# A DESCRIPTION OF DISCRETE SERIES USING STEP ALGEBRAS

## JOUKO MICKELSSON

## 1. Introduction.

In this paper we study the discrete series of an arbitrary complex finite dimensional Lie algebra g with respect to a reductive subalgebra f in g, rank f = rank g. Because our notion of discrete series differs slightly from the usual one even when g is semi-simple we shall introduce some notation in order to explain this difference.

So let g first be semi-simple. Let  $\mathfrak{h} \subset \mathfrak{f}$  be a Cartan subalgebra of g,  $\Psi$  the system of roots for  $(\mathfrak{g},\mathfrak{h})$  and  $\Delta_k \subset \Psi$  a positive system for  $(\mathfrak{f},\mathfrak{h})$ . Let  $\mathfrak{h}^*$  be the dual of  $\mathfrak{h}$  and let  $(\cdot,\cdot)$ :  $\mathfrak{h}^* \times \mathfrak{h}^* \to \mathbb{C}$  be the dual of the Killing form of  $\mathfrak{f}$  restricted to  $\mathfrak{h}$ . The set  $\Lambda$  of integral weights consists of those  $\lambda \in \mathfrak{h}^*$  for which

$$\langle \lambda, \alpha \rangle = 2 \frac{(\lambda, \alpha)}{(\alpha, \alpha)} \in \mathbb{Z} \quad \forall \alpha \in \Delta_k,$$

and the set  $\Lambda^+$  of dominant integral elements is

$$\Lambda^{+} = \{\lambda \in \mathfrak{h}^{*} \mid \langle \lambda, \alpha \rangle \in \mathbb{Z}_{+} \ \forall \alpha \in \Delta_{k} \}$$

where  $Z_{+} = \{0, 1, 2, ...\}$ . Next we set

$$\Lambda_{\text{reg}}^+ = \{ \lambda \in \Lambda^+ \mid \langle \lambda, \alpha \rangle \neq 0 \ \forall \alpha \in \Psi \} .$$

The elements of  $\Lambda_{\text{reg}}^+$  are called regular weights. If  $\lambda \in \Lambda_{\text{reg}}^+$  then one can define a positive system  $\Delta^{\lambda}$  for  $(\mathfrak{g}, \mathfrak{h})$  by

$$\Delta^{\lambda} = \{ \alpha \in \Psi \mid \langle \lambda, \alpha \rangle > 0 \}.$$

Clearly  $\Delta_k \subset \Delta^{\lambda}$ . The discrete representations  $D_{\Delta^{\lambda}, \lambda - \delta_k + \delta_n}$  are parametrized by regular  $\lambda$ , where

$$\delta_k = \frac{1}{2} \sum_{\alpha \in \Delta_k} \alpha, \quad \delta_n = \frac{1}{2} \sum_{\alpha \in \Delta^k \setminus \Delta_k} \alpha.$$

The discrete representations have the following three properties:

$$D_{d^{\lambda}, \lambda - \delta_{k} + \delta_{n}} = \sum_{\mu} \bigoplus m_{\lambda}(\mu) X_{\mu}$$

where  $X_{\mu}$  is the irreducible finite dimensional f-module with highest weight  $\mu$  and the  $m_{\lambda}(\mu)$ 's are integers,  $0 \le m_{\lambda}(\mu) < \infty$ .

$$m_{\lambda}(\lambda - \delta_k + \delta_n) = 1.$$

(3) If  $m_{\lambda}(\mu) \neq 0$  then  $\mu = \lambda - \delta_k + \delta_n + \nu$ , where  $\nu$  is a sum of elements in  $\Delta^{\lambda}$ .

For more information, see [1], [2] and [9].

In our approach we choose a basis  $\{\alpha_1, \ldots, \alpha_l\}$  in  $\Delta_k$  and define a lexicographical ordering in  $\Lambda$  with respect to this basis (section 2). If  $\Omega \subset \Lambda^+$  is any subset then there exists a minimal element in  $\Omega$ . Let V be a f-finite g-module, that is, V is a direct sum of the f-modules  $X_u$ ,

$$V = \sum_{\mu} \oplus n(\mu) X_{\mu} .$$

We set  $V_{\mu} = n(\mu)X_{\mu}$ . We say that  $V_{\lambda}$  is a minimal component of V if  $V_{\lambda} \neq 0$  and  $V_{\mu} = 0$  for  $\mu < \lambda$ . The ordering "<" is total when  $\mathfrak{k}$  is semi-simple, therefore the minimal component is unique for semi-simple  $\mathfrak{k}$  (and for any  $\mathfrak{g}$ ). The motivation for our choice of the ordering "<" is the fact that for any  $\mathfrak{k}$ -finite  $\mathfrak{g}$ -module V there exists a minimal component  $V_{\lambda}$  and that it is compatible with the standard partial ordering on  $\mathfrak{h}^*$  defined by the choice of  $\Delta_k$ : if  $\lambda - \lambda'$  is a sum of elements of  $\Delta_k$  then  $\lambda > \lambda'$ . Set

$$\Delta = \{\alpha \in \Psi \mid \alpha > 0\}.$$

Then  $\Delta$  is a positive system for (g, h) (when g is semi-simple) and  $\Delta_k \subset \Delta$ . If  $V_{\lambda}$  is a minimal component for V then  $V_{\lambda-\alpha}=0$  for any  $\alpha \in \Delta$ . On the other hand, if  $\Delta' \subset \Psi$  is an arbitrary positive system for (g, h) such that  $\Delta_k \subset \Delta'$  (e.g.  $\Delta' = \Delta'$  for a regular v) then there does not always exist  $0 \neq V_{\mu} \subset V$  such that  $V_{\mu-\alpha}=0$  for all  $\alpha \in \Delta'$ .

For a certain subset  $\Lambda_0^+$  of  $\Lambda^+$  we show that for each  $\lambda \in \Lambda_0^+$  there exists a unique equivalence class [V] of irreducible f-finite g-modules V with minimal component  $V_\lambda$ . For each  $\lambda \in \Lambda_0^+$  there is an irreducible g-module  $V^\lambda$  with the three properties

(1)' 
$$V^{\lambda} = \sum_{\mu} \oplus n_{\lambda}(\mu) X_{\mu}, \quad 0 \leq n_{\lambda}(\mu) < \infty$$
.

$$(2)' n_{\lambda}(\lambda) = 1.$$

(3)' If 
$$n_{\lambda}(\mu) \neq 0$$
 then  $\mu = \lambda + \nu$ , where  $\nu$  is a sum of elements in  $\Delta \setminus \Delta_k$ .

The set  $\Lambda_0^+$  plays more or less the role of  $\Lambda_{\text{reg}}^+$  in the earlier approach. We shall call here the set of modules  $V^{\lambda}$  as the discrete series.

The method applied here is the same which was used in [8] for describing the irreducible gl  $(2, C) \oplus gl (2, C)$ -finite gl (4, C)-modules. The irreducible modules with minimal f-type  $\lambda$  are parametrized by the action of certain

algebra  $D_{\lambda}$ , associated to the step algebra  $S(\mathfrak{g},\mathfrak{k})$ , on the minimal component. If  $\lambda \in \Lambda_0^+$  then  $D_{\lambda} \cong \mathbb{C}$ . In an earlier paper we gave a sufficient condition for  $\lambda \in \Lambda^+$  in order that a g-module with minimal component  $V_{\lambda}$  belongs to the discrete series ([7, theorem 4.9]). However, the condition in [7] is unnecessarily severe.

