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IDEAL PERTURBATIONS OF ELEMENTS
IN C*-ALGEBRAS

CHARLES A. AKEMANN* and GERT K. PEDERSEN

0. Introduction.

The general class of problems considered in this paper can be described as
finding a “best” approximation to a given element b of a C*-algebra 4 among
all elements of a closed, two-sided ideal I of 4. The notion of “best” needs
clarification and generally it will vary with the specific problem in question. We
always mean more than mere norm approximation (||b—c| = ||n(b)|, where =:
A — A/I is the quotient map) which can always be attained [2, p.291]. The
optimal conclusion from our point of view is to find ¢ € I with ||p(b+¢)|
=||z(p(b))|| for every complex polynomial p. While this cannot happen for
every operator in a general C*-algebra 4, it remains an open problem for von
Neumann algebras. We are able to reach this goal only for special classes of
operators.

One of our most useful tools is a quasi-central approximate unit which can
always be found in I. This is an increasing net {a,},.p of positive operators in I
which is an approximate unit for I and which satisfies ||a,b—ba,| — O for
every b € B. This fact and its corollaries are 3.2-3.6. The same fact was dis-
covered independently by Arveson [5] and used to extend the results
of [22]. In embryonic form the quasi-central approximate unit appears in [12,
18 and 19].

The organization of the paper is as follows. The first section establishes the
notation and recalls some preliminary results from the literature. In the second
section we deal with theorems of the form, “if f(x,,...,x,) € I, then..”; the
third section deals with the case f(xy,...,x,) ¢ I. Both of these sections
concern general C*-algebras and generalize results of [13, 14, 15]. The fourth
section specializes to the case of a von Neumann algebra A and generalizes
results of [13, 14, 15, 24].

1. Notation and preliminary remarks.

Throughout the paper 4 will be a C*-algebra, I will be a closed two-sided
ideal of 4 and n: 4 — A/I will denote the quotient map. At times we shall
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specialize 4 or I to get sharper results. The case where A = B(H), the algebra of
bounded operators on the separable Hilbert space H, and I=C(H) the
compact operators on H, has received the most attention from other authors
but will here only serve as a motivating example.

We let A, be the self-adjoint part of 4,4 the positive part of A, and note
that if x € A, then, x=x, —x_ is the unique orthogonal decomposition of x
as a difference of elements from A" [21, 1.4.3]. For any element x € A let C*(x)
be the C*-subalgebra of A generated by x. If x is normal then C*(x) can be
identified with the algebra of continuous complex-valued functions on ¢(x), the
spectrum of x, which vanish at 0 (if 0 € o(x)). This is a conclusion of the
Gelfand theory as described in [7, p. 10] or [20, p. 4].

If M is a von Neumann algebra and x € M, then the polar decomposition x
=u|x| can be performed in M [20, p.27]. Here |x| = (x*x)* and uu* is the range
projection of x (denoted by [x] in section 4), whereas (with p'=1—p for any
projection p) (u*u) is the null projection of x*.

We let A* denote the dual space of A and A** its second dual. Since we do
not assume that A has a unit we replace the state space by the compact set

Q(4) = {fe A*| 120, | fII<1}.

As in [20, 1.7] and [7, § 12] we shall use the fact that A** is a von
Neumann algebra and identify 4 with its image in A**, and I** with its image
in A** under the double transposed of the inclusion map of I into 4. Now I**
=qA**, where q is a projection in the center of A** and (4/I)**=q'A** by a
natural identification) so n**(b)=¢q'b for every b € A**.

2. C*-algebra results for f(x,,...,x,) el

We first note an easy fact which allows us to use the polar decomposition
in a C*-algebra setting

LeMMA 2.1. If x € Ac B(H) and x=u|x| is the polar decomposition of x in
B(H), then uf (|x|) € A for every continuous complex-valued function f on o(|x|)
which vanishes at zero. (In particular we can replace B(H) by any von Neumann
algebra, e.g. A**)

Proor. For any scalars 4,,...,4, we have

u( Y A,-le‘) = ) Axlxf"'eAd.

1Sign 1g5ign
By the Stone-Weierstrass theorem, since o(|x|) is a compact subset of R*, we
may uniformly approximate any continuous complex function on a(|x|) which
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vanishes at 0 by a polynomial without constant term. The lemma follows from
the Gelfand theory.

The proof of next lemma is omitted. It is an easy consequence (as in the
proof of Lemma 2.1) of the Stone-Weierstrass theorem and the Gelfand theory.

LemMA 2.2. For any x € Ay, and any continuous function f on o(x) which
vanishes at 0 we have n(f(x))=f (r(x)).

ProrosiTiON 2.3. If x,y € A with xy € I, then there exist a,b el with
(x—a)(y—b)=0.

Proor. We first prove the proposition under the assumption that x and y are
in A*. Then we use Lemma 2.1 to get the general case.

Assume x=0,y=0. Set x;, =(x—y), and y,=(x—y)_. By definition x,y,
=0. Note that n(x)n(y)=n(xy)=0, so

n(x) = () =7m(y), = n((x—y)s) = nlx;)

by Lemma 2.2. Similarly n(y)==(y,). Set a=x—x, and b=y—y,. We have just
shown that a,b € I and (x—a)(y—b)=x,y,=0.

In general we use the polar decomposition in A**, as mentioned in Lemma
2.1, to write x =u|x| and y* =v|y*|. By assumption xy € I, so by Gelfand theory
and since I is closed,

xly*lE = lim (e+1x) % (x*x)(y*)(e+ly*) T el
=0
From the first part of the proof there exist a,,b, € I with

(xI*—ay)(Iy**~b,) = 0.

