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SOME RESULTS ON EIGENFUNCTIONS
ON SYMMETRIC SPACES
AND EIGENSPACE REPRESENTATIONS

SIGURDUR HELGASON

1. Introduction.

This note contains three simple results on the topics of the title. The first
concerns the space # of harmonic functions on R". It was proved in [2d] that
the isometry group of R" acts irreducibly on an eigenspace of the Laplacian if
and only if the eigenvalue is #0. For the eigenvalue O there is a much bigger
group acting, namely the conformal group (or rather its Lie algebra), and we
show an irreducibility property for this action.

Our second result concerns a symmetric space G/K of the noncompact type,
G being any noncompact connected semisimple Lie group with finite center
and K a maximal compact subgroup. Let EcG/K be a flat totally geodesic
submanifold of maximal dimension and let D(G/K) denote the set of G-invari-
ant differential operators on G/K. We determine explicitly the joint eigenfunc-
tions of these operators, constant on each geodesic perpendicular to E.

The third result is an integral representation of the joint eigenfunctions of
the invariant differential operators on a symmetric space U/K of the compact
type. The formula fits in the framework of Sherman’s formulation of Fourier
analysis on U/K (cf. [5a, b]) and is analogous to recent integral representations
for the noncompact space G/K ([3], [2b II, Corollary 7.4]). The proof involves
only standard techniques from the theory of spherical functions and spherical
representations.

If M and N are manifolds and ¢: M — N a diffeomorphism we write f*=
foo~! for a function f on M. If D is a differential operator on M we define
the differential operator D on N by

D g — (Dg”')

g being a differentiable function on N. If M = N, D is called invariant under ¢ if
D?=D.
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2. Conformal groups and harmonic functions.

The group G=SL(2,C) acts transitively on the one-point compactification
of the plane by means of the maps

az+b
cz+d

ab
cd
of determinant one. The Laplacian L on R? can be written
0* 0 0?
—— — = 4—
ox? + 0y? 020z’

o _1fo 0N o _1(0 .0
oz~ 2\ax ‘ay) oz = 2\ex 'ay)-

A simple computation shows that
a2y , 0 A . 0
(;3;) = (cz—a) P <5> = (Cz—a) FE

5 Lf = |cz—al*L .

g:z— zeC,

if g is the complex matrix

L=

where

-

whence

Consider now the Lie algebra of SL(2,C) as a six-dimensional Lie algebra
sI(2,C)? over R. This Lie algebra acts continuously on the space C®(R?) as
follows. Let X € sl(2,C)? and put g,=exptX (t € R). For u € C*(R?) we put

(Xu)(x,y) = {%(u”'(x,y))} (x,y) € RZ.

t=0

Then (1) implies that Xu is harmonic if u is harmonic. Let 5 (R?) denote the
space of harmonic functions on R? with the topology induced by C®(R?).

LeEMMA 2.1. The action of s1(2, C)® on # (R?) is “scalar irreducible”, that is, the
only continuous operators on # (R?) commuting with the action are the scalar
multiples of the identity.

PrOOF. Suppose A: o — 3 is a continuous linear mapping such that AXu
=X Au for all X € sl(2,C)R. Taking X as
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01 or 0i

00 00
we see that A commutes with the partial derivatives 0/0x and 0/0y and
therefore also with d/0z and 0/0zZ. In particular it maps the subspace a < s of

holomorphic functions, and the subspace a < # of antiholomorphic functions,
into itself. Taking X as

1 0

0 -1

we see that 4 commutes with the operator

ou ou
— Y R?).
u(x,y)—+xax+yay ue #(R?
But if u € q,
ou ou ou

x5;+y6—y = Za
so A, restricted to a, commutes with the operator u — z0u/dz. Putting f,
=A(z") (n € Z*) we therefore deduce z0f,/0z = nf, whence f,=c,z" (¢, € C). But
since A commutes with 8/0z we get for n21, f,=A(nz"~!), whence c,=c,_,.
By continuity, A is a scalar ¢ on a. Similarly, A is a scalar ¢’ on a. But aNa=0
so c=c'; since a and aspan S (R?) the lemma follows.

According to @rsted [10], if X is a conformal vector field on R” (n> 1) then
the operator

n0f = X7=""2@vX)s feComy)
satisfies

@ Ln(Of-n(X)Lf = ~2(div LS

and X — 5(X) is a representation of the Lie algebra ¢ of conformal vector
fields on R" on C*(R"). If X € ¢, it is clear from (2) that (X) maps the space
# (R") of harmonic functions on R” into itself.

THEOREM 2.2. The representation X — n(X)|# of ¢ on H(R") is scalar
irreducible.

