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A DESCRIPTION OF DISCRETE SERIES
USING STEP ALGEBRAS

JOUKO MICKELSSON

1. Introduction.

In this paper we study the discrete series of an arbitrary complex finite
dimensional Lie algebra g with respect to a reductive subalgebra f in g, rank
=rank g. Because our notion of discrete series differs slightly from the usual
one even when g is semi-simple we shall introduce some notation in order to
explain this difference.

So let g first be semi-simple. Let h<f be a Cartan subalgebra of g, ¥ the
system of roots for (g,b) and 4, ¥ a positive system for (I,h). Let h* be the
dual of b and let (-, ): h*xh* — C be the dual of the Killing form of f
restricted to b. The set A of integral weights consists of those A € h* for which

(4, )
(@, %)

and the set A* of dominant integral elements is

AY = {Aeb*| (Lo eZ, Yaed,
where Z, ={0,1,2,...}. Next we set

Ak = f{he At | (Aa)+0 Vae ¥} .

Goay =222 ¢ 7 Vaed,,

The elements of Ay, are called regular weights. If 4 € A, then one can define a
positive system 4* for (g,h) by

4* = {ae ‘I’I {Aa)>0} .

Clearly 4, < 4* The discrete representations D s ;_ s,+0, are parametrized by
regular A, where

=%Yoo 4,=3% Z .
a€dy aed\4,

The discrete representations have the following three properties:
1) Dy 545, = 2OmM(WX,

u
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64 JOUKO MICKELSSON

where X, is the irreducible finite dimensional f-module with highest weight u
and the m,(u)’s are integers, 0<m,(u) <oo.

(2 my(A—58,+6,) = 1.
(3) If m,(u)#0 then p=A—39,+6,+v, where v is a sum of elements in 4%,

For more information, see [1], [2] and [9].

In our approach we choose a basis {ay,...,0} in 4, and define a
lexicographical ordering in A with respect to this basis (section 2). If Q=A™ is
any subset then there exists a minimal element in Q. Let V be a f-finite g-
module, that is, V is a direct sum of the f-modules X,

We set V,=n(u)X,. We say that V; is a minimal component of Vif V,+0 and
V,=0 for p<A. The ordering “<” is total when f is semi-simple, therefore the
minimal component is unique for semi-simple ¥ (and for any g). The motivation
for our choice of the ordering “<” is the fact that for any -finite g-module V
there exists a minimal component ¥V, and that it is compatible with the
standard partial ordering on h* defined by the choice of 4,: if 1 — 4’ is a sum of
elements of 4, then 1> A", Set

4={ae¥| a>0}.

Then 4 is a positive system for (g,b) (when g is semi-simple) and 4, = 4. If V, is
a minimal component for V then V,_,=0 for any a € 4. On the other hand, if
A’ c ¥ is an arbitrary positive system for (g,h) such that 4, =4’ (e.g. 4'=4" for
aregular v) then there does not always exist 0% V, < V'such that V,_, =0 for all
aed.

For a certain subset Ag of A* we show that for each 1 € A there exists a
unique equivalence class [ V] of irreducible I-finite g-modules V with minimal
component V,. For each 4 € A§ there is an irreducible g-module ¥* with the
three properties

1y V=3® nWX, 0=m(@<c.
n
@ mA=1.
@3y If n;(4) %0 then u=A+v, where v is a sum of elements in 4\4, .

The set Ay plays more or less the role of A, in the earlier approach. We shall

call here the set of modules V% as the discrete series.

The method applied here is the same which was used in [8] for describing
the irreducible gl (2,C)@gl (2, C)-finite gl (4, C)-modules. The irreducible
modules with minimal f-type A are parametrized by the action of certain
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algebra D, associated to the step algebra S(g, f), on the minimal component. If
A€ Ay then D,=C. In an earlier paper we gave a sufficient condition for
A € A% in order that a g-module with minimal component ¥V, belongs to the
discrete series ([7, theorem 4.9]). However, the condition in [7] is unnecessarily
severe.

In section 3 we first give a general but rather complicated description of the
set Ag . The structure of A7 is worked out more explicitely for the following
three classes of pairs (g,):

(gl (p+4,C), gl (1,C)D gl (¢,C)), (C,+,C,@C)
and (D,.,D,®D)

where C,; and D, are classical simple Lie algebras of rank L. In all cases we have
studied so far it is found that

Af = d+A%,

where 6=1/N3¥,. 44, ® and N is an integer depending on the pair (g, ).