Let a=u|x|*a, and .b=b,|y*|}v*. By Lemma 2.1 both u|x|* and v|y*|? lie in A4,
so a,b € I. Thus we need only show that

0 = ulx*[(xI* —a,)(y** = by)]ly*PPo*
(x—a)(ly*lv*—b) = (x—a)(y—b),

which follows since |y*|v* = (y*)*=y.

CoroLLARY 2.4. If in Proposition 2.3 we have x,y € A*, then we can get
(x—a), (y=b)eI* ; if x,y € A, we can get (x—a), (y—Db) € I,.

Proor. The case x,y € A" is already contained in the proof of Proposition
2.3.1f x,y € A, then using the notation of the proof of Proposition 2.3 and the
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fact that |y|=|y*|, we set a=% and define
xy = Llx] =¥+ Julx* (x| =y + 1*
y1 = L(xl=IyD-21*olyPLAxI—=1yD-1* .

Clearly x,y,=0. Further, x,,y, € Ay, since x,y € Ay, imply that u|x|*=|x|*u
and v|y|*=|y|*v. To finish the proof we need only show that n(x;)=m(x)

and n(y,)=n(y). Using Lemma 2.2 repeatedly and the fact that |x|*|y|* € I
implies |x||y| € I we get

n(xy) = [(r(x)—n(yD)+ 1*m (ulx|) [((rlx) — = (yD) + 1*
L ()] 7 (ulx|) L (| x])]*

n(IxPulxl|x[*) = m(x) .

Similarly n(y,)=n(y).

Extending Proposition 2.3 to more than two factors poses a serious
(unsolved) problem. If 4 is a von Neumann algebra, we can prove (see 4.3) that
the existence of projections makes it easy. For the C*-algebra case, however,
we have only the following two propositions. One should bear in mind the
example immediately preceding Theorem 6 of [13] which shows that it may be
necessary to perturb every factor in order to get a zero product.

PROPOSITION 2.5. If A is abelian and {x,,. . .,x,} © A with TTi<i<p X; € I, then
there are elements {a,. . .,a,} I such that [Ti<i<, (x;—a;)=0.

Proor. By the Gelfand theory we can assume that 4 = C,(Q), the continuous
complex-valued functions which vanish at infinity on some locally compact
Hausdorff topological space Q. In this context I={a € A4 : a|x =0} for some
closed subset K = Q. Thus [T <;<, X; € I means exactly that at each point of K
at least one of the function x; must vanish. Set

x= A Ixft
15isn
Clearly x vanishes at each point of K, so x € I. Let x;=u,x;| be the polar
decomposition in A** of each x; Let a;=u;|x;|*x. Then

l_[ (x;—a) = n (“.“xir}lxil*—“ih.'l*x)

15isn 1Z5ign

=[ n “i|xi|{H: H (|xi|*—x):| =0,
1Sisn 15isn

since for each t € Q, |x;|*(t)—x(t)=0 for some i=1,...,n by definition of x.
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The last proof is impossible to generalize to the non-abelian case. The next
proposition.moves in a different direction, but with the same goal in mind.

PROPOSITION 2.6. If {x,,...,x,} €A, and x;x; € I for all i* ], then there exist
{ay,...,a,; I such that {x;—a;}<;i<, <A, and (x;—a)(x;—a;)=0 for all i%}.

Proor. By Corollary 2.4 we have it for n=2, so assume it is true for (n—1)
by induction. Set y=3<;<n—1 X;. By Corollary 2.4 there exist a,,b € I such
that (x,—a,)(y—b)=0 (since x,y € I) and (x,—a,),(y—b) € A,. Since n(y)
=n(x;) foralli=1,...,n—1, we may apply Proposition S of [16] (n— 1) times
to obtain elements {b,,...,b,_,}<I such that {(x;—b)};<;<cn-1=4, and
(x;—b)=(y—b) for i=1,...,n—1. Now define the C*-algebra

Ao = {xeAd: (x,—a)x=x(x,—a,)=0}.

Since 0= (x;—b,)< (y—b) and (x,—a,)(y—b)=0, we see that (x;,—b,) € 4, for
alli=1,...,n—1.In A, the elements {x;—b;}, <;<,_ satisfy the hypotheses of
the theorem relative to the ideal I N A,, so there are elements {c,,...,c,_;} in
Ao N1 such that {(x;—b;—c)}i1<i<n—1<(A4o)+ and

(x;—b;—c)(xj—bj—c) =0 fori=j.
Set a,=b,+¢, for k=1,...,n—1, then check that
(Xk_-ak)(xn—an) = (xn_an) (xk‘ak) =0

for k<n since (x,—ay) € Ag.
An important question which arises naturally from [19] is the following.

QuesTioN 2.7. If x € A with x" € I for some n=2,3,..., can we find a € I
with (x—a)"=0?

In [19] it is shown that one can make |(x—a)"|| as small as desired by
properly selecting a € I. In section 4 we prove that if 4 is a von Neumann
algebra, then even a better theorem is possible. At this stage the best we can do
is the case n=2.

PrROPOSITION 2.8. If x € A with x? € I, then there exist a € A with (x—a)* =0
and ||x—al| <|lx|.

ProoF. Let x=u|x| and x* =u*|x*| be the polar decomposition of x and x*
in A**. Set a=1% and let

xy = [Ox] = x*)-Julx*L0xI = 1x*D 41 -
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Clearly x2=0, so we need only show n(x)=n(x,). By using Lemma 2.2 and the
fact that |x||x*| € I (since

Ix|Ix* = lim (¢4 |x]) ! (x*x(xx*) (e + |x*[) ~*
just as in the proof of Proposition 2.3), we see that m(x,)=mn(]x**u|x|*|x|*.
However, the mapping |x| — u|x|u* defines a*-isomorphism between the C*-
algebra generated by |x| and the C*-algebra generated by |x*| with the image
of |x| being |x*|. Thus one can readily show that |x*|*u=u|x|*, so

n(xy) = m(ulxPxlx®) = n(x).