In section 3 we first give a general but rather complicated description of the set  $\Lambda_0^+$ . The structure of  $\Lambda_0^+$  is worked out more explicitly for the following three classes of pairs (g, f):

(gI 
$$(p+q,C)$$
, gI  $(p,C)\oplus$  gI  $(q,C)$ ),  $(C_{p+q},C_p\oplus C_q)$  and  $(D_{p+q},D_p\oplus D_q)$ 

where  $C_l$  and  $D_l$  are classical simple Lie algebras of rank l. In all cases we have studied so far it is found that

$$\Lambda_0^+ = \delta + \Lambda^+ ,$$

where  $\delta = 1/N \sum_{\alpha \in A \setminus A_k} \alpha$  and N is an integer depending on the pair (g, f).

To get a better idea of the methods used in the present work, the reader is recommended to look at the thesis of van den Hombergh, [4]. There all non-decomposable Harish-Chandra modules for certain real rank one pairs (g, t) were classified using the step algebra S(g, t).

# 2. Properties of step algebras.

Let f be a reductive subalgebra in a complex finite dimensional Lie algebra g. Thus the adjoint representation ad f of f in g is completely reducible and there is an ad f-invariant complement p of f in g. Let h be a Cartan subalgebra of f and fix a positive system  $\Delta_k$  for (f, h). Let  $\{\alpha_1, \ldots, \alpha_l\}$  be a basis of  $\Delta_k$ . We define  $(\cdot, \cdot)$ ,  $\langle \cdot, \cdot \rangle$ ,  $\Lambda$  and  $\Lambda^+$  as in introduction. Next we define

$$\mathfrak{t}_s = [\mathfrak{t}, \mathfrak{t}], \quad \mathfrak{h}_s = \mathfrak{h} \cap \mathfrak{t}_s.$$

For  $\lambda \in \mathfrak{h}^*$  we define  $\lambda^s \in \mathfrak{h}_s^*$  as the restriction of  $\lambda$  to the subspace  $\mathfrak{h}_s \subset \mathfrak{h}$ . If  $\lambda \in \Lambda$  then

$$\lambda^s = \sum_{i=1}^l r_i \alpha_i^s$$

where each  $r_i$  is real and rational. If  $\lambda \in \Lambda^+$  then  $r_i \ge 0$ ,  $1 \le i \le l$ . If  $\lambda, \lambda' \in \Lambda$  and  $(\lambda - \lambda')^s \ne 0$  then we define  $\lambda > \lambda'$  if the first non-zero number in the row  $r_1 - r_1', r_2 - r_2', \ldots$  is positive. This ordering on  $\Lambda$  is total if and only if  $\mathfrak{k}$  is semi-simple,  $\mathfrak{h}_s = \mathfrak{h}$ . We define  $\lambda \gg \lambda'$  if  $\lambda - \lambda'$  is a sum of the simple roots  $\alpha_i$ . Clearly  $\lambda \gg \lambda'$  implies  $\lambda > \lambda'$ . The set  $\{\lambda^s \mid \lambda \in \Lambda^+\}$  can be identified through (1) with a subset of  $\mathbb{R}^l$  which is known to be nowhere dense (in the ordinary topology of

 $R^{I}$ ) and is bounded below by the vector 0. It follows that any subset  $\Omega \subset \Lambda^{+}$  has a minimal element and that is unique if f is semi-simple.

Let  $\{t_1, \ldots, t_n\}$  be a basis in p consisting of weight vectors,

$$\lceil h, t_i \rceil = \mu_i(h)t_i, \quad h \in \mathfrak{h}, \ 1 \leq i \leq n$$
.

We can assume that  $\mu_1^s \ge \mu_2^s \ge \ldots \ge \mu_n^s$ . The choice of  $\Delta_k$  defines the splitting  $\mathfrak{k} = \mathfrak{k}_+ \oplus \mathfrak{h} \oplus \mathfrak{k}_-$ . We denote by  $U(\mathfrak{a})$  the enveloping algebra of a Lie algebra  $\mathfrak{a}$ . We define

$$S'(g, f) = \{ u \in U(g) \mid f_+ u \subset U(g) f_+ \}$$

and we set  $S(g, \mathfrak{k}) = S'(g, \mathfrak{k})/U(g)\mathfrak{k}_+$ , the step algebra of the pair  $(g, \mathfrak{k})$ . For each sequence  $(i) = (i_1, \ldots, i_n) \in \mathbb{Z}_+^n$  we put  $t(i) = t_1^{i_1} \ldots t_n^{i_n} \in U(g)$ . Consider the subspace  $U_1 \subset U(g)$ ,

$$U_1 = \sum_{(i)} t(i)U(\mathfrak{h}) .$$

We can split

$$U(\mathfrak{g}) = U_1 \oplus U(\mathfrak{g})\mathfrak{f}_+ \oplus U(\mathfrak{f}_-)\mathfrak{f}_-U_1 ,$$

$$U(\mathfrak{g}) \ = \ U_1 \oplus U(\mathfrak{g}) \mathfrak{f}_+ \oplus U_1 U(\mathfrak{f}_-) \mathfrak{f}_- \ .$$

Let P' denote the projection onto the first summand in the first formula, and Q' the corresponding projection in the second formula. We define projections  $P, Q: U(\mathfrak{g})/U(\mathfrak{g})\mathfrak{k}_+ \to U_1$  by

$$P(u+U(g)\mathfrak{f}_+)=P'(u)$$
 and  $Q(u+U(g)\mathfrak{f}_+)=Q'(u)$ .

For each  $i \in \{1, 2, ..., n\}$  there exists  $s_i \in S(g, t)$  of the form

$$s_i = t_i p_i + \sum_{\mu_i \gg \mu_i} u_j t_j p_j ,$$

where  $u_j \in U(\mathfrak{t}_-)$ ,  $p_j \in U(\mathfrak{h})$  and  $p_i \in U(\mathfrak{h})$  has the following property:

$$p_i(\lambda) \neq 0$$
 if  $\lambda + \mu_i + \delta_k \in \Lambda^+$ ,

where  $\delta_k = \frac{1}{2} \sum \Delta_k$ ; see proposition I. 1.8, page 18 in [4] and [3, proposition 1]. If  $p \in U(\mathfrak{h})$  we denote by  $p(\lambda)$  the value of a polynomial on  $\mathfrak{h}^*$  obtained via the replacement  $h \mapsto \lambda(h)$ .

For each  $\lambda \in \mathfrak{h}^*$  we define the left ideal

$$I_{\lambda} = U(\mathfrak{g})\{h - \lambda(h) \cdot 1 \mid h \in \mathfrak{h}\}$$

and for each  $\lambda \in \Lambda^+$  let  $J_{\lambda}$  be the left ideal in  $U(\mathfrak{f})$  which annihilates the vector with highest weight in the finite dimensional  $\mathfrak{f}$ -module  $X_{\lambda}$ . Let  $\pi_{\lambda}$ :  $U(\mathfrak{g}) \to U(\mathfrak{g})/I_{\lambda}$  be the projection and set  $P_{\lambda} = \pi_{\lambda} \circ P$ ,  $Q_{\lambda} = \pi_{\lambda} \circ Q$ . Then

$$P_{\lambda}(s_i) = t_i p_i(\lambda) \neq 0$$

if  $\lambda + \mu_i + \delta_k \in \Lambda^+$ . We say that  $s \in S(g, \mathfrak{k})$  has weight  $\mu$  if  $s = s' + U(g)\mathfrak{k}_+$ , where  $s' \in S'(g, \mathfrak{k})$  such that  $[h, s'] = \mu(h)s'$  for all  $h \in \mathfrak{h}$ . The step  $s_i$  has the weight  $\mu_i$  ([4, proposition I.1.8]).

LEMMA 2.1. Suppose  $s \in S(\mathfrak{g},\mathfrak{k})$  has weight  $\mu$ , and  $\lambda \in \Lambda^+$ . If  $\lambda + \mu \notin \Lambda^+$ , then  $s \in U(\mathfrak{g})J_{\lambda}/U(\mathfrak{g})\mathfrak{k}_+$ .

