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CHARACTERIZATIONS OF H!
BY SINGULAR INTEGRAL TRANSFORMS
ON MARTINGALES AND R"

SVANTE JANSON

1. Introduction.

This paper consists of two related but logically independent parts, Sections
2—4 where we study martingales, and Section 5 where we prove an analogous
result for R”.

Singular integral transforms have been defined on local fields by Phillips and
Taibleson [10], [11], [14]. These transforms have many properties in common
with singular integrals on R" [2], [12], and in particular Chao and Taibleson
[3], [14], have shown that they can be used to define conjugate systems and
HP-spaces. However, as was noted by Gundy and Varopoulos [7] and
Carleson who suggested this study to me, their theorems and proofs are
independent of the algebraic structure and seem to be most naturally
formulated for martingales.

The main result (Theorem 4) is a necessary and sufficient condition for a set
of such transforms to characterize H! as the set of integrable functions having
these transforms integrable.

In the case when the transforms are convolutions, especially on local fields,
the condition is that the corresponding Fourier multipliers separate every
character from its inverse. This is shown in Section 5 also to be a necessary
condition for multipliers to characterize H'(R"). These theorems contain the
counter examples with even multipliers by Gandulfo, Garcia-Cuerva and
Taibleson [5].

2. Basic definitions. .

Here are collected some facts about martingales that can be found e.g. in [6]
or [9]. A

We assume that (Q, %, ) is a pfd'b‘ébility space and that for every n=1 there
is a partition {E; ;}% ;- of Q into measurable subsets such that
uE; )=d"and U_,E ;,=E; ,; whered is a fixed integer.
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ExaMPLEs. a) Let X be a set with d points, each having probability 1/d. Take
(Q,%,p) as X* and E; ; as the subset with the first n coordinates
prescribed.

b) (Q,#,p) is [0,1) with Lebesgue measure and E; ; is the interval of
points whose decimal expansion in the scale of d begins with (i, —1) ... (i,—1).

Let #, be the sub-o-field of # generated by {E; ;}. Thus &% ,-measurable
functions are constant on each E; ;. If f is integrable, its conditional
expectations are given by

E(fIQ‘?,,)=d"J‘ fdu, on E; .,

iy ..in

and in particular

E(f1#o) = E(f) = Lfdu-

A martingale is a sequence of integrable functions {f,}3 such that
E(fy41|F ) =1, We define Af,=f,—f,-1.

An integrable function f defines a martingale by f,=E(f | % ,) which can be
identified with f. In order to obtain uniqueness we assume that & is generated
by UZ,. f* is defined as sup,|f,|.

Some well-known lemmas follow.

LemMA L. If fe L2, cozp21, then | fl» =\ fl» and f, — f a.e. and in LP.

LemMma 2. If |flirSC, p>1, then f,=E(f|%,) for some fe L’ and
ILf e S sup || foll -

LemMa 3. If sup, |f,| € L', then f,=E(f|#,) for some fe L.

Lemma 4. If {f,} is a positive submartingale, i.e., f, is non-negative and & ,-
measurable and E(f,.,| % ,)2f,, then

B

Isup fallr = p—1°uP I fallie -

—

Two Banach spaces are defined by
H' = {f; f*eLl'} BMO = {f; E(f-f/|F)=C Vn}.

(Equivalent definitions exist.)
The Fefferman duality holds in the following form.
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LemMA 5. BMO is isomorphic to the dual space of H*, with the duality given
by (f,g)=lim,_ . E(/.g,)-

We have the inclusions L' S H! 5 L’ 5BMO>SL®, 1 <p<oo.

LEmMMA 6. If x, ... x, are real numbers such that 3 x;=0 and minx;= —1,
then there is a function f e L', but f¢& H' such that

AfEi i ) = iy X

Proor. Define g, by

gnEi i) =[] (I+x), g =1.
1

Thus
g(Ei . i) = (1+x)gu—1(E . i _)

and {g,} is a positive martingale. | g,||.:=E(g,)=E(go)=
We assume that x, = —1. g, is thus O if any i, k<n, is equal to 1. Set

F, = U Ei,...i_,,l-
TS| "
F, are disjoint and
1 1
L, gn-1dp = Fi J Bn-rdp = .
Byl et
Set
o " 8k O 8 o B
L, =22
SediEelh L= Ll zly
Consequently

[ rz] 5z
F, F,

3. The transform.

Let A be a linear operator in the space V={x € C?; ¥ x;=0}. Given a
martmgale {fa}, we can regard {Af,(E; ;_ )}I-, asanelement in V for every
i . _:. Define Ag, as A(4f,) on every set E; _; , that is,

1l
;’l
(5]
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d

Agn(Eil...i,,_l,i,‘) = Z ai,‘iAfn(Ei,...i,,_l,j)

i=1

where (a;;) is the matrix representation of an arbitrary extension of 4 to C%
Define g,=>Y1 4g,. g, is & ,-measurable.