As mentioned earlier if 4 is a von Neumann algebra, one can get stronger
results (see 4.3). Specifically, one can replace the (implicit) polynomial p(t)=1t"
in Question 2.7 by any polynomial. The following commutative example shows
that this is possible only because von Neumann algebras are generated by their
projections.

ExampLE 2.9. Let A=C([0,1]) and let I={a € 4 : a(0)=a(1)=0}. Let p(¢)
=t?—t. Then for the element x € A defined by x(t)=t, we see that for any
a € I, the function y= (x —a) takes on the value O (at t=0) and 1 (at t=1).
Thus y defines a path I' from 0 to 1 in C. Since the complex polynomial p(z)
=z% —z has only two roots, we cannot have p(x —a)=0 for any a € I. In fact,
since I' must intersect the line Re (z)=14, one can compute that |p(x—a)| =}
for all a € I.

This last example naturally suggests that one should find the best possible
abelian case theorem before proceeding to investigate the general case. The
next result is the best generally applicable result we could conjecture.

ProrosiTION 2.10. Let b € A be normal. Then there exists a € I N C*(b) such
that |@(b+a)| = | (e (b))| for all continuous functions from C to C for which |¢|
is convex and vanishes at 0.
Proor. Consider 4,=C*(b) and I,=A,NI. Since for each a € I,
n(eb+a) = o(n(b+a) = ¢(n(b) = n(e®),
we have
leb+a)l 2 In(e+a)ll = |n(e®)I.

We must find an a € I, which makes the reverse inequality true.



IDEAL PERTUBATIONS OF ELEMENTS IN C*-ALGEBRAS 123

Let Ay=C,(a(b)\{0}) as described in section 1 and I,={a € 4, : alx =0}
for some closed set K — g (b)\{0}. Let Q be the convex hull of K U{0} (which is
automatically closed), and note that the extreme points of Q lie in K U {0} and
that any continuous convex function from a compact convex set of C to R must
assume its maximum at an extreme point.

Now let D be a disk which contains o(b)UQ and let r:D — Q be a
continuous retraction. By the convexity of Q, r always can be found. Then
define a € Cy(a(b)) by a(z)=r(z)—z. Clearly a is continuous, since r is
continuous (and a(0)=0). Further a(z)=0 for z € Q, so a € I. Thus

leb+a)l = lor@)l = sup{low) : we Q}
sup {J¢(w)| : w € extreme points of Q}

< sup{lew)l : we K} = llo(n®)l = lIn(e®)I
by Lemma 2.2.

It

If b is not normal, ¢ (b) is only defined when ¢ is an entire function, unless
restrictions are made on the spectrum of b. As long as we are dealing with
general C*-algebras and general (non-normal) elements, the last result explains
our strong interest in the polynomials ¢(t)=t".

3. C*-algebra results for f(x,,...,x,) ¢ I.

The methods of this section are quite different from those of section 2. Our
results generalize those in [13] and the basic ideas of the proofs are closely
related to those in [13]. The key lies in Theorem 3.2 on the existence of special
approximate units. "

LemMa 3.1. For a positive, increasing net {u; | A € A} in I the following are
equivalent.

1) {u,} is an approximate unit for I.
2) W, — q in the g(A**, A*) topology. (See section 1)
3) f(u;) = 1 for every pure state f of I.

Proor. That (3) implies (1) follows from [2, 5.1] and that (2) implies (3) is
immediate. Assuming (1), to prove (2) it suffices to show that f(u, —q) — 0 for
every state f of I since every element of A* is a linear combination of four
states. By definition of g, f (q)=1 for every state of I, so we need only show that
f(u;) — 1 for every state of I. Since

3 2
Uyg S Uyl — Uy s
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we get |u,;|| £1. For a state f of I and a positive element a € I, ||a|| £1,

If w@)? < f(@®)fW)) < f(uy).

Since the left side can approach 1, the right hand side must converge to 1.

DeFINITION. We say that a positive, increasing approximate unit
{u; | A € A} for I is quasi-central for A if for each x € 4

lu;x —xu; — 0.

THEOREM 3.2. Let {v; | i € Q} be a positive, increasing approximate unit for I
contained in an ideal 1, of A which is dense in I. There is then a positive,
increasing approximate unit for I contained in Conv {v; | i € Q}, which is quasi-
central for A. (“Conv” means “convex hull of”.)

PrOOF. Let A denote the collection of all (non-empty) finite subsets of A and
for each 1 in A let |4] denote the cardinality of . Given i and 4 let M;; denote
the set of elements u in

Conv {v; |j>i}

such that |lux—xu| <|4|~! for all x in 1. We claim that M, + .
To see this fix x;,x,,...,x, in A and let C=@®}., A. Consider the net
{c; | i>i} in C where

Cip = VX —X 05 1Zk=n.

Working in A** we know from section 1 that v; — g where q is the open
central projection in A** for which I=gA4**N A4. It follows that ¢; —» 0 o-
weakly in C**. But since C in the o-weak topology and the norm topology has
the same continuous functionals, we conclude from the Hahn—Banach theorem
that Conv {c;} contains zero as a limit point in norm. Consequently, there is a
convex combination u=3y;v; j>i, such that

lux,—xull < 1/n  for every k=n.