PROOF. Consider the g-module  $V = U(\mathfrak{g})/U(\mathfrak{g})J_{\lambda}$ . It contains a finite dimensional  $\mathfrak{k}$ -module with highest weight  $\lambda$  and highest vector  $x = 1 + U(\mathfrak{g})J_{\lambda}$ . Clearly  $V = U(\mathfrak{g})x$ . From [6, proposition 4.2], it follows that V is  $\mathfrak{k}$ -finite. The elements of  $S(\mathfrak{g},\mathfrak{k})$  act in a natural way on  $\mathfrak{k}_+$ -extreme vectors in V. Consider the vector y = sx. Then

$$\mathfrak{t}_+ v = 0, \quad hv = (\lambda + \mu(h))v \quad \forall h \in \mathfrak{h}.$$

Therefore y = sx = 0 if  $\lambda + \mu \notin \Lambda^+$ . But the annihilator of x is  $U(\mathfrak{g})J_{\lambda}$  and the assertion follows.

We say that the pair (g, f) is of type (A) if

$$|\langle \mu_i, \alpha_j \rangle| \le 1$$
 for  $1 \le i \le n$  and  $1 \le j \le l$ .

Here again  $\langle \mu, \alpha \rangle = 2(\mu, \alpha)/(\alpha, \alpha)$ .

LEMMA 2.2. Let (g, f) be of type (A) and let  $\lambda \in \Lambda^+$  such that  $\lambda + \mu_{i_0} \in \Lambda^+$  for some  $1 \le i_0 \le n$ . Then for  $t_j$  such that  $\mu_j = \mu_{i_0}$  there exists

$$r_j = \sum_{\mu_i = \mu_{i_0}} a_i s_i \in S(\mathfrak{g}, \mathfrak{k}) \quad (a_i \in C)$$

such that  $Q_{\lambda}(r_i) = t_i$ 

PROOF. (1) Let  $N_{\lambda}$  be the Verma module for  $\mathfrak{k}$  with highest weight  $\lambda$ . First we show that  $N_{\lambda-\nu+\mu} \in N_{\lambda}$  when  $\mu=\mu_{i_0}$  and  $\nu \neq \mu$ ,  $\nu \in \{\mu_1,\ldots,\mu_n\}$ . Namely, if  $N_{\lambda-\nu+\mu} \subset N_{\lambda}$  then  $\lambda-\nu+\mu+\delta_k=w(\lambda+\delta_k)$  for some w in the Weyl group of  $\mathfrak{k}$ . Now  $\lambda \in \Lambda^+$  so  $w(\lambda+\delta_k) \notin \Lambda^+$  for  $w \neq 1$  and  $\langle w(\lambda+\delta_k), \alpha_i \rangle < 0$  for some  $1 \leq i \leq l$ . But  $\langle \lambda+\mu,\alpha_i \rangle \geq 0$  so

$$0 > \langle w(\lambda + \delta_k), \alpha_i \rangle = \langle \lambda + \mu, \alpha_i \rangle + \langle \delta_k, \alpha_i \rangle - \langle \nu, \alpha_i \rangle$$
  
$$\geq 1 - \langle \nu, \alpha_i \rangle \geq 0,$$

a contradiction.

(2) Let  $S_{\mu} \subset S(g, f)$  be the subspace spanned by the vectors  $s_i$  with  $\mu_i = \mu_{i_0} = \mu$ .

If  $s \in S_u$ , we can write

(\*) 
$$s = \sum_{\mu_i = \mu} a_i s_i = \sum_{\mu_i = \mu} a_i t_i p_i + \sum_{\mu_i \gg \mu} v_i t_i p_i$$

where  $p_i \in U(\mathfrak{h})$  such that  $p_i(\lambda) \neq 0$  for  $\mu_i = \mu$  and  $v_i \in U(\mathfrak{f}_-)\mathfrak{f}_-$ . Thus

$$Q_{\lambda}(S_{\mu}) \subset \mathfrak{p}_{\mu}$$
,

where  $\mathfrak{p}_{\mu}$  consists of vectors with weight  $\mu$  in  $\mathfrak{p}$ . Because  $\dim S_{\mu} = \dim \mathfrak{p}_{\mu}$ , we only have to show that the mapping  $Q_{\lambda} \colon S_{\mu} \to \mathfrak{p}_{\mu}$  is injective. If the second term in (\*) is in  $I_{\lambda}$  then

$$Q_{\lambda}(s) = \sum_{\mu_i = \mu} a_i t_i p_i(\lambda)$$

and  $Q_{\lambda}(s) = 0$  implies that all  $a_i = 0$ , and thus s = 0. In other cases we write

$$s = \sum_{\mu_i = \mu} t_i p'_i + \sum_{\substack{\mu_i \gg \mu \\ i \neq j_0}} t_i v'_i p'_i + t_{j_0} v_{j_0} p_{j_0}$$

where again  $p_i' \in U(\mathfrak{h})$ ,  $v_i' \in U(\mathfrak{f}_-)\mathfrak{f}_-$  and  $\mu_{j_0}$  is a minimal weight such that  $v_{j_0}p_{j_0} \notin I_{\lambda}$ . If now

$$Q_{\lambda}(s) = \sum_{u_i = u} t_i p_i'(\lambda) = 0$$

then  $s \in U(\mathfrak{g})J_{\lambda}$  by [7, lemma 4.4], or [4, proposition II.2.12]. From  $\mathfrak{f}_+s \subset U(\mathfrak{g})\mathfrak{f}_+$  it follows that

$$\mathfrak{f}_+ v_{j_0} \subset U(\mathfrak{f})\mathfrak{f}_+ + I_{\lambda} .$$

But ad  $h(v_{j_0}) = (\mu - \mu_{j_0})(h)$  for  $h \in \mathfrak{h}$  and this implies  $N_{\lambda - \mu_{j_0} + \mu} \subset N_{\lambda}$ , a contradiction with (1). Thus  $Q_{\lambda}(s) \neq 0$  for  $s \neq 0$ ,  $s \in S_{\mu}$ .

LEMMA 2.3. Let  $s \in S(\mathfrak{g}, \mathfrak{f})$  be of weight  $\mu$  and let  $\lambda \in \Lambda$  such that  $\lambda + \mu \in \Lambda^+$  and  $P_{\lambda}(s) = 0$ . Then  $s \in I_{\lambda}/U(\mathfrak{g})\mathfrak{f}_{+}$ .

PROOF. First we write

$$s = \sum_{\mu(i)=\mu} t(i)p(i) + \sum_{\mu(i)\gg\mu} v(i)t(i)p(i)$$

where  $p(i) \in U(\mathfrak{h}), \ v(i) \in U(\mathfrak{f}_{-})\mathfrak{f}_{-}$  and  $\mu(i) = i_1\mu_1 + \ldots + i_n\mu_n$ . Then  $p(i)(\lambda) = 0$  for  $\mu(i) = \mu$ . If  $s \notin I_{\lambda}$  then we can choose a minimal  $\mu(i_0) \gg \mu$  such that  $p(i_0)(\lambda) \neq 0$ . From  $\mathfrak{f}_{+}s \subset U(\mathfrak{g})\mathfrak{f}_{+}$  follows that

$$\mathfrak{f}_+ v(i_0) \subset U(\mathfrak{f})\mathfrak{f}_+ + I_{\lambda + \mu(i_0)}.$$

Thus  $v(i_0)$  is  $f_+$ -extreme with weight  $\lambda + \mu$  in the Verma module

$$N_{\lambda + \mu(i_0)} = U(f)/(U(f)f_+ + I_{\lambda + \mu(i_0)}).$$

It follows that

$$N_{\lambda+\mu} \subset N_{\lambda+\mu(i_0)}$$
.