Since 3¢ _ 4g,(E;, . i, ,i)=0, {g.}oLo is a martingale denoted by T{f,}.
This gives an algebra homomorphism from the linear operators in ¥V into the
linear operators on martingales.

The most important case, including the previous results referred to above, is
when A is the convolution with a fixed function on a finite group G, i.e. when
a; j=o;,;-1. Then T is a convolution with a homogenous function on G*.

REMARK. One can also define more general transforms by taking different
operators A; ; _ on different subsets E; ; . They will have similar
properties; in particular the results of this section are valid, assumed that the
operators are uniformly bounded. The proofs below are of a well-known
nature and are included for completeness. Cf. also Burkholder [1].

We are interested especially in the case of martingales of integrable
functions, i.e. when f,=E(f|#,) and g,=E(g| #,), where f,g € L' and we will
then define Tf as g in accordance with the identification of an integrable
function with the corresponding martingale.

It follows immediately from the definitions that Tf exists when f is
measurable with respect to some &,. In particular, Tf, exists and T{f,}=
{Tf,} for any martingale.

Thus if Tf exists, then Tf=Ilim Tf, a.e.

We assume for the sake of simplicity that the (euclidean) norm of 4 is less
than or equal to 1.

Lemma 7. E(ATL? | F,)<E(Af2| #,)  if n>m.

PRrROOF.

d 2

Z ay;Af,(E;, ...i,,_,,j)

k=1 [j=1

E(ATSP | F )B4, ) =

alm
M=

d
< 2 Y MLE, P = B4 F, )E, )
j

In-y
=1

and the result follows immediately.

LEMMA 8. If fe L?, then Tf exists and | Tf ||z < || f 2.
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Proor.
E(TAP) = ¥ E(ATAD) < Y E(A£P)

= E(f,—fol» £ E(f») = E(fP) .
Thus || Tf,|2< || f |- Lemma 2 shows that Tf exists and | Tf ||z < | f 2.

LemMMA 9. If fe L, then
u{x; sgplenuxM} < sallle
and lim Tf, exists a.e.
Proor. Let F, be the set where E(|f|| #,)> 4, E(|f|| F ) <4, m<n. Thus
UF, = {x; *(9>4)  and  u(F) < 3 L fldu
Hence

NIRRT

Define F=UF, and

(£, ceF,,
h(x) = {f(x), X&¢F.

|h(x)|=dA ae., since x € F, implies

AZ|fla-1(x) 2 AR

Ul—-

1f1a(x) 2

Ul -

Consequently,

J‘Ihl2 dp < di jlhl dp = di(Z L |/l du+LF |f|d#)

< dz(zf |f|du+f |f|du) = dalfl -
F, - CF
Thus h € L? and according to Lemmas 1, 4 and 8, Th=1lim Th, exists a.e. and

sup|Th,l|| < 2|Thllz < 2(dAlfll)? .

LZ
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This implies

1
H{x ; sup|Thy|(x)> /1} = 174d/1||f o
Since h, =f, except on UF,, Tf,= Th, except on U F¥, where F* is the union of

intervals E; ; containing some interval E; ; ; contained in F,.
p(Fy)<du(F,), thus

wUFY) £ dY uF,) —IlfHu
which proves the first assertion. The second is obtained when 4 — o0.
THEOREM 1. T is a bounded operator on each L?, 1 <p<oo.

Proor. The preceding lemmas and the Marcinkiewicz interpolation theorem
show that

2 Clfler

sup |Tf,
n L

if 1<p=<2 and Lemma 2 shows that Tf exists in this case. The result for 2<p

follows by duality since the adjoint operator is the transform obtained from
A*.

The operator is not (except in trivial cases) bounded on L' or L™ as will be
seen from Theorem 4 and Corollary 2. Exactly as in the classical case we have
the following substitute.

THEOREM 2. T is a bounded operator on BMO and H!.

Proor. fe BMO implies fe L? and Tf e L2

i

E(Tf- TS| #,) Z E(ATf? | F §§ E(451 #,)

n+1

E(f—fP1F) = 1 flEmo -
Thus | Tf lamo £ 11 f lsmo- If h € HY, duality gives
I Thyllgr £ Clhyllg = Clibllge .

Hence

S Cllhlg:  and  |sup|Thyllpr = Clhlg

sup | Thy|
k=<n L

Math. Scand. 41 - 10
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by monotone convergence. Lemma 3 shows that Th exists and thus belongs to
H.

4. A characterization of H'.

Assume that A, ... 4, are one or more linear operators in V and let
T, ... T, be the corresponding martingale transforms. Theorem 2 shows that
fe H! implies that T,f... T,f belongs to H' and thus L'. To prove a
converse of this we first prove the following technical lemma.

