply Theorem 5.1 and Lemma 5.2 to the partial derivatives
g =0f/0x;. Since the projection T does not increase diameters, and we can as-
sume U =R¥ we have
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A*~YTC) = H,_,(TC) £ H,_,(C) = 0,
so by Lemma 5.2,
(@*[f1/0x,0x)(C) < 10*[f1/0x,0x,(T~'TC)
=v(TC) = 0.

The dimension k—1 in Theorem 6.1 is best possible (let f(x):=|x,|).
However, the proof gives a‘somewhat stronger result for component measures
of D?[ f7], since one can have H,_,(C)= + 00> 0 for some C with A*"1(TC)=0.

COROLLARY 6.2. For f convex on R¥, k=2, D*[ f] has no atoms.

Let F=spt D*[ (], that is, F is the smallest closed set such that (D[ f])(U)
=0 where U =R¥\F. Then on the closure of each connected component of U, f
is affine. Thus each such component is the interior of its closure. If F is non-
empty, it must either have non-empty interior, or disconnenct R* so that U has
two or more components.

7. Which matrix-valued measures are D[ f]’s?
The entries of a second derivative matrix satisfy relations such as

oLui)/ox, = olu,1/ox;

For k>1 these relations are non-trivial.

TueoREM 7.1. A system {T;},<; <y of distributions is of the form T
=0*T/0x;0x; for some distribution T iff T;;=T;; and 0T,;/0x,=0T,/0x; for all
ijr=1,...,k

Proor. Clearly the conditions on T;; are necessary. To see that they are
sufficient, we first find that there are distributions T; with T;;=0T,/0x; [15, p. 59
Théoréme 6]. Then, since T;;= T}, by the same theorem of Schwartz there is a
T with 0T/0x;=T,

The set of measures D?[f], f convex, is a convex cone. One can try
to study this cone by finding its extremal rays, or equivalently the extremal
rays of the cone of convex functions modulo affine functions.

In dimension 1, the following is a corollary of Theorems 3.1 and 7.1, or of a
classical result of Blaschke and Pick [5]:
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THEOREM 7.2. On an interval U <R, the set of all D*[ f], f convex, is the set

of all Radon measures 20 on U. The extremal rays consist of point masses
{ad,:az0},ce U.

In dimension k=2, Corollary 6.2 shows that point masses no longer arise.
S. Johansen [12] showed that for k=2 (and presumably for all k>2) the
extremal rays become a more complicated set, and are dense in the cone. A
large class of extremal u have supports which are connected networks of line
segments with exactly 3 segments meeeting at each vertex. We call such a
vertex triple. On each segment L, u= M;A; where /; is Lebesgue measure in L
and M; is a (nonnegative, symmetric) matrix of rank 1 with M;(v)=0if vis in
the direction of L. The M| are all determined up to one multiplicative constant
by the angles at the vertices. There are further restrictions on the network: e.g.,
at each vertex, the three segments cannot lie in a sector of opening <. If, for
example, the network contains a triangle, the three segments outside the
triangle, when extended inside, must intersect in a point (where three affine
functions are equal) or be parallel.

PRrOPOSITION 7.3. There is an extremal convex function on R? with a non-triple
vertex.

ProOF. Let
f(x,p) 1= max(|x+yl, |x =y, 3|x| =2,3|y| - 2) .

The support of D*[ f] is then a network with 9 vertices. All except (0,0) are
triple, and can be joined by segments not passing through (0,0). Then the
extremality follows as in Johansen [12].

There are more complicated extremal networks, including some with
infinitely many vertices in a bounded set. Further complications may arise in
higher dimension, infinite dimensions (cf. Asplund [4]) and on curved
manifolds (cf. Alexander and Bishop [1]).

8. Lebesgue decomposition.

Let f be convex On R* and D?*[f]=pu>0. Then u has a Lebesgue
decomposition = piy; + psing Where p,<A* and pging LA, ptpc >0 and piging > 0.

ProposITION 8.1. For k> 1, pyc and pgn, need not be of the form D*[g] for g
convex.
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Proor. For k=2, let f(x,y) be the distance from {x, y) to the segment
S:= {{,0): 05t} .

Then f is convex and D[ f Jsing 1s concentrated in S. The support of p, is
{<x,y> : x=0 or x=1}. Since f is not affine on x=0, neither p,; nor pgn, is
D?*[g] for g convex.

9. Subharmonic distributions.

Every convex function is subharmonic. Some of the theory of subharmonic
distributions (Schwartz [15, pp. 220-2217) could have been used near the end
of the proof of Theorem 3.1 to show T=[f] for some f.

Given a nonnegative matrix-valued measure u={y;} on R¥, we define its
trace measure as

trp = ) fy.
1<isk

For any nonnegative symmetric matrix A, the trace tr4:=3%,<;<, A;; is the
sum of the eigenvalues. Thus if tr 4=0, 4 =0. Hence any nonnegative matrix-
valued (symmetric) measure p is absolutely continuous with respect to tr u. If
is a Radon measure, tr u is o-finite, and we have y=Mtruy where M is a
nonnegative symmetric matrixvalued function with entries bounded by 1.

If f is convex, tr D*[ f]=A4f where 4 is the Laplace operator,

4:= Y 0*oxt.
1gigk

A subharmonic function has a Riesz decomposition f=g+h where g is a
potential and h is a harmonic function [15, p. 219]. If h is also convex, it is
affine since D*[h]<4[h]=0. But if fis convex, h is not necessarily affine, e.g. if

Sy =2x% gy = x*+)%  and  h(x,)) = x> =),
on U:={{x,y) : x>+ y*<1}.
Let g be the logarithmic potential of a point mass for k=2,
g06y) 1= =) In (2 4y7)

Then 9%[g]/0x%is not a measure. Thus Theorem 3.1 for convex functions does
not extend to subharmonic functions.