There is an element w in the Weyl group of f such that  $\lambda + \mu + \delta_k = w(\lambda + \mu(i_0) + \delta_k)$  so

$$\lambda + \mu(i_0) + \delta_k = w^{-1}(\lambda + \mu + \delta_k) \ll \lambda + \mu + \delta_k$$

because of  $\lambda + \mu \in \Lambda^+$ . But this inequality is in contradiction with  $\mu(i_0) \gg \mu$ .

Let  $S_0(g, f)$  be the subalgebra of S(g, f) which is generated by the  $s_i$ 's and U(h). We define  $S^k \subset S_0(g, f)$  as the subspace of elements which are at most of degree k in the variables  $s_i$ . We set

$$\begin{split} S^k(\mu) &= \left\{ s \in S^k \; \middle| \; \; s \; \text{is of weight} \; \mu \right\} \,, \\ S_+(\mu) &= S^1(\mu) + \left\{ s \in S^2(\mu) \; \middle| \; \; s \; = \sum_{\mu_i^* \leq \mu_j^*} s_i s_j p_{ij}; \; p_{ij} \in U(\mathfrak{h}) \right\} \,, \\ S_-(\mu) &= S^1(\mu) + \left\{ s \in S^2(\mu) \; \middle| \; \; s \; = \sum_{\mu_i^* \geq \mu_j^*} s_i s_j p_{ij}; \; p_{ij} \in U(\mathfrak{h}) \right\} \,, \\ S_\pm(\lambda, \mu) &= \left( S_\pm(\mu) + U(\mathfrak{g}) J_\lambda \right) / U(\mathfrak{g}) J_\lambda, \quad \lambda \in \Lambda^+ \,. \end{split}$$

LEMMA 2.4. Let (g, f) be of type (A),  $\lambda \in \Lambda^+$ , and  $\mu \in \Lambda$  such that  $\lambda + \mu \in \Lambda^+$ . Then  $S^2(\mu) \subset S_+(\mu) + I_{\lambda}$ .

PROOF. Because of lemma 2.3 it is sufficient to show that for any  $t_it_j$  with  $\mu_i + \mu_j = \mu$  there is  $s_{ij} \in S_+(\mu)$  such that  $P_{\lambda}(s_{ij}) = t_it_j$ . For any  $t_i$  with  $\mu_i = \mu$  there is  $s_i \in S^1(\mu)$  such that  $P_{\lambda}(s_i) = t_ip_i(\lambda)$  where  $p_i(\lambda) \neq 0$ . Thus we can forget the first order terms. Now  $t_it_j \equiv t_jt_i \mod g$  so we can assume for example that  $\mu_i^s \leq \mu_j^s$ . We prove the existence of  $s_{ij}$  by induction on j. The assertion is true for j = 1 because  $s_1 = t_1$  and

$$P_{\lambda}(s_i s_1) = P_{\lambda + \mu_1}(s_i)t_1 = t_i t_1 p_i(\lambda + \mu_1).$$

Now  $\lambda + \mu_1 + \mu_i + \delta_k = \lambda + \mu + \delta_k \subset \Lambda^+$  so  $p_i(\lambda + \mu_1) \neq 0$  and we can set

$$s_{i1} = (p_i(\lambda + \mu_1))^{-1} s_i s_1$$
.

Suppose that the assertion is true for j = k. But

$$P_{\lambda}(s_{i}s_{k+1}) = t_{i}t_{k+1}p_{i}(\lambda + \mu_{k+1})p_{k+1}(\lambda) + \sum_{\substack{\mu_{r} + \mu_{s} = \mu \\ \mu_{s} \gg \mu_{k+1}}} t_{r}t_{s}a_{rs}$$

where  $a_{rs} \in C$ . By the induction hypothesis, there is  $s \in S_{+}(\mu)$  such that  $P_{\lambda}(s)$  is

equal to the last term in the above formula. If  $a = p_i(\lambda + \mu_{k+1})p_{k+1}(\lambda) \neq 0$  we can define

$$s_{ik+1} = a^{-1}(s_i s_{k+1} - s)$$
.

The first factor  $p_i(\lambda + \mu_{k+1}) \neq 0$  for the same reason as before. As for the second,

$$\langle \lambda + \mu_{k+1} + \delta_k, \alpha_m \rangle = \langle \lambda, \alpha_m \rangle + \langle \mu_{k+1}, \alpha_m \rangle + 1 \ge \langle \lambda, \alpha_m \rangle$$

for a pair (g, f) of type (A), so  $\lambda + \mu_{k+1} + \delta_k \in \Lambda^+$  and therefore  $p_{k+1}(\lambda) \neq 0$ .

LEMMA 2.5. Let (g, f) be of type (A). Let  $\lambda \in \Lambda^+$ ,  $\mu \in \Lambda$  such that  $\lambda + \mu \in \Lambda^+$ . Let  $n_+(\lambda, \mu)$  (respectively  $n_-(\lambda, \mu)$ ) be the number of pairs  $(t_i, t_j)$  such that  $\mu = \mu_i$ .  $+\mu_j$ ,  $\mu_i^s \leq \mu_j^s$  and  $\lambda + \mu_j \in \Lambda^+$  (respectively  $\lambda + \mu_i \in \Lambda^+$ ). If  $n_+(\lambda, \mu) \leq n_-(\lambda, \mu)$  then  $S_+(\lambda, \mu) = S_-(\lambda, \mu)$ .

PROOF. From lemma 2.4 it follows that  $S_{-}(\lambda, \mu) \subset S_{+}(\lambda, \mu)$ . All we need to show is dim  $S_{-}(\lambda, \mu) \ge \dim S_{+}(\lambda, \mu)$ .

From lemma 2.1 follows immediately the inequality

$$\dim S_{+}(\lambda,\mu) \leq n_{+}(\lambda,\mu) + \dim \left( (S^{1}(\mu) + U(g)J_{\lambda})/U(g)J_{\lambda} \right).$$

For each pair  $(t_i, t_j)$  such that  $\mu_i + \mu_j = \mu$ ,  $\mu_i^s \le \mu_j^s$  and  $\lambda + \mu_i \in \Lambda^+$  we choose  $r_i, r_j' \in S^1$  such that  $Q_{\lambda}(r_i) = t_i$  and  $Q_{\lambda + \mu_i}(r_j') = t_j$  (see lemma 2.2). To show that

$$\dim S_-(\lambda,\mu) \, \geqq \, n_-(\lambda,\mu) + \dim \left( \left( S^1(\mu) + U(\mathfrak{g}) J_\lambda \right) / U(\mathfrak{g}) J_\lambda \right) \, .$$

we prove that the elements  $r'_j r_i$  are linearly independent in  $S_-(\lambda, \mu)$ . Suppose that

$$s = \sum a_{ij}r'_jr_i \in U(\mathfrak{g})J_{\lambda} \quad (a_{ij} \in \mathsf{C})$$
.

Then  $Q_{\lambda}(s) = 0$ . Let  $a_{i_0j_0} \neq 0$  but  $a_{ij} = 0$  when  $i < i_0$ . Then

$$Q_{\lambda}(s) = a_{i_0j_0}t_{j_0}t_{i_0} + \sum_{\substack{\mu_j \gg \mu_{j_0} \\ \mu_i \ll \mu_{i_0}}} b_{ij}t_jt_i \neq 0,$$

a contradiction. Thus all  $a_{ij} = 0$  and the  $r'_j r_i$ 's are linearly independent in  $S_-(\lambda, \mu)$ .

