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ON A RECURRENCE FORMULA FOR ELEMENTARY
SPHERICAL FUNCTIONS ON SYMMETRIC
SPACES AND ITS APPLICATIONS
TO MULTIPLIERS FOR THE SPHERICAL
FOURIER TRANSFORM

LARS VRETARE

0. Introduction.

Consider spherical functions on a symmetric space, the spherical Fourier
transform f and its inverse F. F is said to be a L, Fourier multiplier if the
mapping f — Fxfis a bounded operator on L,. Denote by m, the set of all
such multipliers, and put

IF+f
F - P
Wy =200 17T,

i.. the corresponding operator norm.

In the papers [2] and [3] sufficient conditions on F to be a multiplier were
obtained in some special cases of symmetric spaces. [2] was concerned with the
case of a compact group and [3] with the noncompact real rank one and
complex cases. In both papers an important role was played by a recurrence
formula for the elementary spherical functions ¢,

q
wL(p}. = 'Zl Cj(/l)(p},'—idj .

i=
In [4] the validity of such a formula in the general case was confirmed. The
purpose of this paper is to derive regularity conditions for the coefficients c;(4)
in order to extend the multiplier theorems to general compact and noncompact

symmetric spaces.

The paper is divided into four sections. In section 1 we explain the notations
and begin the investigations of the coefficients while section 2 is devoted to a
closer study. The application to multipliers in the noncompact case is made in

section 3 and finally in section 4 we briefly scetch how to treat the compact
case.
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1. Preliminaries.

Let G=KAN be an Iwasawa decomposition of a connected, non-compact,
semisimple Lie group over R, with finite centre, and let g, =¥, +b, +n, be the
corresponding decomposition of its Lie algebra. Denote by 4y the positive
root system of the pair (go, h, ) and by g the half-sum of the restricted roots.
The elementary spherical functions on G/K are defined by

@, = L{ eiA—oHEh) g ;¢ b +ibx

where g =kexp H(g)n, and by is the real dual of b, . Let us identify b, and b3
under the scalar product {-, - > on b, , given by the Killing form, and let us also
write b, for the complexification of b, . The spherical Fourier transform and its
inverse are formally defined by

f) = L @) _.(g)dg
and

- dA
F(g) = Lpo F(l)%(g)mi

where c(4) is Harish Candra’s c-function.
Fix a ¢ € by, such that {g,a)/<a,a) is a nonnegative integer for allae 44.
As was proved in [4], we can find a finite number of ¢ € b, and rational

functions cj(4) such that

(P—i(a+g)(g)(P;.(g) = Z C;’(A)(pi.—iaj(g)

J

Also, because of the relation ¢,(g"")=¢_,(g)

(P—i(a+¢)(8_l)¢z(g) = Z clj(—)')(Pl+iaj(g) -

J

Let us now define the function w by putting

w(g) = (p—i(a+0)(g)+¢—-i(a+q)(g—l)_2 .

Iteration of the two formulas above yields

LemMma 1.1. Let L be a fixed positive integer. There exist 6y,. .., 0, in by, and
rational functions c;(4),. . .,c,(A) such that

q
(UI“P;. = Z Cj(l)‘Pz—sa, .

j=1
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Let X,,...,X, be a base for g, and let for any positive integral n-tuple
M= (m,,...,m,), X(M) be the differential operator corresponding to the
coefficient of tM in

that is,
1
X(M)f(g) = M'!{DMf(gepotiXi)}t=0 .

LEmMMA 1.2. Let e be the unit of G. Then
X(M)wt(e) = 0 if IM|<2L
and

IX(N)pa(e)l < CA+APN,  Zeb,.

ProoF. A direct application of the definitions of X (M) and w respectively
proves the first statement for L=1. The general case is then obvious. The
second statement is equivalent to lemma 46 in [1], although the degree |N| is
not specifically mentioned.

The Casimir operator of g, is defined by 4=3 a;;X;X; where (a;;) is the
inverse of the matrix ({X;X;>). In order to apply the operator A' to the
function wke,, we write

Al = Z arX (1)
=21
and

X(ho'te, = Y X(Mo"X (N, .
M+N=I
CoroLLARrY 1.3. Let A be the Casimir operator of §,. Then
Aole,e) =0 if I<L
and

|l < CA+IAN 2 if 1ZL.