Math. Scand. 41 - 6
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Proor. Suppose A: # — # is a continuous linear transformation
commuting with all #(X), X € c. Since the vector field X =0/0x; has divergence
0 it is clear that A commutes with it and thus maps the space H(R") of
harmonic polynomials into itself. Taking for X the generator of the one-
parameter group

@t (Xqye -5 Xy) = (€%, .., €X,)

we see that 4 maps the space H™(R") of harmonic polynomials of degree m into
itself. The above properties imply that 4 maps (x,+ix,)" into a constant
multiple of itself so by the argument of Lemma 2.1 A restricted to # (R?) is a
scalar. Now a vector field generated by a one-parameter group of rotations in
R” has divergence 0 so 4 commutes with it. Now H™(R?) is spanned by the
polynomials (a;x; +a,x,)", (a?+a3=0) and H™(R") is spanned by the
polynomials

m
(ayx,+...+ax)", Y a} =0.
1

This implies easily that the set of rotated polynomials P*
(P € H™(R?), k € O(n)) span H™(R"), whence by the above, 4 is a scalar ¢ on
H™(R"), ¢ independent of m.

Finally, if fe #(R") we expand into a convergent series f=>; f; where
f5 € # (R") transform under O (n) according to an irreducible representation o.
Then f;|S" ! is the restriction to $" ! of a homogeneous harmonic polynomial
so f; must equal this polynomial. By continuity, Af=cf as desired.

3. Geodesically invariant eigenfunctions.

As in the introduction, let X = G/K be a symmetric space of the noncompact
type, K compact. Let g=T+ p be the corresponding Cartan decomposition of
the Lie algebra g of G, p being the orthogonal complement to f, the Lie algebra
of K, with respect to the Killing form B of g. The restriction of B to p defines a
G-invariant Riemannian structure on G/K. Fix a maximal abelian subspace a
cp, lét A=expa and let q be the orthogonal complement of a in p. Let 0
denote the origin in G/K. Then the curves

yz:t — aexptZ-0, (ae€e A, Zeq)

constitute the geodesics in G/K perpendicular to the submanifold E=A-0 and
according to Mostow [4], G/K is their disjoint union. We shall now determine
the joint eigenfunctions of the operators in D(G/K) constant on each of these
geodesics.
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Let log: 4 — a be the inverse of exp and let W denote the Weyl group of
G/K, acting on A, a, the dual a*, and its complexification a*. For each 1 € o
let W, denoting the subgroup of W leaving A fixed.

If U is a compact group of rotations of a real vector space ¥ a polynomial
function on V is called U-harmonic if it is annihilated by all the U-invariant
constant-coefficient differential operators on V without constant term.

THEOREM 3.1. The joint eigenfunctions of the operators D € D(G/K), constant
on each orthogonal geodesic y; (Z € q) are precisely the functions

A = s . ° ) ) })
Y,(aexpY-0) = Y P (loga)e™ t9 age 4, Yeq
seW

where A € a¥ is arbitrary and P is an arbitrary W;-harmonic polynomial on a.

If D is a differential operator on X its projection on E, in the sense of [2c],
Chapter 1, is a differential operator D’ on E satisfying

(D'F)(a-0) = (DF)(a-0)

if F e C*(E) and F its extension to a C* function on X constant on each
geodesic yz (Z € q). As proved in [2c], Chapter I], for a general Riemannian
manifold, the Laplace-Beltrami operators Ly and L satisfy Ly=Lg.
Identifying 4 and E by means of the mapping a — a-0 we now prove an
extension. ‘

LEMMA 3.2. The projection D — D’ is a bijection of D(G/K) onto the set of W-
invariant differential operators on A with constant coefficients.

ProoF. Suppose g € G maps E into itself. Then for some a € 4,g-0=a"0, so
a~ g belongs to the normalizer M’ of a in K. Thus M’A is the subgroup of G
leaving E invariant. Hence if D € D(G/K), D' is a W-invariant differential
operator with constant coefficients.

Let A: S(g) » D(G) be the canonical mapping of the symmetric algebra S(g)
onto the set D(G) of left invariant differential operatorson G. If Z,,.. ., Z, is a
basis of g this mapping satisfies

) (A(P)f)@) = {P@y....0)f(gexp (2,2, + ... +2,Z,))}(0),

where 0,=0/0z;, f € C*(G), P € S(g). The centralizer Dg(G) of f in D(G) has the
direct decomposition

Dg(G) = /(1(p)@(Dk(G) N D(G)),

where I(p) is the space of Adg (K) invariant in S(p), Adg denoting as usual the
adjoint representation of G. Let (H); i<, (X )1 5j<q and (T); <k <) be bases of
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a, q and ¥, respectively, orthonormal with respect to —B(X,0Y). Let P € I1(p)
be homogeneous of degree m. Writing