10. Bounded variation of D, f on lines.

We have a theorem for almost all lines and then a counterexample on some
lines.
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THeEOREM 10.1. If f is convex on R*, then for any u, v € R* and almost all
w € RX, the function

gt) := (D, f)w+tu), teR,

is locally of bounded variation.

ProoFr. We can assume k=2. If u and v are linearly dependent then g is
monotone. Thus we can assume u={1,0>, v=<0, 1). It suffices to consider the
square C:0<x=<1. Let p be the measure 0*[f]/0xdy restricted to C.
By Lemma 5.2 and the proof of Theorem 5.1, since df/0y is a bounded function
(defined a.e.) on C, the total variation measure |u| has a marginal |uloy ™! <Al
on [0,1]. Thus by 4.1 and 4.2, u has a disintegration u=[§ u,dy. Specifically,
we take disintegrations

1 1
u*=fu;dy, u‘=J#;dy,
0 0

and set pu,:=p; —p, . Using a Hahn decomposition of y, we may assume that
for each y, uy Lpu; . Then

f(x’y)—f(()ay)_f(x’0)+f(0,0) = #([0’ X] X [O’Y]) 5
va(x’y)—va(an) = Dvﬂ([O,X] X [O,J’])

y
=D, J u,([0,x])dz  for almost all x,y,
0

which equals u,([0,x]) for almost all y, for a given x or for all rational
x € [0,1]. Likewise,

D, j "W ([0,x])dz = g ([0,x]),
0

D, J ur ([0,x])dz = 5 ([0,x]),
0

for almost all y and all rational x in [0, 1], and hence, by monotonicity, for all x
such that |p| {x} =0. If |ul,{x} >0 then conceivably D, [} |ul,([0, x]) dz does not
exist, but in any case monotonicity implies

y+h

|ul,([0,x)) < liminfh~" f |ul ([0, x]) dz
hi0

y

y+h
< limsuph™! f |ul.([0,x])dz = |pl,([0,x]) .
h|0 y
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The same inequalities hold for p* and p~ in place of |ul. By choice of u) and
I, » they never have an atom at the same point. Then, for almost all y and all x,
D, [} u,([0,x])dz lies in the interval between 1, ([0, x)) and p,([0,x]). For such
y, then, x — D, f(x,y) is of bounded variation.

ProposITION 10.2. There is a convex function g on R? such that 9g(x, y)/0y|,-o
is nowhere differentiable with respect to x.

Proor. The function f(x):=3,>; 2 *cos (2“x) is continuous, bounded and
nowhere differentiable on R! (Hardy [10]). Let h e 2(R!) satisfy h(0)=0,
' (0)#*0, spthe[—1,1], and

sup (Ih)L KWL < 1.
y

For each n=1,2,.. ., let
g.(x,y) 1= x2+8|y|%/3+n‘zcos (nx)h(n‘?y) .
Then g, is C* for y+0. For Iylgn_% s

3

gn(x,y) = x*+8yl/3 .

which is convex. For 0<| ylgn‘;, the second derivatives satisfy
4
0%g,/0x* 2 2—-1 21, |0%g/2x2)l £ mw,

and

2 2 -3 _ 2 2

0*g /2y 2 2WT -z

Thus the Hessian is nonnegative definite. Taking derivatives in the distribution
sense, we see that D?[g,] is a nonnegative matrix-valued measure, having a
density with respect to Lebesgue measure given by its Hessian, so by Theorem

3.1 g, is convex.
Now let

n(k) :=2* and g(xy) := kzl 273,10 (x, ) -
=

The series is convergent, uniformly and absolutely for x,y bounded, so g is a
continuous convex function. Differentiating the series termwise with respect to
y gives

Y 27934y + Y 2 *cos 2k (2%3))
k=1 k=1

which converges uniformly and absolutely, so that termwise differentiation is
justified. For y=0, we obtain h'(0) times a nowhere differentiable function.
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11. Cross derivatives.

For any distribution T, the distribution derivatives 0?T/dx;0x; and
02T/0x ;0x; are always equal as distributions for each i and j. For pointwise
derivatives it may fail at some points, even for a convex function (Stoer and
Witzgall [16, p. 152]). The same construction with different parameters proves
the following (cf. [13, p. 119 problem I(2)]).

PrOPOSITION 11.1. There exist convex functions g on R2, C* except at 0, with
a Hessian at 0 which may be symmetric or not, such that g’ (0) does not exist.

Proor. We first consider (non-convex) functions of the form
f(x’y) = Z ajxjy4_j/r2, <x,)’>*<0,0> s
0=j<4
f0,0) =0, where 12 1= x*+y?.

Any such function is C! and C* except at the origin. The Hessian matrix exists
everywhere, with

(0*f)0x0y)(x,0) = a; for all x and
(0*f)0yox)(0,y) = a, for all y.

Thus the Hessian is symmetric at 0 iff a, =a,. Calculation shows that the
second Fréchet derivative f”(x) exists at the origin iff both a, =a; and a, +a,
=a,. The entries in the Hessian are homogeneous of degree 0 (quotients of
6th degree homogeneous polynomials) and are uniformly bounded. A
continuous function, convex on all lines not passing through 0, is actually
convex. Thus

g(x,y) := f(x, )+ A(X*+y)

is convex for A4 large enough. We can take a,=1, a,=a,=0, and either a, =a,
=0 or a; =1, a;=0 to obtain the desired examples.

Stoer and Witzgall [16, p. 152] take ay=a,=a,=0,a,=1=—a;, A=13to
obtain a convex function with a non-symmetric Hessian at 0. (4=3 will
suffice.)
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