Now, let us also compute A'wl¢,(e) from the recurrence formula. ¢, is an
eigenfunction of A with eigenvalue x(1)= —<{4,4>—<g,0), and @,(e)=1.
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Consequently

q

(L1) Aotp,@) = Y ¢Wxi-ia)] .

j=1
Also, by the binomial theorem

k

¢(N(x(—io) =y = ¥ (=D D) Aole(e) .

1 1=0

M=

]

j

This proves the first part of

THEOREM 1.4. The coefficients in the recurrence formula
L q
P, = Z Cj(A)(pl—l'aj

j=1

satisfy the following two conditions

M

1) ¢;(Dx(A—io)—x(Af| = C(L+[A)* 2

j=1

for all A eby, if k=L, and it is equal to zero if 0Sk<L.

A
2 el s ¢ [ TEKe

— 7 ifle )
e vk

The proof of condition 2) will be given as a series of lemmas in the next

section.

2. Further investigation of the coefficients c;(4).

The ideas of this section, leading to a proof of condition 2) of theorem 1.4,
are as follows. First we consider the denominator of c;(4). It turns out that
ITe 43 <o, 4>c;(2) is nonsingular on b, . Next we prove that c;(4) is bounded if
Im 4 is keeping away from the walls of the Weyl chambers in b,, . Finally the

bound on b, will follow by means of classical complex analysis.

Thus we start by asking for an explicit expression for the denominator of
c;(4). To this end we solve the system of equations obtained from (1.1) by

putting I=1,...,q
LeMMA 2.1. The rational functions c;(1) are given by

&0 = ¥ eu)Aate,@
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where ¢, is the coefficient of z' in the polynomial

q

[1 C-ut=07"  w=x(G—ioy.
ie

Since A'w"p;(e) is a polynomial in 4, we find the denominator of ¢;(1) to be

q
n (Xj“Xk)-
k=1
ke j
Then what is the multiplicity of these factors?

LEMMA 2.2. The singularities of c;(4) are all simple.

ProoF. Suppose that two factors are proportional e.g. x;—x=B(x;— ),
J.k, 1 all different. Simplifications leads to

2i<i, U'k‘— (1 —B)O'J“BO-’> +<6k, 0k> - (1 _B)<O'J, 01> —B<01, 0',> = 0
for all 1 eb,, ie.

{ok = (1-B)g;+ Ba,

{ow0> = (1-B)Xoj0;)+B{o,0p)

Squaring the first equation and then subtracting the second one we get
0 = B(B—1){g;—0,,0;—0> .

But this is a contradiction since ¢, 6, and o, are all different.

It turns out to be more convenient in the sequel to consider the function

dw—cw((w

rather than c;(7) itself. Note that c¢(4—ig;)/c(4) is a product of functions of the
type

{idyo) + x
(idod+y

where x and y are real numbers and « € 45 .

Lemma 2.3. The following symmetry relation holds.

d;(2) = dj(—A+ia) .
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Proor. Let C, denote the convex hull of the images of ¢ under the Weyl
group W, and put F,=b, +ieC,. Fix an ¢>0 such that the points ig,,. . .,io,
all belong to the tube F,. In view of well-known properties of ¢, and the c-
function it is easy to see that it is possible to find a W-invariant polynom
p(A) such that

1
P(Aci(D)i-iq; c(Ae(=2)

is holomorphic in F, and bounded by a polynomial for all j. Now for any W-
invariant function f’, which is rapidly decreasing and holomorphic in the tube
F,, put f=pf’. Due to our construction the following application of Cauchy’s
theorem is legitime

oHf = ot L%mm% -3 j . Fbe, 00—
z . . di
= j; . j?(i_i’wj)cj(l+w")(p'1c(/1+iaj)c(—/1——ioj) .
We conclude that
c(De(—2)

J

1 _ d . .
() () = ) f(z+m,.)c,.(1+wj)cu+ioj)c(_l_wj).