### 3. Discrete series.

We denote

$$\Lambda_0^+ = \left\{ \lambda \in \Lambda^+ \mid n_+(\lambda, \mu_i + \mu_j) \le n_-(\lambda, \mu_i + \mu_j) \ \forall i, j \text{ such that} \right.$$
$$\mu_i < 0 < \mu_j \text{ and } \lambda + \mu_i + \mu_j \in \Lambda^+ \right\}.$$

We say that  $\Lambda_0^+$  is stable if

$$(\Lambda_0^+ + \mu_k) \cap \Lambda^+ \subset \Lambda_0^+ \quad \forall \mu_k > 0.$$

As we shall see later, in many interesting cases  $\Lambda_0^+$  is in fact stable.

A g-module V is said to be  $\mathfrak{k}$ -finite if it is a sum of finite dimensional  $\mathfrak{k}$ -modules. If  $\lambda \in \Lambda^+$  then  $V_{\lambda}$  denotes the sum of all  $\mathfrak{k}$ -submodules in V with highest weight  $\lambda$ . We set

$$V_{\lambda}^{+} = \{x \in V_{\lambda} \mid \mathfrak{t}_{+}x = 0\} .$$

Let D be the centralizer of  $\mathfrak{h}$  in  $S_0(\mathfrak{g},\mathfrak{k})$ , i.e. the subalgebra of elements with weight zero. We set

$$A_{eta,\alpha} = \{u \in U(\mathfrak{g}) \mid uV_{\alpha}^+ \subset V_{\beta}^+ \text{ for any g-module } V\},$$

$$M_{\alpha} = \sum_{\beta < \alpha} A_{\beta,\alpha},$$

$$D_{\alpha} = D/D \cap U(\mathfrak{g})M_{\alpha},$$

$$R_{+} = \{\mu_i \mid \mu_i > 0\}, \quad R_{-} = \{\mu_i \mid \mu_i < 0\}.$$

If V is a g-module such that  $V_{\alpha} = 0$  for  $\alpha < \lambda$ , then  $V_{\lambda}^{+}$  is in a natural way a  $D_{\lambda}$ -module. In [8, theorem 1], it was shown that the mapping  $V \mapsto V_{\lambda}^{+}$  determines a bijection from the set of equivalence classes of irreducible  $\ell$ -finite g-modules for which  $V_{\lambda} \neq 0$  and  $V_{\alpha} = 0$  if  $\alpha < \lambda$ , onto the set of equivalence classes of irreducible  $D_{\lambda}$ -modules.

THEOREM 3.1. Let (g, f) be a pair of type (A) such that  $\mu_i^s \neq 0 \ \forall i \in \{1, 2, \dots, n\}$  (if f is semi-simple the last condition is equivalent with rank f = rank g). In addition, we assume that  $\Lambda_0^+$  is stable. Then for each  $\lambda \in \Lambda_0^+$  there is one and only one equivalence class [V] of irreducible f-finite g-modules such that  $V_\lambda \neq 0$  but  $V_\alpha = 0$  for  $\alpha < \lambda$ . Furthermore, dim  $V_\lambda^+ = 1$ , and dim  $V_\alpha^+ \leq t$  the number of sequences  $\{\mu_{i_1}, \dots, \mu_{i_p}\}$  of elements in  $R_+$  such that  $\mu_{i_1} + \dots + \mu_{i_p} + \lambda = \alpha$ .

PROOF. We shall show that  $D_{\lambda} \cong \mathbb{C}$  from which the first assertion follows immediately using the remark above. A general element in D is a linear combination of vectors of type  $s = s_{i_1} \dots s_{i_p} u$ , when  $u \in U(\mathfrak{h})$  and

$$\mu_{i_1} + \ldots + \mu_{i_n} = 0.$$

From  $\mu_i^s \neq 0$  follows that either  $\mu_i > 0$  or  $\mu_i < 0$ . Now  $I_{\lambda} \subset M^{\lambda\lambda}$ , thus u is a complex number modulo  $M_{\lambda}$ . We shall show by induction on p that each  $s_{i_1} \ldots s_{i_p} u$  is a complex number modulo  $M_{\lambda}$ . We saw already that this is the case for p = 0. Suppose that it is true for p = k and let us consider the case p = k + 1. If  $\mu_{i_p} < 0$  then  $s_{i_p} \in M_{\lambda}$  and  $s \in D \cap U(g)M_{\lambda}$ . Suppose then that  $\mu_{i_p} > 0$ . By

(\*) there is a last index  $i_m$  for which  $\mu_{i_m} < 0$ . Let  $\nu = \lambda + \mu_{i_p} + \ldots + \mu_{i_{m+2}}$ . We may assume that  $\nu \in \Lambda^+$ ; otherwise

$$s_{i_{m+2}} \ldots s_{i_p} \in U(\mathfrak{g})J_{\lambda} \subset U(\mathfrak{g})M_{\lambda}$$

and therefore  $s \in D \cap U(\mathfrak{g})M_{\lambda}$ . Then

$$s_{i_m} s_{i_{m+1}} = \sum_{\mu_i^s \ge \mu_j^s} a_{ij} s_i s_j + r$$

where  $a_{ij} \in \mathbb{C}$  and  $r \in S^1 + U(\mathfrak{g})J_{\nu}$  (lemma 2.5) and  $a_{ij}$  can be different from zero only when  $\mu_i + \mu_j = \mu_{i_m} + \mu_{i_{m+1}}$ . If  $v \in U(\mathfrak{g})J_{\nu}$  then  $vs_{i_{m+2}} \dots s_{i_p} \in U(\mathfrak{g})J_{\lambda}$ , thus

$$s = \sum_{\mu_i^s \ge \mu_i^s} a_{ij} s_{i_1} \dots s_{i_{m-1}} s_i s_j s_{i_{m+2}} \dots s_{i_p} + r'$$

where  $r' \in S^{p-1} + U(\mathfrak{g})M_{\lambda}$ . Consider a typical term

$$s' = s_{i_1} \dots s_{i_{m-1}} s_i s_j s_{i_{m+2}} \dots s_{i_n}$$

If  $\mu_j > 0$  then  $\mu_i^s \ge \mu_j^s$  implies  $\mu_i > 0$  and we have reduced the number of factors  $s_h$  with negative weight  $\mu_h$  by one (compared with s). If  $\mu_j < 0$  then we can consider  $s_j s_{i_{m+2}}$  instead of  $s_{i_m} s_{i_{m+1}}$  and continue as above. Noting that a  $s_h$  with  $\mu_h < 0$  on the right gives zero modulo  $M_{\lambda}$ , we can finally write

$$s = q_1 + q_2$$

where  $q_2 \in S^{p-1} + M_\lambda$  and  $q_1$  is a linear combination of monomials of degree p, each of them containing one less factors  $s_h$  with negative weight  $\mu_h$  than the original monomial s. We can make a second induction on the number of negative factors and we arrive at s = w + q, where  $q \in S^{p-1} + M_\lambda$  and w contains no negative factors. Because w is of weight zero it contains no positive factors either, and therefore  $w \in U(\mathfrak{h})$ , which implies  $w \in \mathbb{C} \cdot 1 + I_\lambda$ . By the first induction,  $q \in \mathbb{C} \cdot 1 + D \cap U(\mathfrak{g})M_\lambda$ , and thus  $s \in \mathbb{C} \cdot 1$  modulo  $M_\lambda$ . We have now shown that  $D_\lambda \cong \mathbb{C}$ . From this and the fact that  $V_\lambda^+$  is an irreducible  $D_\lambda$ -module it follows that dim  $V_\lambda^+ = 1$ .