To get a better idea of the methods used in the present work, the reader is
recommended to look at the thesis of van den Hombergh, [4]. There all non-
decomposable Harish—-Chandra modules for certain real rank one pairs (g,f)
were classified using the step algebra S(g, ).

2. Properties of step algebras.

Let f be a reductive subalgebra in a complex finite dimensional Lie algebra
g. Thus the adjoint representation adf of f in g is completely reducible and
there is an ad f-invariant complement p of I in g. Let ) be a Cartan subalgebra
of f and fix a positive system 4, for (£,h). Let {a,,...,o} be a basis of 4,. We
define (-, ), ¢*,*>, 4 and A" as in introduction. Next we define

t,=[Ef], b, =hNi,.

For 1 € h* we define A° € h* as the restriction of A to the subspace h,=bh. If
2 € A then

(1) #= Y ra

where each r; is real and rational. If 1 € A* then 1,20, 1<i<LIf A, € 4 and
(A—=AY+0 then we define A>41’ if the first non-zero number in the row

ry—ri,r,—r5,. .. is positive. This ordering on A4 is total if and only if f is semi-
simple, h,=1. We define A> 1’ if A— 4’ is a sum of the simple roots «;. Clearly
A>> ' implies A> 4. The set {4 | 2 € A*} can be identified through (1) with a
subset of R! which is known to be nowhere dense (in the ordinary topology of

Math. Scand. 41 - 5
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R’) and is bounded below by the vector 0. It follows that any subset Q< A* has
a minimal element and that is unique if f is semi-simple.
Let {t,...,t,} be a basis in p consisting of weight vectors,

[ht] = w(h)t;, hebh 1<isn.

We can assume that p=u52> ... 2. The choice of 4, defines the splitting f
=1, ®h@I_. We denote by U (a) the enveloping algebra of a Lie algebra a. We.
define

S'(8.f) = {ueU(@| tucU(@9L,}

and we set S(g,f)=S5"(g,f)/U(g)f,, the step algebra of the pair (g,f). For each
sequence (i)= (iy,. . .,i,) € Z" we put t()=ty ...ty e U(g). Consider the
subspace U, < U(g),

Uy =2 tium).

)
We can split
U@ = U,@U@t, @UI)E_U,,
U@ =U,eU@@t, @V, U ). .

Let P’ denote the projection onto the first summand in the first formula, and
Q' the corresponding projection in the second formula. We define projections
P,Q: U(g)/U(g)t+ — U, by

Pu+U(gt,) = P(w) and Qu+U(gt,) = Q).
For each i € {1,2,...,n} there exists s; € S(g,¥) of the form

S = tpit ) utpy,

L

where u; € U(t_), p; € U(b) and p; € U(b) has the following property:
pi(A) £ 0 if A4+, edt,

where 8, =13 4,; see proposition 1. 1.8, page 18 in [4] and [3, proposition 1].
If p € U(b) we denote by p(J) the value of a polynomial on h* obtained via the
replacement h+ A(h).

For each A € h* we define the left ideal

I, = U@@{h—A(h)1| heb)

and for each A € A* let J, be the left ideal in U (f) which annihilates the vector
with highest weight in the finite dimensional f-module X,. Let =,: U(g)
— U(g)/I, be the projection and set P,=m,oP, Q,=mn,Q. Then
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Pi(s) = t;pi(4) £ 0

if A+ p;+9, € A*. We say that s € S(g,T) has weight u if s=5'+ U(g)f,, where
s' € §'(g,f) such that [h,s"]=pu(h)s’ for all h € h. The step s; has the weight y;
([4, proposition 1.1.8]).

LEMMA 2.1. Suppose s € S(g,f) has weight p, and A e A*. If A+u ¢ A*, then
s € U(g)J,/U(g)t,.

Proor. Consider the g-module V=U(g)/U(g)J,. It contains a finite
dimensional f-module with highest weight 4 and highest vector x=1+ U(g)J,.
Clearly V=U(g)x. From [6, proposition 4.2], it follows that V is f-finite. The

elements of S(g, ¥) act in a natural way on I, -extreme vectors in V. Consider the
vector y=sx. Then

t,y=0 hy= (A+uh)y Vheb.
Therefore y=sx=0 if A+u ¢ A*. But the annihilator of x is U(g)J, and the
assertion follows.
We say that the pair (g, f) is of type (A) if
Kppopl =1 for 1<isn and 1551
Here again {u, o> =2 (1, 2)/(%, ). ‘

LEMMA 2.2. Let (g,) be of type (A) and let A € A™ such that A+, € A* for
some 1<ig<n. Then for t; such that p;=p;, there exists

rp= 3% as;€S@H (4eC)
W= Hig

such that Q,(r)=t;.