But we also have more directly

(@) () = L ot (@) f@)p-.(®)dg = Y, c;(—Af(A+is).

i=1

Comparison of these two expressions for (w’f)” shows that

_ c(Me(—4) .
e(=4 = c(,1+ia,.)c(—z—ia,.)cf(“"’f)

or equivalently

dj(—=2) = dj(A+io)) .
LEMMA 2.4. ¢;(A) [ Tse 4y o, 4> is nonsingular on b, .

Proor. By lemma 2.1 the denominator of c;(2) [Txe4s <o, 4> factors into
firstorder polynomials {il,v)+a, where veb, and a is a real number.
According to lemma 2.2 all these factors have unit multiplicity so the only
possible singularities are when v is not a root. Let r(4) be such a factor. We
have to show that r(4) is nonzero on b, . Now, since v is not a root r(4) must be
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a factor of d;(4), and lemma 2.3 shows that r(—A+ig)) is also a factor of d;(4)
and c;(4). But then we can write

r(fl+iaj) = C(x(A—ig)—yx(A—iay)
for some k=j, or
r(d) = C(x(—=A)—x(—A+io;—icy)
= CQIi{A,0;—0,)+{0;—0y,0;—0})) .

This shows that r(7) is nonzero on b, , and the proof is finished.

Consider now the restriction to b, of the function " This is a finite linear
combination of exponentials e%, [=1,...,p, where {(t,a)/{a,a> is an integer
for all « € A and all . We shall also make use of Harish Chandra’s expansion
for elementary spherical functions.

@, =€) c(ShHds;
SeWw

where

@, =e* Y I (e

uekE

and E denotes the lattice over the nonnegative integers spanned by the simple
roots in 45 . Expanding both sides of the recurrence formula and equating the
coefficients of e®~¢* (cf. [1, p. 307]) we obtain

Y al -0 (@) = Y. A ey (h—ic)c(A—icy)
1=1 k=1

where we have put I',=0if u ¢ E. Note also that I'y=1. This formula serves to
define c;(4) recursively. More precisely, by introducing in b, lexiocographic
ordering with respect to the simple roots we can make the following
reformulation.

LeMMA 2.5. The functions d; are recursively determined by
14

d0) = Y alq—o ()= ¥ dlaq(3micy).

=1 0,>0;

For any M >0 let b, (M) be the subset of b, for which <a,h)>M for all
ae dg.

COROLLARY 2.6. There exist a number M such that all d; are bounded on l);;O
—iby, (M)
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Proor. It is sufficient to choose M such that I',(4) and I',(A—ic) are
bounded on b, —ib, (M) for all 4 € E and all j. Since I',(v) is bounded on by,
—ib, (0), see [5, p. 334], this holds if M +<a,0;>>0 for all « € Ag and all j.

Returning to ¢; we get in view of the W-invariance of the recurrence formula

CoroLLARY 2.7. It is possible to choose M such that c; is bounded on b,
—iShy, (M) for all SeW, especially on b, +ib, (M).

We also need

LemMma 2.8. Let f(4) be a rational function defined on b,, bounded by a
constant C on b, +in for some n € by, and analytic in the tube |Im A|<|n|. Then
f(2) is bounded by the same constant C on b, .

ProoF. For fixed &1 € by, f(£+2n) is a rational function of one complex
variable z. By assumption it is bounded by C on the lines Imz= 41 and
analytic in the strip [Imz|<1. Being rational it must be analytic at infinity
hence bounded by C in the whole strip.

We are now ready to prove condition 2) of theorem 1.4. As we have seen the
denominator of c;(1) may be written

IT Kidvy +ay .

k)
Multiplication of c;(4) by )

<id, Vi) +

h() = 11 (b v +D

kj
will therefore remove the singularities without changing the bound on b, (M).
More precisely, if n € b, (M) is kept fixed and D is choosen sufficiently large
the rational function f(4) = h(4)c;(2) will be analytic in the tube [Im A|<|n| and
bounded if Im A= + 7. We conclude from lemma 2.8 that fis bounded on b, as
well. To get back to c;(4) recall that the denominators of 1/h(4) and c;(4) are
identical. Lemma 2.4 then shows that

Kaddl 1
aeai 141K, D] h(2)
is bounded on b, and multiplication by f(4) yields the desired result

1l [<a, D]

—L (A £ C, e )
S Ty 1o = iz
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3. Multipliers.