With A={x,,...,x,} we see that u e M,

Invoking the axiom of choice we select an element u;; from each M;;, i € Q,
. € A. We define a partial order in the set U of these elements by u;;<u;, if
i<j, Acp and u;; Zu;, To show that U is a directed set take u;; and u;, in U;
say u; =3 7,0, and u;, =3 y,0,. Find k in Q such that ki, k>>j and k>n,
k>m for all n and m occurring in the expressions for u;; and u;,, respectively.
Take vo uU A and consider the element u,, in U. We have i<k, Acv and also
u;; S uy,; because if u,, =Y y;v; then j>k>n for all j and n, whence v; 2 v, for all
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j and n, so that finally u,,=u;,. Consequently u,,>u;, and similarly u,,>u
whence U is directed.

By construction the net U is contained in Conv {v;} and u;; = v; for all i and
A. By Lemma 3.1 U is an approximate unit for I. Moreover, U is quasi-central,
since |lu;;x —xu;,|| £|4|~! for each x in A.

Jw

We note that this last result was proved independently by W. Arveson in [4]
as were several of the Corollaries which follow.

CoROLLARY 3.3. If I contains a strictly positive element b, then C*(b) contains
a quasi-central approximate unit for I relative to A.

Proor. We need only to show that C*(b) contains an increasing positive
approximate unit for I. However, this follows from [1] (see also [17, 3.10.6]).
Specifically one may take u,=b"" and {u,} will be an approximate unit for I.

Since every separable C*-algebra contains a strictly positive element, the
next corollary is immediate from Corollary 3.3.

CoroLLARY 3.4. If I is separable, then I contains an abelian quasi-central
approximate unit relative to A.

CoroLLARY 3.5. If A=B(H) and 1=C(H) for a separable Hilbert space H,
then for each orthonormal basis {n,},>1 of H there is a quasi-central

approximate unit {u,} for I relative to A with all {u,} diagonal relative to {n,},> ,
and of finite rank.

ProOF. Let P, be the orthogonal projection onto the span of {#;,...,17}.
Then {P,};> is an approximate unit for I, each element of which is diagonal

for {#,}n>1 and of finite rank. Thus the theorem gives the conclusion
immediately.

COROLLARY 3.6. If A is separable, then I contains an abelian sequential, quasi-
central approximate unit for I relative to A.

ProoF. Let {x,} be a dense sequence in A, {y,} a dense sequence in I and let
b be a strictly positive element in I (since I is also separable). Then by
Corollary 3.3, C*(b) contains a quasi-central approximate unit {u,} for I
relative to A. By induction we can choose u;, <pu,,<...such that

1) lugXn— Xzl < 27%  for all n £ k, and

(2 lugyn—yall <27% foralln < k.



126 CHARLES A. AKEMANN AND GERT K. PEDERSEN

A simple triangle inequality argument using (1) and (2) shows that we have a
quasi-central approximate unit.

This last corollary will be quite useful in the rest of this section. We shall use
it to extend and improve several results in [13]. We are certainly grateful to
C.L. Olsen for making available the results in [13] prior to publication.

TueoREM 3.7. Given {xy,...,x)<1I with [Tj<;<; x; ¢ I and a fixed positive
integer m with 2<m<1, then there exists ¢ € I with0=c=<1 and, if d;=x;(1 —¢),
then for every m<k=<l,

(o) )

(If m=k, [Tn<i<k X;=1 by convention.)

(*) [T n(x)

1isk

ProOF. Let Ay=C*(xy,...,x), [q=AoNI, ny: Ay — Ay/l, Note that for
x € Ay, || 7o(x)|| = | m(x)|], since the induced map ¢ in the commutative diagram
below is a * isomorphism, hence isometric.

AO-—‘—>A

1|

Ao/ly —2> A/l

Since the left hand side of (*) is greater than or equal to the right hand side, for
any c € I, we can prove the theorem by showing that there is a ¢ € I, with
0<c=1 which gives the reverse inequality. We can avoid some subscripts by
identifying A with 4,, and we can thus assume A is separable. This allows us to
apply Corollary 3.4 to get an abelian, quasi-central approximate unit {u,},.p
for I relative to A.

Let oy = [TTicisk m(x)ll, let a=min {o, : 1Sk < 1}, take a strictly decreasing
sequence {8,},>; of positive real numbers with 6, =1 and ¥,>, , <00, and
set &,=a Y;>, 0;+. We shall construct a sequence {u,},>; <{u;},p such that,

if ap=1 and a,=T];<j<, (1—6u;) for n=1, then

(** [ () ] X.-:l
1Sism m+isisk

< ap+e, for all msk<lI.
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Assume we have defined u; so that (**) holds for all j <n. (If n=1, we have not
defined any u; as yet.) For fixed k, m<k<l1, set

by =[ l—[ (xian—l)][ n xi]
1<ism m+1gigk

Fod) = {fe Q(A) : f(b(1=3,u)*bH= (o +e,)*} -

Since {u,},.p is increasing and abelian, {b,(1—3,u,;)’b¥} ,cp is decreasing, so
{F(1)},ep is a “decreasing net” of compact sets in Q(4) (ie., if 1, =4,, then
F,(A)=F,(4,). Since D is directed, {F,(4)},cp have the finite intersection
property. There are two cases.

and

Case 1. N,.p F,(A)+ . Let fe N, p Fi(4). Thus
f(b(1=6,u,)’b*) = (,+e,)* forall ieD.

Taking strong limits in A** we get u, — g, where g is the central cover of I**
in A** (see section 1). Thus

f(be(1 _6nq)2bk*) > (o +8,)°.
Since || fl =1,
nbk(l - 6nq)2bk*" ; (ak+ 8")2 0

—

1by(1 =6, 2 oy+e, .

Now since ¢ is central,

16 (1—6,9)ll

Max {llq(b, (1 - 6,9, llq'(bi(1—5,9)II}
Max {|lb,gll(1=0,), llg'bill} = ax+e,

As described in section 1, g4** is exactly the kernel of n**, so

(11 )

This means (since ¢,=+0) that ||g'b,|| = o, +¢, is impossible. We must instead
have

lg'bell = lIm(bIl =

= 0 .

bl (1—0,) 2 ay+e, .