Let  $0 
otin x 
otin V_{\lambda}^{+}$  and  $y 
otin V_{\alpha}^{+}$ . Then by [4, corollary II.1.5 p. 29], there exists  $s 
otin S_{0}(g, f)$  such that y = sx. Using the same technique as above we can eliminate all factors  $s_{i}$  with  $\mu_{i} < 0$  from s. Thus

$$s \equiv \sum_{p=0}^{k} \sum_{\substack{\mu_{i_1}+\ldots+\mu_{i_p}=\alpha-\lambda\\\mu_{i_1},\ldots,\mu_{i_r}>0}} a(i_1,\ldots,i_p) s_{i_1}\ldots s_{i_p} \mod M_{\lambda},$$

where  $a(i_1, \ldots, i_p) \in C$ . This proves the last assertion.

Next we shall describe explicitly the set  $\Lambda_0^+$  for three classes of classical reductive Lie algebras with respect to a reductive subalgebra of equal rank. Looking at the root space structure of the Lie algebras  $A_l$ ,  $C_l$  and  $D_l$  (see e.g. [5]) it is easily seen that these pairs are of type (A). In each case we shall see that  $\Lambda_0^+$  is stable so that theorem 3.1 applies.

a) 
$$(g, f) = (gl(p+q, C), gl(p, C) \oplus gl(q, C)).$$

The Lie algebra g = gl(p+q, C) consists of complex  $(p+q) \times (p+q)$ -matrices. We define  $e_{ij}$  as the matrix for which

$$(e_{ij})_{kl} = \delta_{ik}\delta_{jl} ,$$

where  $\delta_{ij}=0$  when  $i \neq j$  and  $\delta_{ii}=1$ . We define  $\operatorname{gl}(p,\mathsf{C})$  as the subalgebra generated by the elements  $e_{ij}$ ,  $1 \leq i, j \leq p$ . The subalgebra  $\operatorname{gl}(q,\mathsf{C})$  is spanned by the elements  $e_{ij}$ ,  $p+1 \leq i, j \leq p+q$ . We set  $\mathfrak{t}=\operatorname{gl}(p,\mathsf{C}) \oplus \operatorname{gl}(q,\mathsf{C})$ . A Cartan subalgebra  $\mathfrak{h} \subset \mathfrak{t}$  of  $\mathfrak{g}$  is spanned by the diagonal matrices  $e_{ii}$ ,  $1 \leq i \leq p+q$ . The semi-simple part  $\mathfrak{t}_s$  consists of trace zero matrices,  $\mathfrak{t}_s=\mathfrak{sl}(p,\mathsf{C}) \oplus \mathfrak{sl}(q,\mathsf{C})$  and  $\mathfrak{h}_s=\mathfrak{h} \cap \mathfrak{t}_s$ . A positive system  $\Delta_k$  for  $(\mathfrak{t},\mathfrak{h})$  is defined by setting

$$\mathbf{f}_{+} = \sum_{1 \leq i < j \leq p} \mathbf{C} \cdot e_{ij} + \sum_{p+1 \leq i < j \leq p+q} \mathbf{C} \cdot e_{ij}.$$

Then  $\mathfrak{k}_{-}$  is obtained by transposing the matrices in  $\mathfrak{k}_{+}$ . The simple roots  $\alpha_{1},\ldots,\alpha_{p+q-2}$  correspond to the vectors  $e_{12},e_{23},\ldots,e_{p-1,p},e_{p+1,p+2},\ldots,e_{p+q-1,p+q}$ . If  $\lambda\in\mathfrak{h}^{*}$ , we denote  $\lambda_{i}=\lambda(e_{ii})$ . The set of weights  $\Lambda$  consists of those  $\lambda\in\mathfrak{h}^{*}$  for which the numbers  $\lambda_{i}-\lambda_{j}$   $(1\leq i,j\leq p)$  and  $\lambda_{k}-\lambda_{l}$   $(p+1\leq k,l\leq p+q)$  are all real integers. The dominant integral weights are given by

$$\Lambda^{+} = \left\{ \lambda \in \Lambda \mid \lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{n}; \lambda_{n+1} \geq \lambda_{n+2} \geq \ldots \geq \lambda_{n+a} \right\}.$$

An adf-invariant complement p of f in g is spanned by the vectors

$$e_{ij}, e_{ii}; \quad 1 \leq i \leq p, \ p+1 \leq j \leq p+q$$
.

We define

$$\lambda^{j} = \frac{1}{j} \sum_{k=1}^{j} \lambda_{k} - \frac{1}{p-j} \sum_{k=j+1}^{p} \lambda_{k} \quad \text{when } 1 \leq j \leq p-1;$$

$$\lambda^{j} = \frac{1}{j-p+1} \sum_{k=j+1}^{j+1} \lambda_{k} - \frac{1}{q-j+p-1} \sum_{k=j+2}^{p+q} \lambda_{k} \quad \text{when } p \leq j \leq p+q-2.$$

Then

$$\lambda^s = \sum_{j=1}^{p+q-2} \lambda^j \alpha_j^s,$$

where  $\lambda^s = \lambda |_{\mathfrak{h}_s}$ . As before,  $\lambda > \lambda'$  if the first non-zero number in the sequence  $\lambda^1 - \lambda'^1, \lambda^2 - \lambda'^2, \ldots$  is positive.

We denote the root corresponding to  $e_{ii}$  by  $\alpha_{ii}$ . Then

$$R_{-} = \{\alpha_{j1} \mid p+1 \le j \le p+q\} \cup \{\alpha_{ij} \mid 2 \le i \le p, p+1 \le j \le p+q\},$$

$$R_{+} = \{\alpha_{1j} \mid p+1 \le j \le p+q\} \cup \{\alpha_{ji} \mid 2 \le i \le p, p+1 \le j \le p+q\}.$$

Theorem 3.2. For the pair (g, f) defined above,  $\Lambda_0^+ = \{\lambda \in \Lambda^+ \mid \lambda_1 - \lambda_2 > 0\}$ . This set is stable.

PROOF. We have to show that for each  $v=\alpha_-+\alpha_+$ , where  $\alpha_-\in R_-$  and  $\alpha_+\in R_+$ ,  $n_-(\lambda,\nu)\geq n_+(\lambda,\nu)$  for all  $\lambda\in\Lambda^+$  such that  $\lambda_1>\lambda_2$ . As an example we shall consider the case v=0. The other cases are treated in similar manner and are left to the reader. When v=0 the number  $n_-(\lambda,\nu)$  (respectively  $n_+(\lambda,\nu)$ ) will be equal to the number  $n_-(\lambda)$  (respectively  $n_+(\lambda)$ ) of the roots  $\alpha_{ij}\in R_-$  (respectively  $\alpha_{ij}\in R_+$ ) such that  $\lambda+\alpha_{ij}\in\Lambda^+$ . If we denote  $\lambda'=\lambda+\alpha_{ij}$ , then  $\lambda'_k=\lambda_k$  for  $k\neq i,j,\ \lambda'_i=\lambda_i+1$  and  $\lambda'_j=\lambda_j-1$ . Thus  $\lambda'\in\Lambda^+$  iff  $\lambda_{i-1}>\lambda_i$  and  $\lambda_j>\lambda_{j+1}$ . Let  $n_1(\lambda)$  be the number of indices  $2\leq i\leq p-1$  for which  $\lambda_i>\lambda_{i+1}$  and let  $n_2(\lambda)$  be the number of indices  $p+1\leq j\leq p+q-1$  for which  $\lambda_j>\lambda_{j+1}$ . It is easily seen that

$$n_{+}(\lambda) = (n_{1}(\lambda) + 2)(n_{2}(\lambda) + 1) \quad \text{for all } \lambda \in \Lambda^{+};$$
  

$$n_{-}(\lambda) = (n_{1}(\lambda) + 2)(n_{2}(\lambda) + 1), \quad \lambda \in \Lambda^{+}, \ \lambda_{1} > \lambda_{2};$$
  

$$n_{-}(\lambda) = n_{1}(\lambda) \cdot (n_{2}(\lambda) + 1), \quad \lambda \in \Lambda^{+}, \ \lambda_{1} = \lambda_{2}.$$