A W-invariant function F on b, is called a L, Fourier multiplier if the
mapping f— Fxf extends to a bounded operator on L,=L,(K\G/K).
Following [3] we shall now derive estimates for the multiplier or m, norm of F,
ie. the corresponding operator norm. We restrict ourselves to radial
multipliers, F(A)=u(x(4)). Recall that y is the eigenvalue of the Casimir
operator, x(1)= — {4, A>—{g,0).

An application of Schwarz’ inequality to |F|, yields in the usual way

G.1 IFllm, < CIFI3™"* |0 FI5* + Cll"F|,

where L is a sufficiently large integer and n=dim G/K. The L, norms are
handled by Parseval’s formula

200 — 2
JG |f ()" dg L 7 o wlz

and under certain conditions on u, which will be made more precise later, the
spherical Fourier transform of w!F can be computed by means of the
recurrence formula. Hence

q

Z Cj()-)“(X('l"iO'j)) 2

i=1

.
lo™Fil, =

The use of equal notation for different L, norms will cause no confusion. In [3]
the sum to the right was first expressed in terms of differences of u and then
each difference was estimated by the corresponding derivative. We now
proceed more directly using Taylor’s formula for u at the point y(A). Thus

A 2L-1-
l(@"F) () = C Z u® ()

(3, cvtugi-to)-an|+

ji=1

q
+C Y le;(Mlx(A—io)—x(A)2L sup ()

j=1

where Q; is the convex hull of the points x(4) and x(A—ic)), j=1,,..,q. If we
now divide both sides by the c-function and make use of theorem 1.4, together
with the fact that

1+ Ay 1
acsr Kol le(A)

< CA+A™2,  Aely,

where m=dim G/K —rank G/K, we obtain

LEMMA 3.1. Under suitable conditions on u the following estimate holds on b,
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1 A 2L—-1
ml(wLF) W =cC kZL (142D 2R 215 (g ()] +

+C( A+ ™2 sup [uBH ()]
feQ;

From now on we consider multipliers u(y(%)/N?), depending on a parameter
N which is assumed to be large. Let us write

uy(z) = u(%)

It is clear that if u(z), z=x +1iy, is holomorphic in the interior of a parabola y?
=a(x+b),a>0,b>0,and if N is sufficiently large then uy(y) is holomorphic in
any given tube centred at b, . We call such a region a parabolic neighbourhood
of the positive real axis or shorter a p.n. If also

sup |zllu®(z)] < oo
pn.

for all k,j=0,1,. .. then uy(y) is rapidly decreasing in the tube and lemma 3.1
will hold.
Here is our first result

THEOREM 3.2. Let u(z) be holomorphic in a p.n. and suppose that

sup |zPlu®(z)] < oo
pn.

for all k,j=0,1,... Then there is a number N, such that ||uy(x)|n, is uniformly
bounded for N=N,.

Proor. Put
lunllws = llo"(un () 1l2 -
In view of (3.1) it would be sufficient to establish the inequalities

luyllwy < CN™2=2E

and

lunll, CN"? .
To do this note that any ¢ € Q,, 4 € b, , satisfies

€l = C (1+]4)
and also if |4 is large

&l 2 Co(1+]A) .
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Now since
CN 2k if |AISN
(O = 2 Cra—2k
CN*(1+|A)~2% if |AIZN
where ¢q is an arbitrarily large integer, lemma 3.1 yields
1 L~ - CN 2L(1 4 |aym2 if |A|IEN
— < =
IC(II)( |(CO uN) (i)l = {Cqu(1+|/1|)m/2-2q_2L if |/{|2N

It follows that

lunllifies CN“*LJ~ A +|Apmda+ CN“"[ (L+|Am—4a=4L gy,
WSN zN

< CNm+l—4L

This proves the first one of the desired inequalities. The second one is obtained
in the same way. Note that n=m+1[, [=dim}b,, .