But for n=1, (1—46,)=0, so this leads out of Case 1. For n>1 more calculation
is needed to reach a similar contradiction as follows. (Remember that by
induction, ||b,|| <o +€,-1.)

o te, = Ibgll(1-3,) < Ibll(1-6,) < (a+e,-1)(1=0,)

= o4+ Ep_1— 0Oy —Ey—10, -
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Thus 8, (0t + ¢, 1) < (g,—1 —&,) =ad,=,d,. This contradiction shows that Case
1 can never hold for any k. Hence we must always have

Case 2. For each m<k<l, N, pF.(1)=. Since (for each k) the sets
{F.(2)},ep form a decreasing net of compact subsets of Q(A4) as described
above, there is for each k some A4, € D such that F ()= for all 1= /4,. Let
Ao= 4, for all m<k=<I Then for A= 4,, Fi ()= for all m<k<l, so

f(b(1=06,u,)’b*) < (a+e,)* for all fe Q(A).

Since (b, (1 —8,u;)*b,*)20, the compactness of Q(A) yields some f € Q(4) such
that

(b1 =3,u)*b X = f(b(1—=0,u)b*) < (o +8,)°.

Note that this was true for all A=, and m=<k=<|, so |b (1 —0,u,)ll <oy +ép,
Since |[1—-6,u,|| <1, we also have

b (1 =8,,)" < o4+e, forall A=22° and m<k<I.

Writing this out we get

H: H xian—l][ H xi](l—énul)m
1sism m<igk

for all A=Ay and m<k <. Since {u,},.p is a quasi-central approximate unit for
I relative to A, we have some A, € D with 4,24, such that if A= 4,, then

| LH et —anu»)][m n x|

for all m<k<l.
Thus if we use u,, =u, then a,=a,_, (1—4,u,) and the last inequality is exactly
(**). This proves the induction step so the sequence {u,},>; < {u;},p exists
and satisfies (**) for all m<k<I.
Note that 0<a,<1, so, if c,=1—a,, we get ¢, € I and 0=c,=<1. Also

< o +E,

l < ot+e,

”cn_cn—ln = "an—an—lll = “an—lénun“ é 5;.-

Since ¥, >0, <00, we see that ¢, — ¢ € I in norm and 0=c<1. Now for any

msk=Zl, if d;=x;(1—c) for 1Zi<m,
L) el ool <

1S5ism m<igk 15ism m<i<k
lim (o, +¢,) = o .

n—oo

lim

\ n=o00

IIA
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Since the reverse inequality follows from the definition of «,, we have (*) and
the theorem is proved.

Note that if b is a strictly positive element in I, then the element c in 3.7 can
be chosen as a continuous function of b. Indeed, choosing the quasi-central
approxit.ate unit {u,} in C*(b), it follows from the construction that ¢ € C*(b).

In the next theorem we show that if x € A and x" ¢ I, then we can get a
simultaneous best approximation in I to x for all powers less than or equal to
n. Further, if n(x) is not quasi-nilpotent, we can get one best approximation in
I to x for all powers of x.

THeoOREM 3.8. If x € A and m is a positive integer with x™ ¢ I, then there exists
an element ¢ € I with0<c <1 and ||(x(1 =)l = |=(x¥)|| for all 1 £k <m. If the
spectral radius of m(x) is not zero, then ¢ can be chosen independently of m.

Proor. The first assertion of the theorem is a direct corollary of Theorem
3.7, so we need only prove the second. Assume that >0 is the spectral radius
of m(x) and set B, = |m(x™)||*'™ for all m=1. Assume that A is separable as at
the start of Theorem 3.7. For simplicity we assume | x| =%. Define §,=3""*!
and &,= Y >,0k4; forn=1,2,.. .. Set eg=4=¢,/2. Let {u,} ,.p I be an abelian
quasi-central approximate unit for I relative to A (by Corollary 3.6 since 4 is
assumed to be separable). We propose to choose a subsequence {u,},>;
< {u;} ep such that if a,=[T;<j<n (1 —6;u;), then for each n=1,2,... we have

(*) I (xa)" 1" < B,(1+¢,) forall m=1,2,....

The proof of the existence of {u,},>, will go by induction on n. To get started
set ag=1.

Let n be a natural number and suppose u; has been defined to satisfy (*) for
all natural numbers j<n. (For n=1 we have defined no u; at all.) For each n
=1,2,... define b, = (xa,_,)™ and define for each A € D,

Fm(/l) = {fe Q(A) . f(bm(l_énul)zmbm*) g [Bm(l +8n~8n—16n)]2m} .

In a manner similar to that in the proof of Theorem 3.7 we can show that there
is a A,, € D with F,(A,)= (The details are omitted.)
Since {B,} is a decreasing sequence with limit f, we may choose m, such that

ﬁmo < B(1+8n—16n(1+8n)—1) N

We can also choose an integer g, such that =g, gives

[B(1+8,— (en— 18,2 (1 +6)" D171 < B(1+¢,) .

Math. Scand. 41 - 9
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Now F,,(4,)= means that for all A1=4,,
”bm(l —énul)m” < [ﬁm(1+8n—£n—16n)]m'

Since {u,},.p form a abelian quasi-central approximate unit for I relative to 4
we can find 4 € D such that for A2 1 and m<m,q,, we have

(**) Hxa)™ ™ < Bu(14 &y —E4-10,) -

Set u,=uy and note that (*) is satisfied for all m<myq,. Suppose m>mgyq, so
that m=gmg,+r with q and r integers and g = g,, 0=<r <m,. Now a sequence of
calculations will verify (*) as follows.