Proor. (1) Let N, be the Verma module for f with highest weight A. First we
show that N,_,,,¢N,; when pu=p;, and v+pu, ve {y,,...,u,}. Namely, if
N;,_,+,=N; then A—v+pu+9,=w(A+9,) for some w in the Weyl group of 1.
Now Ae A* so w(A+8,) ¢ A* for w1 and (w(A+6)), ;> <0 for some
1<i<l But {(A+p,a;,>=0 so

0> <w('{+ék)’ai> = <A+.usai>+<o~k7ai>'—<vaai>

g 1_<V,ai> é 0 5

a contradiction.
(2) Let 5, =S(g, ) be the subspace spanned by the vectors s; with p; = p;,=p.
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If seS,, we can write
(*) s= Y as; = ) atp+ Y. vtp;
m=uy wm=p wi>p
where p; € U(h) such that p,(1)+0 for y,=p and v, € U(F_)E_. Thus

Ql.(Su) < pu ’

where p, consists of vectors with weight p in p. Because dimS,=dimp,, we
only have to show that the mapping Q,: S, — p, is injective. If the second
term in (*) is in I, then
0.6) = Y aitpi(A)
Hi=H
and Q,(s)=0 implies that all ¢;=0, and thus s=0. In other cases we write
5= Lpi+ Y, Ui, v D,

w=p w>p
i%jo

where again p;e U(b), v; e U(f_)f_ and g is a minimal weight such that
v;,Dj, ¢ I;. If now

Qi) = X tpi(d) =0
w=u
then s € U(g)J; by [7, lemma 4.4], or [4, proposition 11.2.12]. From f,s
cU(g)t, it follows that
toy, c UDL +1; .

But adh(v)=(u—u)(h) for heb and this implies N, , ., =N, a
contradiction with (1). Thus Q;(s)#0 for s+0, s€ §,.

LemMA 2.3. Let s € S(g,) be of weight u and let . € A such that A+pe A
and P,(s)=0. Then s € I1,/U(g)t,.

Proor. First we write

s= Y tp@+ Y v@e@p)

n@)=pn u(@i)>p

where p(i) e U(h), v(i)) e U ). and pu@)=ipu,+...+iu, Then p(i)()=0
for pu(i)=p. If s¢ I, then we can choose a minimal u(ip)> u such that
plip)(A)*0. From t,scU(g)t, follows that

foo(g) € UM, +154 460) -

Thus v(i,) is I,-extreme with weight A+ u in the Verma module
N).+u(io) = U(f)/(U(f)f+ +I).+u(io)) .
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It follows that
Nivuw € Nojsygoy -

There is an element w in the Weyl group of f such that A+ p+ 8, =w(A+ u(iy)
+0,) so
Atulig)+d, = wl(A+u+d) < A+u+d,

because of A+u € A*. But this inequality is in contradiction with u(iz)> p.

Let Sy(g,T) be the subalgebra of S(g,f) which is generated by the s;s and
U(b). We define S*<=5S,(g,f) as the subspace of elements which are at most of
degree k in the variables s;.. We set

S¥(u) = {s e S*| sis of weight u},

S,y = S‘(u)+{seSz(u)| s =Y sSSPy Pij€ U(b)},

W<
S_(w = Sl(y)+{s € Sz(l‘)l S =) SSDij Dij € U(b)} )
=37y
Si(pw = (Sy(w+U@J)U@J, Aed’.

LEMMA 2.4. Let (g,T) be of type (A), L € A", and u € A such that A+pe A™.
Then S2(W<S ., (W)+1,.

PrOOF. Because of lemma 2.3 it is sufficient to show that for any t;it; with
Wi+ p;=p there is s;; € S, (u) such that P,(s;)=t;t;. For any ¢; with y; = p there
is s; € S'(u) such that P,(s;)) =t,p;(4) where p;(1)+0. Thus we can forget the first
order terms. Now #¢;=t;t;mod g so we can assume for example that uj< u;j.
We prove the existence of s;; by induction on j. The assertion is true for j=1
because s, =t, and

Pi(ssy) = Py, (5)ty = titypi(A+uy) .
Now A+p; +p+6,=A+u+d,cA* so p(A+p,)+0 and we can set
s = (Di(A+py) 7 Isisy
Suppose that the assertion is true for j=k. But

