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TRANSFORMS VANISHING AT INFINITY
IN A CERTAIN DIRECTION
AND SEMI-IDEMPOTENT MEASURES

LOUIS PIGNO

Let G be a compact abelian group with character group I'. Throughout the
paper, we shall assume there is a non-trivial group homomorphism

o:I' >R

where R is the additive group of reals. If ¢ is an isomorphism, then the semi-
group 2 is the set {y € I': ¢(y)=0}. For convenience, assume I is countable.

Let M(G) be the usual convolution algebra of finite complex-valued Borel
measures on G. The Fourier—Stieltjes transform of the measure u € M(G) is the
function f defined on I' by

i) = L D= ) du(x) .

We will also use ~ to denote the Gelfand transform. Let M, (G) be the ideal of
measures u € M(G) such that ji e Cy(I).

We designate by M, (G) the set of those u € M(G) such that ji vanishes at
infinity in the direction of ¢. By this is meant {y,}°<I with @(y,)
— 00 = fi(y,) — 0. Here, ¢(y,) — oo in the usual topology of R.

It is easy to check that M,(G) is a closed ideal of M(G) such that if
7€ M,(G) and <t then (€ M ,(G). Thus

M(G) = M,(G) @ M,(G)
where
ML(G) = {¢ e M(G) : ¢ L1 for each 1 € M,(G)} .
Let §, be the identity measure in M (G) and for any set of non-zero integers

{Ny,...,N,} put 8,=N8,, i=1,2,...,m. We state our first result.

THEOREM 1. Let u € M(G) with uxITr-, (u—90;) € M,(G). Then pu=po+pu,
where py € M, (G), 1, € My(G) and fi,(N<Z.
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Proor. We adapt the method of [5]: Suppose u € M(G) and

8 uefl =€ My(©).

Since M, (G) is an ideal (1) gives:

@ por IT (=80 € M,(6)

Let S be the structure semi-group for M (G) and consider the image of M (G)
in M(S) in the usual way; see [8]. For £ € M(G) the image of ¢ is denoted by
(&)s. Then (2) becomes:

3) (% [T (1= 8), € M,(8)

where M, (S) is the image of M (G).
We shall assume

@) (u)s + 0.

Let § denote the semi-characters of S and I” the closure of I in 8. Recall that §
is the maximal ideal space of M (G). Now (4) implies the existence of an infinite
set {y,}<T and an &¢>0 such that |, (y,)|Z¢ and @(y,) — oo.

Thus {y,}? has a cluster point B, € I'\I'. Since conjugation is continuous
and multiplication of semi-characters separately continuous we may infer that
IBol* € T\I".

Put T(Bo)={s € S : Bo(s)=0}. Then define

(s = my+py

where

= (u)slrey and gy = (Ul s\T(8y) -

Notice u,+0 by (4).
Let 7 € M,(S) and consider

) Il (1Bol?) = j 1Bol* (s) dl|(s) -
S\T(Bo)

Now for fixed k we have lim; ¢ (y;—7,) =00, so since the Gelfand transform is
continuous on § and multiplication of semi-characters separately continuous
we may conclude that |t] (|f,|?)=0. Thus, we gather from (5) that M, (S) is
carried by T(B,). Recall for any w,,w, € M(S) that

6) carrier (w, *w,) < (carrier w,)(carrier @,) .
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Inasmuch as T(f,) is an ideal and S\T(f,) is a semigroup we obtain via (6) that
for any w € M(S) and t € M (S) the condition:

™ pox [T (1= 0)) Lt s,

We gather from (3) and (7) that

®) par [ (=) =
Pulling back, we have

9 U =01+ 01l

where (9;),=p;, i=1,2. As a consequence of (8)

(10) e+ [T @8 = 0. (@240,

Since ¢; € M;(G) (i=1,2) we see from (10) that |u—g,| < |lull—1. So if ¢, +0
we apply this finite descent argument to u—g, and therefore conclude that

(11) ApnecZ.
This completes the proof.

