TRANSFORMS VANISHING AT INFINITY IN A CERTAIN DIRECTION AND SEMI-IDEMPOTENT MEASURES

LOUIS PIGNO

Let G be a compact abelian group with character group Γ . Throughout the paper, we shall assume there is a non-trivial group homomorphism

$$\varphi \colon \Gamma \to \mathsf{R}$$

where R is the additive group of reals. If φ is an isomorphism, then the semi-group \mathscr{P} is the set $\{\gamma \in \Gamma \colon \varphi(\gamma) \geq 0\}$. For convenience, assume Γ is countable.

Let M(G) be the usual convolution algebra of finite complex-valued Borel measures on G. The Fourier-Stieltjes transform of the measure $\mu \in M(G)$ is the function $\hat{\mu}$ defined on Γ by

$$\hat{\mu}(\gamma) = \int_G \gamma(-x) d\mu(x) .$$

We will also use $\hat{}$ to denote the Gelfand transform. Let $M_0(G)$ be the ideal of measures $\mu \in M(G)$ such that $\hat{\mu} \in C_0(\Gamma)$.

We designate by $M_{\varphi}(G)$ the set of those $\mu \in M(G)$ such that $\hat{\mu}$ vanishes at infinity in the direction of φ . By this is meant $\{\gamma_n\}_1^{\infty} \subset \Gamma$ with $\varphi(\gamma_n) \to \infty \Rightarrow \hat{\mu}(\gamma_n) \to 0$. Here, $\varphi(\gamma_n) \to \infty$ in the usual topology of R.

It is easy to check that $M_{\varphi}(G)$ is a closed ideal of M(G) such that if $\tau \in M_{\varphi}(G)$ and $\xi \ll \tau$ then $\xi \in M_{\varphi}(G)$. Thus

$$M(G) \,=\, M_{\varphi}(G) \oplus M_{\varphi}^{\perp}(G)$$

where

$$M^\perp_\varphi(G) \,=\, \big\{\varrho \in M(G) \,:\, \varrho \perp \tau \text{ for each } \tau \in M_\varphi(G)\big\} \;.$$

Let δ_0 be the identity measure in M(G) and for any set of non-zero integers $\{N_1, \ldots, N_m\}$ put $\delta_i = N_i \delta_0$, $i = 1, 2, \ldots, m$. We state our first result.

Theorem 1. Let $\mu \in M(G)$ with $\mu * \prod_{i=1}^{m} (\mu - \delta_i) \in M_{\varphi}(G)$. Then $\mu = \mu_0 + \mu_\perp$ where $\mu_0 \in M_{\varphi}(G)$, $\mu_\perp \in M_{\varphi}^\perp(G)$ and $\hat{\mu}_\perp(\Gamma) \subset \mathbb{Z}$.

Received July 27, 1976; in revised form September 19, 1976.

154 LOUIS PIGNO

PROOF. We adapt the method of [5]: Suppose $\mu \in M(G)$ and

(1)
$$\mu * \prod_{i=1}^{m} (\mu - \delta_i) \in M_{\varphi}(G).$$

Since $M_{\omega}(G)$ is an ideal (1) gives:

(2)
$$\mu_{\perp} * \prod_{i=1}^{m} (\mu_{\perp} - \delta_i) \in M_{\varphi}(G).$$

Let S be the structure semi-group for M(G) and consider the image of M(G) in M(S) in the usual way; see [8]. For $\xi \in M(G)$ the image of ξ is denoted by $(\xi)_s$. Then (2) becomes:

$$(\mu_{\perp})_s * \prod_{i=1}^m (\mu_{\perp} - \delta_i)_s \in M_{\varphi}(S)$$

where $M_{\varphi}(S)$ is the image of $M_{\varphi}(G)$.

We shall assume

$$(4) \qquad (\mu_{\perp})_s \ \neq \ 0 \ .$$

Let \hat{S} denote the semi-characters of S and $\bar{\Gamma}$ the closure of Γ in \hat{S} . Recall that \hat{S} is the maximal ideal space of M(G). Now (4) implies the existence of an infinite set $\{\gamma_n\}_{n=0}^{\infty} \subset \Gamma$ and an $\varepsilon > 0$ such that $|\hat{\mu}_{\perp}(\gamma_n)| \ge \varepsilon$ and $\varphi(\gamma_n) \to \infty$.

Thus $\{\gamma_n\}_1^{\infty}$ has a cluster point $\beta_0 \in \overline{\Gamma} \setminus \Gamma$. Since conjugation is continuous and multiplication of semi-characters separately continuous we may infer that $|\beta_0|^2 \in \overline{\Gamma} \setminus \Gamma$.

Put $T(\beta_0) = \{s \in S : \beta_0(s) = 0\}$. Then define

$$(\mu_\perp)_s = \mu_1 + \mu_2$$

where

$$\mu_1 = (\mu_{\perp})_s |_{T(\beta_0)}$$
 and $\mu_2 = (\mu_{\perp})_s |_{S \setminus T(\beta_0)}$.

Notice $\mu_2 \neq 0$ by (4).