Ixa)™ '™ = [[(xa)™]* (xa,f [|''™ < | (xa,)™ 9™
< [l (xay)me|| ]+ < [B,(1+e—e,-10,)]7 7% (by (**))
< [B(1+e,-16,(1+2) )1 +e,—8,-18,)]7" 7
(by choice of my)
= [B(1+e,— (en-10)* (1 +6,)71)]¥' "1 (by algebra)
< B(1+e,)  (by choice of g=4o)
< B.(1+¢,) (since {B,} is decreasing) .

Thus (*) is verified.
As in 3.7 we write ¢,=1—a, and note that c=lim,_ . c, exists such that
cel, 0=c=1. By (*) we have for each m=1,2,...
Ilx(1 =™ = lim || (xa)"['™ = B,

n-—o00

as desired.

In [4] the problem of best approximation by nilpotent operators is solved
for B(H). The next theorem deals with general C*-algebras and gives an
estimate of how well an operator can be approximated by nilpotents of a given
fixed order.

THEOREM 3.9. Define a sequence of positive real numbers {9,},>, by

6,=1 and 6, = 5 "5, +n"* for n21.

If x € A with ||x|| £1 and n is a positive integer with || x"|| S ¢ for some ¢ <1, then
there is some y € A with y"=0 such that | x — y|| < J,e* where a=2'~". Moreover,
if L is a closed left ideal of A and x € L, then we can choose y € L.

Proor. For n=1 take y=0 and it works trivially. Assume we have proved
the theorem for some n and we shall establish it for (n+1). Let x € L for some
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closed left ideal L of A4 with ||x||<1 and ||x"*!|| <eZ1. Let «, B,y be positive
numbers with 0<a<f<y<1. Let fand g be piecewise-linear, non-decreasing
functions from R to R such that

_J0 for t=a _ 0 for t=p
f(t)~{ Sp o g(z)—{t for t2)

(While f and g obviously depend on «,f and y we shall suppress this
dependence to retain notational simplicity.) If we let x=u|x| be the polar
decomposition of x in A** (see Lemma 2.1), we can put e=f(|x|) and x,
=ug(|x|). Just as in the¢ proof of Lemma 2.1 we see that e and x, are in L.
Further they satisfy [|x,[| =<1, |e| =1, |x—x,[ =y and [x,(1—¢)]=0.

Since af (f)<t, we have a?e?<|x|%. Thus

o?flex"|? = [loex"||> = || (x*f'alex"| < || (x*)xl?x"]|

Ielx™l2 = [Ix"" 1> < €2,

thus |ex"| <a~'e and moreover,

Y Dfe—x)xi*1]

0Zk=sn-1

X" —xill =

’é nlx—x,|l S .

Since x;e=x,, (ex,)"=ex]. Hence

Iex )"l = llextll < my+llex"ll < ny+a™'e.

We may now choose and fix «, f and y to be smaller than e*n~* but close
enough to it to insure that

(ny+a~te) < (Sne)t.
(This is clear since (ny+a~1y) — (4ne)* as a,y — e*n~%) Let

Ly={yeA: y(l—e = 0}.

Clearly L, is a closed left ideal in 4 and so is L, = LN L. Further ex, (1 —e)=0,
s0 ex, € L,. By the induction hypothesis, since

I (ex)"l < ny+a~'e < (5ne)?,
there is a y, € L, with y7=0 and
lex; —yill < 8,L(Sne)f1® ™" = 6,(Sne)®™".
Put y=(1—e)x, +y,. Then y € L and, since y,(1 —e)=0,

= (—exyi+yitt = 0.
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Finally,

lx—=yll = lx=(0=e)x;=yill = [(x=x1)+ (ex; =yl

lIA

=yl + llexy = yill < Nl1xl =g ()l + 6, (Sne)> ™"
< etn145,(5ne)% " £ 5,467,

This completes the proof for (n+ 1), hence the theorem follows by induction.

Recall that one of our (unanswered) question is whether if x € A with x" € I,
then there is an ael with (x—a)"=0. The next corollary answers an
approximate version of this question.

CoroLLARY 3.10. If x" € I and £>0, there exist a€ I and y € A such that

y'=0, [x—all = lx[ and |y—(x—a)| <e.

ProOF. Let {u,},.p be an abelian quasi-central approximate unit for I N C*(x)
relative to C*(x) and choose ¢, >0 such that

g < (e6;1H)@H,  with §, as in 3.9 .
Now

lim [ (x(1—u))"| = lim (1 —u;)| = 0,

(since {u,},.p is an abelian quasi-central approximate unit), so we can take a
=Xxu, to get (eventually) || (x —a)"|| <&,. By Theorem 3.9 we may choose the
desired y € A.

4. Results for von Neumann algebras.

Many of the results in this section are generalizations of theorems of [13, 14
and 15]. In all cases the results are valid for some C*-algebras 4 which are
not von Neumann algebras, but the crucial element is always the existence of
projections. Thus A could be an AW *-algebra [9] and often even less [10]. To
avoid laborious formulations we shall make the following assumption for this
section.

ASSUMPTION FOR SECTION 4. A is a von Neumann algebra acting on a
separable Hilbert space H with I weakly dense in A.

Our first result is the generalization of Theorem 2.3 of [14] found in [25].
The follow-up is a generalization of Theorem 6 of [13] with a shorter proof.
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ProposITION 4.1. If x,y € A with xy € I, then there exists a projection e € A
such that xe',ey € I.

Proor. By Proposition 2.3 there exist a,b € I with (x—a)(y—b)=0.If &' =
[y—b], then e(y—b)=ey—eb=0, so ey=ebel. Also (x—a)e'=0, so xe
=ae €.