Lemma 10. Let A, ... A,, be linear operators in V not having a common
eigenvector in RN V. Then there is p,<1 such that

(i) a=(a)g e C"*1,
(i) xo € V,
(iil) x;=A;xy, i=1,...,m,

and p> p, implies

*) lall” = - Z Il (a;+ x5 11® -

ProoF. Since x; € ¥, we have q;=d 'Y, (a;+x;) and thus

1 1 ¢ r
lall = il 2 l@+x8l = (2 k; I (ai+xik)'6‘ll">

which proves (*) for p=1. Assume now that 0<p<1. First we assume that
Ixoll/llall is small and use the binomial expansion.

pl2
Z I (a;+x)o I = Z(Z'ai+xik|2)
k i

k

pl2
Z (Z la)? + Z 2Reax;+ Z Ixik|2>

k
2Re Y, axg+ Y xaul* 2
= uan"2<1+ 2 S L )
k

p p2Re Z aXy P Zi Xl

lal? Z( 27 Jal” 2 lal?

)R o)

]

\l
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The second term will disappear since 3, x;,=0. To estimate the fourth term,
we set a as the maximum of the continuous function ¥, (Re Y, a;x;)? on the
compact set

K, = {a eC™*l x;e V5 lal=1, Y Ixl*=1, xi=Aixo}.

Schwarz’ inequality gives

) (Re ) &ixik)z < };\z as| =

k i

Z Z 1 zka x]k
k i, j
4
= (Z‘ajxik|2> =2 laf 3 lxl? =1
ijk i i

on K,. Equality would imply that 3 a;x; € R and a;x;=Aa;x;. Symmetry
gives A=1, thus we have agx;=a;x,. Now x,+0 on K, thus a,=0 implies g,
=0 Vi which is impossible. Consequently A;x,=Xx;=(a;/ay)x, and x, is a
common eigenvector to A;. So is

——-—=Z ai deeRd

which contradicts the assumptions.
We conclude that o< 1. Homogenity shows that in general

2
y <Rez dixik) < allall* Y lIx? .
k i i

This gives

pZ B
T2

3
+g(p__2)a21 ”x."2+0<”x0” )g d

llall? lall®

if p>a and ||x,|/|la] <& where ¢ is some positive number. Thus (*) is proved in
this case.

To complete the proof we use another compactness argument.

Set

llall"’§ (@i +xa)g 11?2

1
K, = {a eC™l x; eV, x;=Axo, Elela.-+x.~k)8H=1, leollzsllail}-
k

As remarked in the beginning of the proof, a=d ™' ¥, (a;+x3)5. Thus a <1
on K, and |la|| =1 only if a;+ x;,= A.a; with 4,20. This gives x;=(4,—1)a;
and since ||x,| 2 ¢,
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(1) = 20

ao

is a common real eigenvector to 4; which again contradicts the assumptions.
Consequently [al|<f <1 on K, which implies thst

d
lal 5 % 1actx 81 it ol >elal

Thus

1 d
lal? < (’3> (2 I +x.k>'"1|> <5 L latxp)?
if 1=p=logd/log (d/p) and | x|/ =¢|lall, and the lemma is proved.
Returning to martingales, 'we obtain

THEOREM 3. Assume that A, ... A,, do not have a common real eigenvector
and that {f,} is a martingale such that | f,|: and | T.f,||.: are bounded. Then
{f,} and {T.f,} are martingales of functions in H'.

PrOOF. Set T,f,=f, and g,= || (T.f)7||. Lemma 10 with
= Tifn(Ei, i) and  xg = AT f (B )
shows that gz < E(g2, ,| #,) for some p< 1, thus gZ is a positive submartingale.

lghllr = llgalf £ G ITAILP = C

thus we can use Lemma 4 to conclude sup g2 € L7, hence sup g, € L'. Lemma
3 completes the argument since |T;f,| < g,-
A finite measure v on (%) defines a martingale {f,} by
fn(Ei,...i,,) = d"V(Ei,...i,)-

Clearly | f,ll.: £llv]l so we have the following martingale version of the F. and
M. Riesz theorem.

COROLLARY 1. Assume that A, ... A,, do not have a common real eigenvector.
If v and T,y are measures, then v is absolutely continuous.

The condition of {4,} is necessary for Theorem 3 to hold as follows from the
following specialization to integrable functions.
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THEOREM 4. H'={fe L' ; T,fe L'} if and only if A, ... A,, do not have a
common real eigenvector.