Let $\tau \in M_{\varphi}(S)$ and consider

(5)
$$|\tau|^{\hat{}}(|\beta_0|^2) = \int_{S \setminus T(\beta_0)} |\beta_0|^2(s) \, d|\tau|(s) .$$

Now for fixed k we have $\lim_{j} \varphi(\gamma_{j} - \gamma_{k}) = \infty$, so since the Gelfand transform is continuous on \hat{S} and multiplication of semi-characters separately continuous we may conclude that $|\tau|^{\hat{}}(|\beta_{0}|^{2}) = 0$. Thus, we gather from (5) that $M_{\varphi}(S)$ is carried by $T(\beta_{0})$. Recall for any $\omega_{1}, \omega_{2} \in M(S)$ that

(6) carrier
$$(\omega_1 * \omega_2) \subset (\text{carrier } \omega_1)(\text{carrier } \omega_2)$$
.

Inasmuch as $T(\beta_0)$ is an ideal and $S \setminus T(\beta_0)$ is a semigroup we obtain via (6) that for any $\omega \in M(S)$ and $\tau \in M_{\omega}(S)$ the condition:

(7)
$$\mu_2 * \prod_{i=1}^m (\mu_2 - (\delta_i)_s) \perp \tau + \omega * \mu_1.$$

We gather from (3) and (7) that

(8)
$$\mu_2 * \prod_{i=1}^m (\mu_2 - (\delta_i)_s) = 0.$$

Pulling back, we have

where $(\varrho_i)_s = \mu_i$, i = 1, 2. As a consequence of (8)

(10)
$$\varrho_2 * \prod_{i=1}^m (\varrho_2 - \delta_i) = 0, \quad (\varrho_2 \neq 0) .$$

Since $\varrho_i \in M_{\varphi}^{\perp}(G)$ (i=1,2) we see from (10) that $\|\mu - \varrho_2\| \le \|\mu\| - 1$. So if $\varrho_1 \ne 0$ we apply this finite descent argument to $\mu - \varrho_2$ and therefore conclude that

$$\hat{\mu}_{\perp}(\Gamma) \subset \mathbf{Z} .$$

This completes the proof.

Theorem 1 has an application to semi-idempotent measures which we now give. A subset E of Γ is said to be a Sidon set if $f \in L^{\infty}(G)$ with supp $\widehat{f} \subset E \Rightarrow \sum |\widehat{f}(\gamma)| < \infty$. For any subset A of Γ put

$$F(A) = \{ \mu \in M(G) : \hat{\mu} \text{ is integer-valued on } A \}$$

and

$$I(A) = \{ \mu \in M(G) : \hat{\mu} = 0 \text{ or } 1 \text{ on } A \}.$$

Assume φ is a non-trivial isomorphism of Γ into R. The following result is an analogue of a result announced by I. Kessler [1]. See also Y. Meyer [3, pp. 206–211].

THEOREM 2. Let E be a Sidon subset of Γ . Suppose $\mu \in F(\Gamma \setminus -\mathscr{P} \cup E)$. Then there is a $v \in F(\Gamma)$ such that $\hat{\mu} = \hat{v}$ off $-\mathscr{P} \cup E$. In particular, if $\mu \in I(\Gamma \setminus -\mathscr{P} \cup E)$ then $v \in I(\Gamma)$.

PROOF. Suppose $\mu \in F(\Gamma \setminus -\mathcal{P} \cup E)$ and let N_i $(i=1,2,\ldots,m)$ be the distinct non-zero integer-values of $\hat{\mu}$ off $-\mathcal{P} \cup E$. It is apparent that

156 LOUIS PIGNO

(1)
$$\sup \left\{ \mu * \prod_{i=1}^{m} (\mu - \delta_i) \right\} \subset -\mathscr{P} \cup E.$$

where $\delta_i = N_i \delta_0$. By Theorem 2 of [7, p. 368] we see that (1) gives:

(2)
$$\left\{\mu * \prod_{i=1}^{m} (\mu - \delta_i)\right\} \in C_0(\mathcal{P}).$$

As a consequence of (2) we gather that

(3)
$$\mu * \prod_{i=1}^{m} (\mu - \delta_i) \in M_{\varphi}(G).$$

Now (3) in combination with Theorem 1 permits the conclusion:

(4)
$$\mu_{\perp} * \prod_{i=1}^{m} (\mu_{\perp} - \delta_{i}) = 0$$

where $\mu_{\perp} \in M_{\varphi}^{\perp}(G)$. Since $\mu_{\perp} \in F(\Gamma)$ it is evident that $\mu_0 \in F(\Gamma \setminus -\mathscr{P} \cup E)$. Consider

$$\mathscr{F} = \{ \gamma \notin -\mathscr{P} \cup E : |\hat{\mu}_0(\gamma)| \geq 1 \}$$
.