THEOREM 4.2. If {x;,...,x,} <A with [lj<i<, X; €I, then there exist
{ay,...,a,} I such that TT,<i<n (x;—a)=0.

Proor. By Proposition 2.3 the theorem holds for n=2. Suppose by
induction it holds for (n—1) factors. By Proposition 4.1 there is a projection
e € A such that ([Tj<;<,x)e’ €I and ex, € I. By the induction hypothesis
there exist {ay,...,a,_,,b}<I such that

< H (xi_ai)>(xn—1e,_b) =0.

1<isn-2

Set a,_, =be' and a,=ex,, so (x,—a,) =e€'x, Then

n (x;—a) = n (xi—ai)>(xn—x —a,_,)(e'x,)

1<ign (1§i<n—2

= ( I1 (X.-—ai)>(xn-1e’—b)(e’x,.) =0.

1Si<n-2

Using Proposition 4.1 and mimicking the proof of Theorem 2.4 of [14] one
can get the following theorem. See also [10].

THEOREM 4.3. Let f be a complex polynomial. If x € A with f(x) € I, then
f(x—a)=0 for some ael.

It is reasonable to conjecture that for any x € A there exists a € I such that
If(x=a)ll=|xn(f(x)| for every complex polynomial f. Many special cases
have been proved with restriction being put on the element x under
consideration [14, 15, 24]. The next result, which contains Proposition 2.1 of
[24], Theorem 1 of [10] and Theorem 12 of [13], puts restrictions on 4 and I
but not (directly) on x. This point of view reduces to some topological
manipulations of compact, totally disconnected spaces, and the algebraic
content of the theorem vanishes entirely.

THEOREM 4.4. Let I' be a compact, totally disconnected topological space, X a
Banach space, I'ycTI' a closed subset. Let A be the Banach space of all
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continuous functions from I' to X with sup norm and let I be the closed subspace
of A consisting of all functions in A which vanish on I'y. For any b € A there
exists a € I such that (b+a)(I')=b(I'",).

Before proving the theorem note that if X is a C*-algebra, then so is 4 and I
becomes a closed two-sided ideal. Zsido [24, Proposition 2.1] essentially does
the case X =C, while for Olsen [13, Theorem 12] X is a finite dimensional
matrix algebra and I' is the Stone-Cech compactification of the integers.

Proor oF THEOREM 4.4. We first need a procedure for approximating our
goal; then we shall use this procedure successively to obtain the result. For any
¢>0, by € A and I'yc I’ an open-and-closed subset such that

sup {dist (b; (y),b(I'y)) : yeTo} <

we shall find ¢ € 4 such that |c| <e, c|r\r,=0 and
sup {dist (b, + )3, b(I)) : 7€ To} < &/2.

To do this, find an open-and-closed neighborhood U, of each y in I'; such
that if y, € U,, then

by (y)=by M < &/4 .

By the compactness of Iy we may cover it with a finite number of {U,}, say
U,,...,U,,. Set

Vi=U and V;=U\UU, for25jsn.

i<j

12

Then {V,,...,V,} are disjoint open-and-closed sets and for any 7,y € V,,
by (M —by (I < ¢/2.
Let w; € V,for 1<i<n and choose by hypothesis x,,. .., x, in b(I";) such that
by (w)—x;]l <& forall 1Zign.

Define ¢ € A by ¢(y)=01if y ¢ I'y, c(y)=x;—b,(w,) if y € V; for some 1<i<n.
Since the {V};<;<, are disjoint and cover I, this uniquely defines a
continuous function c. Clearly |c|| <¢ and for any y € V,

dist ((by +c)(y),b(I"y)) = by (7)) +x;— by () — x|
= [by(»)—bi(@)] < &2,

Since the last inequality is independent of i=1,...,n and y € V,, we get the
conclusion of the first paragraph of the proof.
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Now suppose I'y<= I is an open-and-closed subset and that £>0 with
sup {dist (b(),b(I')) : y eIy} < e

We shall find d € 4 with d(y)=0 outside I'y, ||d|| <2¢ and (b+d)(I'y)=b(I')).
We do this by induction, using the estimation in the first paragraph. Define
d, € A so that ||d,||<e¢ and

sup {dist ((b+d,)(y),b(I',)) : ye Ty} < €271,

Suppose we have defined d,...,d, so that |d,||<e2~*~V and

sup{dist (<b+ y dk>(y),b(1’l)> D ye I“O} < e2™",
1Z5ksn

Apply the first paragraph to the element (b+ 3 <, <,d,) (instead of b,) to get
d, .y with ||d, ]| <&2™" and

sup{dist(<b+ y dk>(y),b(F1)> = Fo} < g7 "t
1sksn+1

Set d=3,>,d, Clearly d € A, ||d| <2e. Further, if y e I'y and

then we shall reach a contradiction as follows. By the construction there exist
{Xu}nz1<b(I'y) such that

‘<b+ Y d,)(y)—x,, <"

1<ign
Ib+d)) —x,I =

Thus

(Z d;)()’) +e27" —=52 0.

i>n

Now we complete the proof of the theorem. Let
E, = {xeX: 27"<dist(x,b(I'y))} forall n21

and let V; be an open-and-closed subset of I', disjoint from I';, such that V,
>b™!(E,). Suppose we have defined open-and-closed sets V,. . ., V, such that
ViNV;= for i%j and U, ¢;<, Viob™'(E,). Let

U=b"'E.)\ U V.
Isisn
Then U and I, are disjoint closed subsets of the totally disconnected, compact,
open subset [I’ \Ulé isn V] of I', so V,,, can be an open-and-closed subset of
[M\U<i<, Vi1 containing U and disjoint from I';. This completes the
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induction. By the previous part of the proof we can define a, e I with
(b+a)(V,yeb(l'y) and, for n>1, |a,|<27"*!. (This last follows since
V,0b""(E,_))= for n>1) Set a=3,-,a, so a €l and

(b+a)(V,) = (b+a,)(V,) = b(Ily).
Since U,», V,5U,», E,, (b+a)(I<=b(Iy).