This theorem will now be used to weaken the condition at infinity

THEOREM 3.3. Let u(z) be holomorphic in a p.n. Suppose that 0<a<i
B>n/2-o and

sup (1+z)! ¥ DB ()] < oo
pn.
for all k=0,1,...
Then |luy(Q)llm,=C if N2 No.

ProoF. Let M be a large integer. Put

6 = 2 Mo, G,(z)=6(§>

(M-1)!
and
M-1 1 . - z
H(Z)= kg:o E‘!‘ZQ . HN(Z)=H(NE>
Then
© dt
1-Hy(@) =J G,
N
and

o dt
uy = HN“N+ N Gg“N‘t_-
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Here the m, norm of Hyuy is uniformly bounded by the preceeding theorem.
To handle G,uy we shall prove the inequality

G, (un (O llwy < Cm2=2L-28*slan2b=4le if (> N2 N,
valid also if we replace L by 0. Then (3.1) yields
® dt o [ gdt
J 1G(Qun ()l m,— = CN?P7m j e —
N t N t
+CN25—4Lu Jm tn/2—2L—2ﬂ+4La_d_t_ é C+CNn/2—4L é C.
N t
Thus it only remains to verify the W5 estimate. By assumption we have if M
2k, q arbitrary and £ € Q,
1G9 < Ct™ M+ |A)*M-2k  if A<t
! = |CP (1A% if A=t
and
CN~2 if |JAISN

k) <
W = {CN”’Z"“(I+|/1|)“2”+2"‘“‘” if 2N

It follows without difficulty from lemma 3.1 and Leibniz’ rule for taking
derivatives of a product that

1

m | (wL(Gz“N)‘)A(l)I
£ 2M (1 4 |3z M2 if SN
g t-ZMNZﬂ—4La(1+M|)m/2+2M-2L+4La—2ﬂ if Néulét
t2qN2ﬂ—4La(1+Ml)m/2-2q~2L+4La—2ﬂ if t=<—.|'1| .

This implies
"G:“N“%V’i é Ct—4M+Ct-—4MNn+4M—4L+Ctn-4L+8La—4ﬂN4li-8La .

If M was choosen sufficiently large, the terms to the right are all less than the
last one and the proof is complete.

ReMARK 3.4. The usual limit for f, f>na|l/p—1/2|, is obtained by
interpolation between the trivial L, case and the above L, result if p<2 and by
duality if p>2.

4. The compact case.

Let U/K be a symmetric space of compact type. The elementary spherical
functions on U/K, denoted by &,, are parametrized by the set of highest
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weights of finite dimensional irreducible representations of U which are of class
one with respect to K. Let G/K be the noncompact dual of U/K and denote by
¢, the elementary spherical functions on G/K. Then

P4ih) = @), heb,
—i(A+9)

fy = J S WP 4(u) du
U
and
Fu) = Y F(A)D4(u)dy
where
P c(i)c(—io)
1 cli(A+e)e(=il4+0)
is the dimension of the representation space corresponding to the heighest
weight A. Thanks to this close relationship our method of proof for the
multiplier theorems applies in the compact case as well. Only condition 2) of

theorem 1.4 do not carry over immediately. This condition was used in lemma
3.1 to show that

cj()“)
c(A)

The analogue of this inequality is however easily proved with the aid of Schur’s
orthogonality relations

{gaHmW,Ae%.

0 ifA+A
j B, () Py, () du ={ A4
U

d;l‘ if A;=4,.
LeEMMA 4.1. In the notation above holds
le;(—i(A+e)ld} £ C(L+(A)™> .

Proor. On one hand

ju W WP (WP 440, W) du = ci(—i(A+0)d7L,,

and on the other

J W (W) 4 ()P4 1 q (1) du| < suplw )| |Pall2 P4+l
U

uelU

A

Cdidit, .
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Thus

le(—i(A+e)d} = Cd}, < CO+|AY.

Since no holomorphy conditions appear in the compact case, functions with
compact support can be used, cf. [2]. E.g. one can prove that the Riesz mean
operator of order a, corresponding to u(z)= (1 —z)%, is uniformly bounded on
L, if

P

1 1
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