N = (n,...,n), [Nl =n+...4+n,,

M = (my,...,m), [M|=m+...+m,

we have
P = Z an pmHY .. HPXTU L X
INI+IM|=m
= P,+ Z ay mHY ..  HPXT ... X7,
N,|IM|>0

where P, € S(a). Since the restriction map f — f|a induces an isomorphism of
I(p) onto I(a), the set of W-invariant in S(a), we see that P, is W-invariant of
degree m. Writing Z=1(Z) for Z € g we have
) AP) = AMP)+ Y aypuHYD .. HPXT ... X™M+Q,

N,IM|>0
where Q has order <m and |N|+|M|=m. By Theorem 5 in Mostow [4], G has
the topological decomposition G=expaexpqK. If u denotes the canonical

homomorphism of Dk (G) onto D(G/K) we put Dy = p(4(Q)) for Q € I(p). Then
if F € C*(E) and f e C*(G) is determined by

F(@0) = f(aexpXk) a€e A, Xeq, kekK

we have
3) (DpF)(a-0) = (A(P)f)(a) aed.
But if a(h)=aexp (h,H,+ ...+ hH, we have
n iym ¥my Trm — aINl Tmy vm
(Hyp .. BpXm. . XMf)(a) = {m(xl ...anf)(a(h))} -

and
X XM= AXT. . X7+ T,
where T € D(G) has order <|M|. But by (1)
(AXTr ... X79)f)(a(w) = 0 if [M|>0.

Thus we conclude from (2) and (3) that for a certain R € D(G) of order <m,

(DpF)(a-0) = (PoF)(a-0)+ (Rf)(a),

for all a € A and all F € C*(A4-0). If the differential operator R is expressed in
terms of the coordinate system
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exp(hiH;+...+hH)exp (x; X+ ... +x, X )exp (¢, Ty + ... +¢,T))
= (hyye o Xy, Xty t)

it becomes obvious, since fin these coordinates is independent of (x;) and (t)),
that the mapping

F — (Rf)|A-0
is a differential operator of order less than or equal to that of R. Hence
4 order (Dp—P,) < m.

Suppose now Q € I(a). We wish to find D € D(G/K) such that D'=Q.
Proceeding by induction let m=deg (Q) and assume statement holds for all
elements of I(a) of degree <m. Decomposing @ into homogeneous
components we can by the above find P € I(p) such that

degree (Dp—Q) < m .

But Dp—Q € I(a) so by the inductive hypothesis there exists an E € D(G/K)
such that E'=Dp—Q. Thus D=Dp—E has the desired property.

Finally, suppose D +0 of D(G/K) of order m such that D'=0. Let P € I(p) be
the homogeneous polynomial of degree m such that order (D — Dp) <m. Then
Dp=(D—Dp) has order <m whereas P, has degree m. This contradicts (4) so
the lemma is proved

The lemma shows that a function ¥ € C*(X), constant on each geodesic y,
(Z € q), is a joint eigenfunction of the D € D(G/K) if and only if the restriction
Y |E to the Euclidean space E is an eigenfunction of all the W-invariant
differential operators on E with constant coefficients. Such eigenfunctions on E
were found by Steinberg [7] and Harish-Chandra (cf. Warner [9, p. 316]) to be
just linear combinations of exponential functions e*** (s € W), 1 € a* being
fixed, with W,,-harmonic polynomials as coefficients. This proves Theorem 3.1.

4. Eigenfunctions on compact symmetric spaces.

Let U/K be a symmetric space (of the compact type) where U is a simply
connected compact semisimple Lie group and K the fixed point set of an
involutive automorphism 6 of U. Let u and T denote the corresponding Lie
algebras and p,, the eigenspace for eigenvalue —1 of the automorphism d of
u. Then if p=ip,, the real subspace g=F+p of the complexification u‘ is a
semisimple Lie algebra over R. If U¢ is the simply connected Lie group with Lie
algebra 1, let G be the analytic subgroup of U* with Lie algebra g. Then G/K is
a symmetric space of the noncompact type and we can use the notions of
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section 3. Fix a Weyl chamber a* —a, let n denote the subalgebra spanned by
the root spaces for roots of (g,a) which are positive on a, and let N be the
corresponding analytic subgroup of G. Given g € G let A(g) € a be determined
by g € Nexp A(g)K. We consider u, with the usual Hilbert space inner product
(X,Y) - —B(X,1Y), 7 being the conjugation of u® with respect to u. Because
of the vector space direct sum of the complexifications,

u = n+a‘+f

the map (X, H, T) — exp X exp H exp T is a holomorphic diffeomorphism of a
neigborhood of (0,0,0) onto a neighborhood U§ of e in U°. The map

expXexpHexpT— H

is therefore a well-defined holomorphic mapping of U§ into a° extending the
map A. This extension, which was considered by Stanton [6] and Clerc [11],
we denote also by A. We can take U§ as the diffeomorphic image (under exp)
of a ball B, cu® with center 0. Then U§ is invariant under the maps u — kuk ™1,
and so is the set Uy,=U{NU.