Proor. Theorem 2 shows that H' = {fe L' ; T,fe L'}. If 4, ... A,, do not
have a common real eigenvector, the reverse inclusion is provided by Theorem
3. Conversely, assume that x=(x,)? is a common real eigenvector. We can
further assume that min x, = — 1. The function f constructed in Lemma 6 is an
eigenfunction of T, ... T,. Thus T,f=1,fe L' but f¢ H'.

We do also obtain a characterization of BMO.

COROLLARY 2. BMO =L*+YT T.L™ if and only if A¥ ... A} do not have a
common real eigenvector.

PROOF. A continuous linear functional on {fe L' ; T¥fe L'} can by the
Hahn-Banach theorem be extended to a continuous linear functional on
@5 L' and can thus be represented as

f- Z(T*fg,) = Z (f, T.g) where g; € L.

Conversely, Y™ T.g, g € L™, gives a continuous linear functional on
{fe L'; T¥ e L'}. Therefore

BMO = {go+2 i85 g.eL""}
if and only if H'={fe L'; T¥fe L'}.

If d=2, which corresponds to the Walsh—Paley group, then V is one-
dimensional. Thus Ax=Ax and Tf=A(f—f,) and these results do not apply.

If d=3, there exists an operator A not having real eigenvectors and
consequently a transform T characterizing H'.

Restricting our attention to when A is a convolution, say with a, 4 do not
have a real eigenvector if and only if d(x)+a(— x), x +0. Consequently, when d
is odd H! can be characterized by one such transform, but when d is even G
has a real character which always will be an eigenvector and H ! cannot be
characterized by any finite number of them.

The difference between odd and even d is also seen if we want A to be a real
operator. This again possible if d is odd, but if d is even, A will always have a
real eigenvector in V and two real operators are needed to characterized H'.

This difference is also seen in the related results by Gundy and Varopoulos

(7.
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We may apply Theorem 4 to K", where K is a local field, if we regard only
the set {x ; |x|<g¢*} and let k — oo. This gives the singular integrals in [14, p.
235] with Q ramified of degree one, that is, Q(x +y)=Q(x), |[y|<|x|. G now is
the nth power of the residual field and the characters on G correspond to
characters on K".

Consequently we obtain

CorOLLARY 3. H'(K")={fe L' ; m;fe L'}, where m; are homogeneous of
degree zero and ramified of degree one, if and only if there is no y+0 such that
m;(x)=m;(— x) for every i.

5. Multipliers on R".

It may be conjectured that the condition in Corollary 3 applies on R" also.
We will prove that it is necessary.

Tueorem 5. If H'(R")={fe L' ;mfe L'} where m, i=1,...,k, are
homogeneous of degree zero, then there is no x+0 such that m,(x)=m,(—x) for
every i.

ProOF. Assume not, e.g. that

m;(1,0,...,0) = my(—1,0,...,0)=4;.
Duality [4] shows that if g € BMO, thgre exist g; € L*®, such that f € H}, and

fi=m,f implies
_[gf =2 Jg.-f.--

Set g(x,...,x,)=h(x,) where h is an arbitrary unbounded function in
BMO (R). We may assume that g;(x) also depend only on x,, otherwise we
convolve with

5,“N1'"~//<§—V2->~/z<%>...w(%)dxzdxamdxn (¥ € C§ and J'P =1)

and take weak *-limits. Consequently g;(x)=h;(x,), h; € L*(R).
Define P: L'(R") — L'(R) by

Pf(x,) = jnn*l S(x, X0, . o x)dx, ... dX, .

Thus Bf(t)=7(t,0...0), and if f,=m,},
Bl(t) = m(1,0...0)70...0) = 4,57(t).
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That is, Pf;=A,Pf.
This gives, if fe H.,(R"),

JhPf = jgf = Jgif.- =2 Jhipﬁ = IZ Aih:Pf .

Since Pf may be any function in H},(R) this gives h=c+3Y 4h; € L™, a
contradiction.

REMARK. Without the assumption that m; are homogeneous, this proof
shows that the restriction of them to every line through the origin must
characterize H!(R).

This shows immediately that no subset of the Riesz transforms is sufficient to
characterize H'. In fact their number is minimal among all real multipliers
characterizing H,

COROLLARY 4. With the same condition as in Theorem 5, if m; are real, then
k=n.

PROOF. M= (m,,...,m,) is a continuous function from R"\{0} to R¥ such
that M(x)+ M (—x). Consequently (M(x)—M(—x))/|IM(x)—M(—x)|| is an
odd continuous function from $"! to $*~!, which is impossible if k<n
[8, p. 138].

If we allow the multipliers to be complex at least n/2 ((n+1)/2 if n is odd) are
required by the same argument. This bound is sharp since (x;+ix,)/|x],
(x3+ixy)/|x| ... characterize H!. This follows since these multipliers define a
generalized Cauchy-Riemann system of linear partial differential equations
[13, p. 231].
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