We conclude this paper with a few observations on the paper [24] of Zsido.
First it is worth noting that the II -factor case is npticeably different from the
B(H) case in one important aspect. The following proof was suggested by
George Elliott.

ProrosiTION 4.5. If A is a type 11 factor and I is the closure of the set of
elements of finite trace, then I contains no strictly positive element.

Proor. Let 7 be the trace on M and assume that h is strictly positive in 1.
Since h € I, 0 € o(h) (since I has no unit). Further, 0 cannot be an isolated
point of a(h), for, if g is the spectral projection of h corresponding to o (h)— {0},
then ¢'I=0. (This follows since h is strictly positive and ¢’h=0.) Since I is
weakly dense in 4,¢'I =0 implies g¢'=0 or g=1. Thus 0 is not isolated in o (h).
Therefore we can choose {t,},>, < (0,1) such that t, >t,>...>t,— 0 and the
spectral projection p, of h corresponding to the interval (¢, ,,t,] is non-zero.
Choose for each n a projection e,+0 in I with e¢,<p, and 1(e,)<27". Set e=
2nz1 €n 80 € €1 since t(e)< 1.

Normalizing h so that |h|=1, we have that the sequence {h'"} is an
approximate unit for C*(h) and hence (as in the proof of Corollary 3.3) an
approximate unit for I. However, for any £¢>0 and fixed n, there is a k with
|h'"p,|| <e. Then

le@=h""el z flex(I—h"Me ]l = lep(1—h"pe]

[\

lex—ewpih " prerll Z llell — IR "pyll > 1—¢.

Thus {h'/"} is not an approximate unit for e, a contradiction.

Inspection of the proof of Corollary 1.3 of [24] reveals that the author could
as well have used the norm estimate of his Proposition 1.1 and proved the
following.

PRrOPOSITION 4.6 (Zsido). If a € A, and >0, there is an orthogonal sequence
of projections {p,}<I such that Y,>,p,=1, (@—X,>,;pap)el and
”a - Zn; 1 pnapn” <e.
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In order to have a notion of “diagonal algebra” which is valid for any A4, we
note that a maximal abelian C*-subalgebras of C(H) is exactly the algebra of
all operators diagonal with respect to a fixed basis. Therefore the maximal
abelian C*-subalgebras of I are the correct algebras to use in generalizing
Weyl’s theorem to arbitrary A. For the record we note an easy fact.

ProposiTioN 4.7. If C is a maximal abelian C*-subalgebra of 1, then C" is a
maximal abelian C*-subalgebra of A.

Proor. Let {b,} = C be a positive increasing approximate unit for C and let
b, — p strongly in A. Then p is a projection. Further p'Ip’ is a C*-algebra
which is contained in the annihilator of C, since p being a unit for C means p'C
=Cp'={0}. The maximality of C implies that p'Ip’={0}. Since I is weakly
dense in 4, p’Ap'=0, i.e., p=1. Suppose that a € AN C’, then b,a — a strongly
and {b,a} cINC'=C, so a lies in the strong closure of C which is C".

Now we can state our generalization of Weyl-von Neumann’s theorem [6,
11, 23]. (See also [5, 22, 24])

THEOREM 4.8. For any normal operator y € A and ¢>0 there is some c € A
with

(yv—o)el, y—cl <e and c¢= ) o

where {e,} <1 are orthogonal projections and {a,} = C. Further we may take {e,}
to lie in maximal abelian C*-subalgebra of I.

Proor. As in the proof of Theorem 3.1 of [24] we may consider C*(y)
< C*(x) for x € Ag,. Suppose the theorem were true for self-adjoint elements x
and (in this case) c-could also be chosen self-adjoint. Then we could find {c,}
< A by the theorem with (x—c,) € I, [x—c,l| <n™', ¢,= X5 10um€nm €tC. Let y
=f(x), where f is a continuous complex-valued function on a(x). Let {p,} be
polynomials without constant term such that p, — funiformly on ¢(x). For each
pi we have p,(c,) — pi(x), so f(c,) — f(x) by uniform convergence. Further

f(cn) = ‘BI_.H; pk(cn) ’

$0 f(c) =X mz1 f(Opmlen,. Thus for sufficiently large j we could put c=f(c)),
en=ej, ®,=f(a;,) and the theorem would follow for the normal operator .
We are thus reduced to proving the theorem for the case y € A, under
the additional restriction that ¢ must be in Ag,.
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By Proposition 4.6 we can choose {p,}<I with (a—3,>,p,ap,)<=I and
|y —2nz1PayPall <&/2. By the spectral theorem we may choose spectral
projections {q,m}1<m<x, of €ach p,yp, and real scalars {f,,};<m<s, such that

DnYPn— Z Bnmqnm < 82_"_2'

1Ssmsgk,

Clearly q,,di;=0,0mdnm 2nd We may arrange {q,,} and {f,,} into sequences
{en}ngl and {%}@1 so that

Z Z ﬂnmqnm = Z Anp -

nzl 1smsgk, nx1

Let c=3%,>; ¢,e, Now

*) (y—o = (y~ ) p,.yp,.)+< > (p,.yp..— ) Bnmq..,,,))-

nz1 nx1 lsmsk

Since the first term on the right of (*) and each term in the absolutely
convergent series of the second term on the right of (*) all liein I, (y—c) € I.
Further (*) shows that ||y —c| <é&/2+¢/2=¢, and the theorem follows.
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