We claim \mathcal{F} is a finite subset of \mathcal{P} . To establish our claim, we shall assume \mathcal{F} is infinite and force a contradiction:

Suppose \mathscr{F} is infinite. Clearly $0 \le \varphi(\mathscr{F}) \le M$ for some $M \in \mathbb{R}^+$ since $\mu_0 \in M_{\varphi}(G)$. Let r_0 be the largest accumulation point of the set $\varphi(\mathscr{F})$ and let $\gamma_j \in \mathscr{F}$ be a sequence of distinct elements such that $\varphi(\gamma_j) \to r_0$. Then without loss of generality,

(5)
$$\bar{\gamma}_i \mu_0 \rightarrow \nu \quad \text{weak} - *$$

where v is singular with respect to Haar measure on G. As a consequence of $\gamma_i \in \mathcal{F}$, (5) gives:

$$\hat{v}(0) \neq 0.$$

Now by Theorem 1.4 of [2, p. 8]

(7)
$$\underline{\lim} (E - \gamma_j) \text{ is a finite subset of } \Gamma.$$

Thus, except for a possible finite set of positive γ 's,

(8)
$$\lim_{i} \hat{\mu}(\gamma + \gamma_{i}) = \hat{v}(\gamma) = 0.$$

because $\gamma + \gamma_j$ eventually does not belong to \mathscr{F} . Appeal to Theorem 1 of [7] yields $\hat{v}(0) = 0$ and this contradicts (6).

Thus, \mathscr{F} is a finite set so there is a trigonometric polynomial p on G such that $\hat{p} = \hat{\mu}_0$ off $-\mathscr{P} \cup E$ and $\hat{p} = 0$ on $-\mathscr{P} \cup E$. Well, for the v of our Theorem, take $v = \mu_+ + p$. This concludes the proof.

The assumption that Γ be countable in our paper is of course inessential. The assumption that φ is a non-trivial isomorphism in Theorem 2 is equivalent to Γ having an archemedian order.

Let G be a non-discrete LCA group. The method of proof of Theorem 1 yields the following theorem.

THEOREM 3. If

$$\mu * \prod_{i=1}^{m} (\mu - \delta_i) \in M_0(G)$$

then μ has a decomposition $\mu = \mu_0 + \mu_\perp$ where $\mu_0 \in M_0(G)$, $\mu_\perp \in M_0^\perp(G)$ and $\hat{\mu}_\perp(\Gamma) \subset \mathbb{Z}$.

For discrete Γ we call $\mathfrak{R} \subset \Gamma$ a weak Rajchman set if $\operatorname{supp} \hat{\mu} \subset \mathfrak{R} \Rightarrow \mu \in M_0(G)$. For examples of Rajchman sets, the reader is referred to [6]. An easy consequence of Theorem 3 is:

If $\mu \in F(\Gamma \backslash \Re)$ then there is a $\nu \in F(\Gamma)$ such that $\hat{\mu} = \hat{\nu}$ off \Re . In particular, if $\mu \in I(\Gamma \backslash \Re)$ then $\nu \in I(\Gamma)$.

We remark that it is possible to prove a result which encompasses Theorem 1. For Γ discrete suppose Φ is any family of non-trivial homomorphisms from Γ into R. We designate by $M_{\Phi}(G)$ the set of those $\mu \in M(G)$ with the following property: $\{\gamma_n\}_1^{\infty} \subset \Gamma$ with $\varphi(\gamma_n) \to \infty$ for all $\varphi \in \Phi \Rightarrow \hat{\mu}(\gamma_n) \to 0$. The proof of Theorem 1 can be adapted to obtain our final theorem.

THEOREM 4. If $\mu * \prod_{i=1}^{m} (\mu - \delta_i) \in M_{\Phi}(G)$ then μ has a decomposition $\mu = \mu_0 + \mu_{\perp}$ where $\mu_0 \in M_{\Phi}(G)$, $\mu_{\perp} \in M_{\Phi}^{\perp}(G)$ and $\hat{\mu}_{\perp}(\Gamma) \subset \mathbf{Z}$.

The author takes pleasure in thanking Professor Y. Domar of Uppsala University for helpful correspondence. The results of this paper were announced in [4].

REFERENCES

- I. Kessler, Semi-idempotent measures on abelian groups, Bull. Amer. Math. Soc. 73 (1967), 258– 260.
- 2. J. M. López and K. A. Ross, Sidon Sets, Marcel Dekker, Inc., New York, 1975.
- 3. Y. Meyer, Algebraic Numbers and Harmonic Analysis, North Holland Publishing Company, Amsterdam, 1973.
- L. Pigno, Parts of measures and integer-valued transforms, Bull. Amer. Math. Soc. 83 (1977), 279-280.
- 5. L. Pigno, Interpolation of integer-valued Fourier-Stieltjes transform off Rajchman sets, Kansas State Univ. Technical Report, No. 54, 1976.

158 LOUIS PIGNO

- 6. L. Pigno, Fourier-Stieltjes transforms which vanish at infinity off certain sets, Glasgow Math., J. (to appear).
- 7. L. Pigno, A variant of the F. and M. Riesz Theorem, J. London Math. Soc. (2), 9 (1974), 368-370
- 8. J. L. Taylor, *Measure algebras*, CBMS Conference Report no. 16, Amer. Math. Soc., Providence R.I., 1973.

KANSAS STATE UNIVERSITY MANHATTAN KANSAS 66506 U.S.A.