Theorem 1 has an application to semi-idempotent measures which we now
give. A subset E of I' is said to be a Sidon set if fe L*(G) with supp f
cE = Y |f(y)|<oo. For any subset 4 of I' put

F(A4) = {p € M(G) : jiis integer-valued on A}
and
I(A) = {u’e M(G): 4i=0o0r 1 on 4} .

Assume ¢ is a non-trivial isomorphism of I' into R. The following result is an
analogue of a result announced by I. Kessler [1]. See also Y. Meyer [3, pp.
206-211].

THEOREM 2. Let E be a Sidon subset of I'. Suppose pe€ F(I'\—2UE).
Then there is a v € F(I') such that =9 off —2UE. In particular, if pe
I('\-=2UE) then v € I(I).

ProoF. Suppose € F(I'\—=2UE) and let N; (i=1,2,...,m) be the dis-
tinct non-zero integer-values of i off —# UE. It is apparent that
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-~

o supp{y*f[l (u—ai)} c —PUE.

where 6;= N;0,. By Theorem 2 of [7, p. 368] we see that (1) gives:

@ {#

As a consequence of (2) we gather that

-~

u:s

(u— 5.)} € Co(2) .

©) n*

u':];

(# ) e M,(G).
Now (3) in combination with Theorem 1 permits the conclusion:
4 “.L*l_[ (u—90) =0
i=1

where p, € M;(G). Since p, € F(I') it is evident that u, € F(I'\—2UE).
Consider
F ={y¢-2VUE: |, z1}.
We claim & is a finite subset of 2. To establish our claim, we shall assume % is
infinite and force a contradiction:
Suppose # is infinite. Clearly 0<@(#)<M for some M € R* since
Ko € M, (G). Let r,, be the largest accumulation point of the set ¢(#) and let

7; € F be a sequence of distinct elements such that ¢(y;) — r,. Then without
loss of generality,

5 Titho > v weak— *

where v is singular with respect to Haar measure on G. As a consequence of
y; € F, (5) gives:

(©) 7(0) + 0.

Now by Theorem 1.4 of [2, p. 8]

) lim (E—y)) is a finite subset of I'.
Thus, except for a possible finite set of positive y’s,

(8) li;nﬁ(vﬂj) =¥y =0.

because y +7; eventually does not belong to #. Appeal to Theorem 1 of [7]
yields ¥(0)=0 and this contradicts (6).

Thus, & is a finite set so there is a trigonometric polynomial p on G such
that p=f, off —2UE and p=0 on — 2 UE. Well, for the v of our Theorem,
take v=pu, +p. This concludes the proof.
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The assumption that I be countable in our paper is of course inessential.
The assumption that ¢ is a non-trivial isomorphism in Theorem 2 is equivalent
to I' having an archemedian order.

Let G be a non-discrete LCA group. The method of proof of Theorem 1
yields the following theorem.
THEOREM 3. If

prIT (u=5) € Mo(G)

U

1

then p has a decomposition u=uy,+u, where p, € My(G), u, € M3(G) and
A (Nez.

For discrete I' we call RcI' a weak Rajchman set if suppficR
= u € M, (G). For examples of Rajchman sets, the reader is referred to [6]. An
easy consequence of Theorem 3 is:

If u e F(I'\R) then there is a v € F(I') such that i=9 off R. In particular, if
we I(IM\R) then v e I(I).

We remark that it is possible to prove a result which encompasses Theorem
1. For I discrete suppose @ is any family of non-trivial homomorphisms from
I' into R. We designate by M4(G) the set of those u € M(G) with the following
property: {y,;¥ <I with ¢(y,) — oo for all ¢ € & = [i(y,) — 0. The proof of
Theorem 1 can be adapted to obtain our final theorem.

THEOREM 4. If pu*[1", (u—90;) € My(G) then p has a decomposition u=u,
+u, where py € My(G), u, € Mg(G) and i, (IN<Z.

The author takes pleasure in thanking Professor Y. Domar of Uppsala

University for helpful correspondence. The results of this paper were
announced in [4].
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