Therefore  $n_{-}(\lambda) \ge n_{+}(\lambda)$  iff  $\lambda_1 > \lambda_2$ . The stability of  $\Lambda_0^+$  follows from the fact that  $\lambda'_1 - \lambda'_2 = \lambda_1 - \lambda_2$  or  $\lambda'_1 - \lambda'_2 = \lambda_1 - \lambda_2 + 1$  for any  $\alpha_{ii} \in R_+$ .

b) 
$$(g, t) = (C_{p+q}, C_p \oplus C_q)$$
.  
Let  $\gamma$  be the  $(2p+2q) \times (2p+2q)$ -matrix defined by

$$\gamma_{ij} = \begin{cases} 0 & \text{if } i \neq -j \\ 1 & \text{if } i = -j < 0; \\ -1 & \text{if } i = -j > 0 \end{cases} \quad i, j = \pm 1, \pm 2, \dots, \pm (p+q) .$$

Then the classical Lie algebra  $g = C_{p+q}$  consists of complex  $(2p+2q) \times (2p+2q)$ -matrices a such that  $a'\gamma + \gamma a = 0$  (a' is the transpose of a). A basis

$$\{f_{ij} \mid i, j = \pm 1, \ldots, \pm (p+q); |i| \leq |j|\}$$

for g can be chosen in such a way that

$$[f_{ij}, f_{kl}] = \gamma_{ik} f_{jl} + \gamma_{il} f_{jk} + \gamma_{jk} f_{il} + \gamma_{jl} f_{ik}$$

where we have defined the auxiliary vectors  $f_{ij} = f_{ji}$  for |i| > |j|. A subalgebra  $C_p$  is spanned by the vectors  $f_{ij}$  where  $|i|, |j| \le p$  and there is a subalgebra  $C_q$  spanned by the elements  $f_{kl}$ , |k|,  $|k| \ge p+1$ . We define  $\mathfrak{k} = C_p \oplus C_q$ . A Cartan subalgebra  $\mathfrak{h}$  of  $\mathfrak{g}$  in  $\mathfrak{k}$  is spanned by the vectors  $h_i = f_{i,-j}$ ,  $i = 1, 2, \ldots, p+q$ .

We denote the root corresponding to  $f_{ij}$   $(i \neq -j)$  by  $\alpha_{ij}$ . We set

$$\alpha_1 = \alpha_{1-2}, \ \alpha_2 = \alpha_{2-3}, \dots, \alpha_{p-1} = \alpha_{p-1,-p}, \ \alpha_p = \alpha_{pp},$$

$$\alpha_{p+1} = \alpha_{p+1,-(p+2)}, \dots, \alpha_{p+q-1} = \alpha_{p+q-1,-(p+q)}, \ \alpha_{p+q} = \alpha_{p+q,p+q}.$$

Then  $\{\alpha_1, \ldots, \alpha_{p+q}\}$  is a set of simple roots for (f, h) and

$$\Delta_k = \{ \alpha_{ij} \mid |i| \leq |j|, i > 0; |i|, |j| \leq p \text{ or } |i|, |j| \geq p + 1 \}.$$

Now

$$\Lambda = \{\lambda \in \mathfrak{h}^* \mid \lambda(h_i) \in \mathsf{Z} \ \forall i\} \ .$$

We define  $\lambda_i = \lambda(h_i)$ . Then

$$\Lambda^{+} = \{ \lambda \in \Lambda \mid \lambda_{1} \geq \ldots \geq \lambda_{p} \geq 0; \lambda_{p+1} \geq \ldots \geq \lambda_{p+q} \geq 0 \}.$$

Next we set

$$\begin{split} \lambda^i &= \sum_{k=1}^i \lambda_k \quad \text{ for } 1 \leq i \leq p-1 \,; \quad \lambda^p &= \tfrac{1}{2} (\lambda_p + \lambda_{p-1}) \,; \\ \lambda^i &= \sum_{k=p+1}^i \lambda_k \quad \text{ for } p+1 \leq i \leq p+q-1 \,; \\ \lambda^{p+q} &= \tfrac{1}{2} (\lambda_{p+q} + \lambda_{p+q-1}) \;. \end{split}$$

Then

$$\lambda = \sum_{i=1}^{p+q} \lambda^i \alpha_i, \quad \lambda \in \Lambda ,$$

and  $\lambda > \lambda'$  if  $\lambda \neq \lambda'$  and the first non-zero number in the sequence  $\lambda_1 - \lambda'_1$ ,  $\lambda_2 - \lambda'_2$ ,... is positive. Here

$$R_{+} = \{ \alpha_{ij} \mid 1 \le i \le p, |j| \ge p+1 \},$$

$$R_{-} = \{ \alpha_{ij} \mid -p \le i \le -1, |j| \ge p+1 \}.$$

Let  $\varphi \colon R_+ \to R_-$  be the bijection defined by  $\varphi(\alpha_{1j}) = \alpha_{-pj}$ ,  $\varphi(\alpha_{ij}) = \alpha_{-(i-1),j}$  for  $2 \le i \le p$ ,  $|j| \ge p+1$ . If  $\lambda \in \Lambda^+$ ,  $\lambda_p > 0$ , then it is easily seen that  $\lambda + \alpha_{ij} \in \Lambda^+$  iff  $\lambda + \varphi(\alpha_{ij}) \in \Lambda^+$  for any  $\alpha_{ij} \in R_+$ . Let  $v = \alpha_- + \alpha_+$  where  $\alpha_- \in R_-$  and  $\alpha_+ \in R_+$ . If v = 0,  $\alpha_{ij} \in R_+$ , then  $\alpha_{kl} + \alpha_{ij} = v$  iff k = -i and l = -j. In that case, for any  $(\alpha_{-i, -j}, \alpha_{ij})$  such that  $\lambda + \alpha_{ij} \in \Lambda^+$ , there is  $(-\varphi(\alpha_{ij}), \varphi(\alpha_{ij}))$  with  $\lambda + \varphi(\alpha_{ij}) \in \Lambda^+$ , where  $\lambda \in \Lambda^+$ ,  $\lambda_p > 0$ . Thus  $n_-(\lambda, v) = n_+(\lambda, v)$  when v = 0,  $\lambda_p > 0$ . The case  $v = \alpha_{-il} + \alpha_{ij}$   $(l \ne -j)$  is treated in the same way. If  $v = \alpha_{kl} + \alpha_{ij}$  where

 $k \neq -i$  and  $\lambda, \lambda + \nu \in \Lambda$  then  $\lambda + \alpha_{ij} \in \Lambda^+$  iff  $\lambda + \alpha_{kj} \in \Lambda^+$ . It follows that for each pair  $(\alpha_{kl}, \alpha_{ij})$  such that  $\nu = \alpha_{kl} + \alpha_{ij}$  and  $\lambda + \alpha_{ij} \in \Lambda^+$  there corresponds a pair  $(\alpha_{kl}, \alpha_{il})$  such that  $\nu = \alpha_{kl} + \alpha_{il}$  and  $\lambda + \alpha_{kj} \in \Lambda^+$ . We have now shown that  $n_-(\lambda, \nu) = n_+(\lambda, \nu)$  for all  $(\lambda, \nu) \in \Lambda^+ \times (R_- + R_+)$  such that  $\lambda + \nu \in \Lambda^+$ ,  $\lambda_p > 0$ . Noting that  $\lambda'_p = \lambda_p$  or  $\lambda'_p = \lambda_p + 1$  when  $\lambda' = \alpha_{ij} + \lambda$  and  $\alpha_{ij} \in R_+$ , we get the following result:

THEOREM 3.3. For the pair  $(\mathfrak{g},\mathfrak{k})=(C_{p+q},C_p\oplus C_q),\ \Lambda_0^+$  is equal to the set  $\{\lambda\in\Lambda_p^+\mid\lambda_p>0\}$  and it is stable.

c) 
$$(g, f) = (D_{p+q}, D_p \oplus D_q).$$

If we think of  $D_n$  as the Lie algebra of complex antisymmetric  $2n \times 2n$ -matrices, then we have the following subalgebras in  $g = D_{p+q}$ :

$$D_p = \{ a \in \mathfrak{g} \mid a_{ij} = 0 \text{ when } i > 2p \text{ or } j > 2p \},$$

$$D_a = \{ a \in \mathfrak{g} \mid a_{ij} = 0 \text{ when } i \leq 2p \text{ or } j \leq 2p \}.$$

We set  $f = D_n \oplus D_q$ . Let  $\mathfrak{h} \subset f$  be a Cartan subalgebra of g and let

$$\{\alpha_{ij} \mid |i| < |j|; i, j = \pm 1, \pm 2, \dots, \pm (p+q)\}$$

be the set of roots for (g, h) such that

$$\{\alpha_{ij} \mid |i| < |j| \leq p\} \cup \{\alpha_{ij} \mid |j| > |i| \geq p+1\}$$

is the set of roots for (f, h). There exists a basis  $\{h_1, \ldots, h_{p+q}\}$  in h such that

$$\alpha_{ii}(h_k) = \delta_{ik} + \delta_{ik} - \delta_{-ik} - \delta_{-ik}.$$

As the set of simple roots for (f, h) we take  $\{\alpha_1, \ldots, \alpha_{p+q}\}$  where

$$\begin{array}{lll} \alpha_i &=& \alpha_{i,\,-(i+1)} & \text{ when } 1 \leq \underline{i} \leq p-1 \text{ or } p+1 \leq \underline{i} \leq p+q-1 \; , \\ \\ \alpha_p &=& \alpha_{p-1,\,p}, & \alpha_{p+q} &=& \alpha_{p+q-1,\,p+q} \; . \end{array}$$

We denote  $\lambda_i = \lambda(h_i)$ . Then

$$\begin{split} \varLambda &= \left\{ \lambda \in \mathfrak{h}^{*} \; \middle| \; \; \lambda_{i} \in \mathsf{Z} \; \forall \, 1 \leq i \leq p \; \text{ or } \; \lambda_{i} + \frac{1}{2} \in \mathsf{Z} \; \forall \, 1 \leq i \leq p; \right. \\ &\left. \lambda_{i} \in \mathsf{Z} \; \forall \, p + 1 \leq i \leq p + q \; \text{ or } \; \lambda_{i} + \frac{1}{2} \in \mathsf{Z} \; \forall \, p + 1 \leq i \leq p + q \right\} \; , \\ \varLambda^{+} &= \left\{ \lambda \in \varLambda \; \middle| \; \; \lambda_{1} \geq \ldots \geq \lambda_{p-1} \geq \lambda_{p} \geq -\lambda_{p-1}; \right. \\ &\left. \lambda_{p+1} \geq \ldots \geq \lambda_{p+q-1} \geq \lambda_{p+q} \geq -\lambda_{p+q-1} \right\} \; . \end{split}$$

Any  $\lambda \in \Lambda$  can be written in the form  $\lambda = \sum \lambda^i \alpha_i$ , where

$$\lambda^{i} = \sum_{j=1}^{i} \lambda_{j}, \quad 1 \leq i \leq p-2,$$

$$\begin{split} \lambda^{p-1} \; &= \; \frac{1}{2} \Biggl( \sum_{j=1}^{p-1} \; \lambda_j - \lambda_p \Biggr), \qquad \lambda^p \; = \; \frac{1}{2} \; \sum_{j=1}^p \; \lambda_j \; , \\ \lambda^i \; &= \; \sum_{j=p+1}^i \; \lambda_j, \qquad p+1 \leq i \leq p+q-2 \; , \\ \lambda^{p+q-1} \; &= \; \frac{1}{2} \Biggl( \sum_{j=p+1}^{p+q-1} \; \lambda_j - \lambda_{p+q} \Biggr), \qquad \lambda^{p+q} \; = \; \frac{1}{2} \; \sum_{j=p+1}^{p+q} \; \lambda_j \; . \end{split}$$

We define again a lexicographical ordering "<" in  $\Lambda$  with respect to the basis  $\{\alpha_1, \ldots, \alpha_{p+q}\}$ . Now

$$R_{+} = \{ \alpha_{ij} \mid 1 \le i \le p-1 \text{ or } i = -p; |j| \ge p+1 \},$$

$$R_{-} = \{ \alpha_{ij} \mid 1 - p \le i \le -1 \text{ or } i = p; |j| \ge p+1 \}.$$

The proof of the following theorem is a simple counting of different types of pairs  $(\alpha_-, \alpha_+) \in R_- \times R_+$ .

THEOREM 3.4. For the pair  $(g, f) = (D_{p+q}, D_p \oplus D_q)$ ,  $\Lambda_0^+$  is equal to the set  $\{\lambda \in \Lambda^+ \mid \lambda_{p-1} > \lambda_p\}$  and it is stable.

REMARK. Let N=2q for the cases a), b) and let N=4q for c). Set

$$\delta = \frac{1}{N} \sum_{\alpha \in R} \alpha.$$

Then  $\Lambda_0^+ = \Lambda^+ + \delta$ . This kind of rule seems to be more generally valid; for example, when  $g = G_2$  (exceptional simple algebra of rank 2) and  $f = A_2$ , then it is found that

$$\Lambda_0^+ = \Lambda^+ + \delta$$
 for  $\delta = \frac{1}{2} \sum_{\alpha \in R_+} \alpha$ .

#### REFERENCES

- T. J. Enright and V. S. Varadarajan, On an infinitesimal characterization of the discrete series, Ann. of Math. 102 (1975), 1-15.
- Harish-Chandra, Discrete series for semisimple Lie groups II, Explicit determination of the characters, Acta Math. 116 (1966), 1-111.
- 3. A. van den Hombergh, A note on Mickelsson's step algebra, Indag. Math. 37 (1975), 42-47.
- A. van den Hombergh, Harish-Chandra modules and representations of step algebras, Thesis, Department of Mathematics, Katholik University of Nijmegen, 1976.
- 5. J. E. Humphreys, Introduction to Lie Algebras and Representation Theory (Graduate Texts in Mathematics 9), Springer-Verlag, Berlin Heidelberg New York, 1972.
- 6. J. Lepowsky and G. W. McCollum, On the determination of irreducible modules by restriction to a subalgebra, Trans. Amer. Math. Soc. 176 (1973), 45-57.

- 7. J. Mickelsson, On irreducible modules of a Lie algebra which are composed of finite-dimensional modules of a subalgebra, Ann. Acad. Sci. Fenn. Ser. A.I. 598 (1975), 1–16.
- 8. J. Mickelsson, On certain irreducible modules of the Lie algebra gl (4, C), Ann. Acad. Sci. Fenn. Ser. A.I. 1 (1975), 285-296.
- N. R. Wallach, On the Enright-Varadarajan modules: A construction of the discrete series, Ann. Sci. École Norm. Sup., 4<sup>e</sup> serie, t. 9 (1976), 81-102.

DEPARTMENT OF MATHEMATICS ·
UNIVERSITY OF JYVÄSKYLÄ
SAMMONKATU 6
SF-40100 JYVÄSKYLÄ 10
FINLAND