Let ¢, denote the bilinear form on a* induced by the Killing form, let Z*
be the set of positive roots of (g, a), and 2g their sum with multiplicity. Finally,
let M be the centralizer of A in K and dkj, the normalized K-invariant measure
on K/M.

THEOREM 4.1. Each joint eigenfunction of all D € D(U/K) has the form

(1 fuK) = j e HACTWRE (kMY dky,, ue U, ,
K/M
where y € a* and F satisfy
2) Feco(K/M) and 2 ¢ 2+ for e 5+ .
o, o)

Conversely, if u and F satisfy (2) then the function f defined by (1) extends
uniquely to an analytic functions on U/K and this function is a joint eigenfunction
of all D e D(U/K). -
First we note that if A € a¥ the spherical function ¢; on G can be written
® oie-0) = [ emromgy
K
([1, p. 261], [2bl, p. 94]) and moreover

4 (p;,(hblg'O) = f e WA+ a)A(k—1gk),(~id+o)(Ak1hK) 1 ,
K
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[2bl, p. 116]. Extending 4 to U§ we can extend ¢, by the formula

®;(uK) = f ity gy e U
K

(cf. [6] and [11]) and then (4) holds by analytic continuation for

g,h,g~'h € US. This extension of [4] was proved by Sherman [5b], even for

nonsymmetric spaces (where a different proof is of course required).

. For the proof of Theorem 4.1, let f be a joint eigenfunction, and let x(D) be
determined by Df=y(D)f for D e D(U/K). The joint eigenspace

(5) {pe C*(U/K) | Do=y(D)¢ for D e D(U/K)}
is finite-dimensional and irreducible under U ([8], [2a, p. 454]). Hence we have
(6) SWK) = {n(upo,v) ,

where 7 is an irreducible representation of U on a finite-dimensional Hilbert
space V with inner product ¢,), the vectors v, and v belong to V and v, is a unit
vector fixed under n(K).

Choose u, € U such that f(u,K)+0 and put

oK) = cj f(uokuK) dk ,
K

where the constant c is chosen such that ¢(0)=1. Since the fixed vector v, is
unique up to a constant multiple we derive from (6)
¢uK) = {n(vy,vo) uelU.

Now extending, as we can, & to a representation =, of U, ¢ extends to 'the
function

. (;(u) = <nc(u)00a vO> ue U
A simple direct proof (Harish—Chandra [1, Lemma 5]) shows that on G,

(;(g) = I e_ﬂ(A("g_l)) dk g € G s
K

where p € a* is the highest weight of = restricted to a. Writing p=il—¢ we
have since ¢, =¢,; (s € W) and since ¢,(gK)=0¢_,(g"'K),

o(8) = ¢1(gK) = f WAk gk geG,
K

where s* is the Weyl group element mapping a* to —a*. The vector v is a
linear combination,
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v=Yan(u), aeC, uelU

and here we may assume the elements u; contained in an arbitrary

neighborhood of e in U. In fact, if a linear form on V vanishes on m(exp tX)v,
—y (X € u, t small) it vanishes on dr(u)v,= V. Hence

fwK) = ¥ ao(u; 'uK)

for u e U sufficiently close to e. Using now (4) we get the integral formula (1)
for f with u replaced by —s*u. But using the characterization of the highest
weights of spherical representation proved in [2bl, Chapter III, § 3] we see
that u, and therefore also —s*pu, satisfies (2).

For the converse let u € a* satisfy (2) and let = be the irreducible finite-
dimensional spherical representation of G on a vector space V with highest
weight having restriction to a given by u. Let V* be the dual of V] v, “the” unit
vector fixed under 7(K) and choose v* € V* such that v*(vy)=1. Let v¢ € V'*
be defined by

vE(v) = j v¥(n(kj)dk veV.
K

Then we can define a function ¢ on G/K by
@(gK) = vg(n(g™")vo) -

As shown in [2c, p. 34], ¢ is a spherical function on G, and = is equivalent to
the natural representation 7, of G on the space V,, spanned by the translates of
@. Let Y € V,, be “the” highest weight vector for n,. Then

Y(an0) = e~HIo8y (0)
that is, taking y(0)=1,

But n extends to a holomorphic representation of U*, so y extends to U* as
well. By holomorphic continuation this extension satisfies

JuK) = e~ H4®) 4 e U, .

Finally ¢ satisfies the functional equation

j ¥ (gkx-0)dk = .//(g~0)j Ykx-0)dk g xeG
K K

which characterizes the joint eigenfunctions of D(G/K) [2a, p. 439]. By
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holomorphic continuation, ¥ satisfies this functional equation on U/K so is a
joint eigenfunction of D(U/K). This concludes the proof.
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