Pi(sSk+1) = Ll 1PiA+ s DPee 1 D+ Y tta
B B=p
Mg Py vy

where a,, € C. By the induction hypothesis, there is s € S, (1) such that P,(s) is
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equal to the last term in the above formula. If a=p;(A 4y, )Pr+1(A)F0 we
can define

Siker1 = @ (S840 —9)
The first factor p;(4 + pi 4 ) +0 for the same reason as before. As for the second,
<"{+”k+l +6k’am> = <;"5 “m>+<uk+1’am>+1 g <l’am>
for a pair (g,f) of type (A), so A+, ,;+J, € A and therefore p,.,(A)+0.
LEmMA 2.5. Let (g,T) be of type (A). Let A € A*, ue A such that A+ue A+,
Let n (A, p) (respectively n_ (A, p)) be the number of pairs (t;,t;) such that p=p;

+u, WSy and A+p;e AT (respectively A+p; € AY). If ny(A,p)<n_(4,p)
then S, (4, W)=S_(4, p).

Proor. From lemma 2.4 it follows that S_(4, u)=S, (4, p). All we need to
show is dim S _ (4, g)=dim S, (4, w).
From lemma 2.1 follows immediately the inequality

dimS, (4, p) < n. (4 p)+dim ((S' (W +U(9)J,)/U(9)J5) -

For each pair (t;t;) such that p;+pu;=p, pi<pj and A4y, € A" we choose
r,r; € S* such that Q,(r)=t; and Q,, x(r)=t; (see lemma 2.2). To show that

ilj
dimS_ (4, p) Z n_ (4 p)+dim ((S* (W) +U(g)J)/U(8)J,) -

we prove that the elements rr; are linearly independent in S_ (4, u). Suppose
that

s=YarreU@l;, (a;€C).
Then Q,(s)=0. Let a;; #0 but a;;=0 when i<i,. Then
Ql(s) = aioiotjotio+ Z bijtjti + 0 N

> Py

B g

a contradiction. Thus all a;=0 and the rr’s are linearly independent in
S_(4, p).

3. Discrete series.
We denote

A = {Ae A | ny (A p+p)Sn_(4p+p;) Vi, jsuch that
p;<O<p; and A+p+pje A%},
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We say that Ay is stable if
AF+p) N AY = AF  VYu>0.

As we shall see later, in many interesting cases Ag is in fact stable.

A g-module V is said to be I-finite if it is a sum of finite dimensional -
modules. If 1 € A* then V, denotes the sum of all f-submodules in V with
highest weight 4. We set

Vi={xeV,| t,x=0}.

Let D be the centralizer of §) in S,(g,{), i.c. the subalgebra of elements with
weight zero. We set

Ag . = {ueU(g | uVy cVy for any g-module V} ,
Ma Z Aﬂ,a ’
B<a

« = D/DNU(@M,,

D

R, {’“‘i' >0}, R_ = {.“il 1 <03 .

If Vis a g-module such that V,=0 for a <4, then V] is in a natural way a D,-
module. In [8, theorem 1], it was shown that the mapping Vi»V; determines a
bijection from the set of equivalence classes of irreducible -finite g-modules for
which V,;#0 and V,=0 if a<A, onto the 'set of equivalence classes of
irreducible D;-modules.

THEOREM 3.1. Let (g,T) be a pair of type (A) such that pi+0Vie {1,2,...,n}
(if T is semi-simple the last condition is equivalent with rank f=rankg). In
addition, we assume that Ay is stable. Then for each A € A there is one and only
one equivalence class [ V] of irreducible t-finite g-modules such that V;,+0 but V,
=0 for a<A. Furthermore, dimV; =1, and dim V] <the number of sequences
{Wiy>. . ., 1} of elements in R, such that p, + ... +p, +i=a

Proor. We shall show that D,~C from which the first assertion follows
immediately using the remark above. A general element in D is a linear
combination of vectors of type s=s;, ... s;,u, when u € U(b) and

(*) ottt =0.

From uf+0 follows that either y;>0 or y;<0. Now I,cM*, thus u is a
complex number modulo M,;. We shall show by induction on p that each
Siy - - - 8;,u is a complex number modulo M,. We saw already that this is the
case for p=0. Suppose that it is true for p=k and let us consider the case p=
k+1.1f p;, <0 then s;, € M; and s € DN U(g)M ;. Suppose then that g;,>0. By
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(*) there is a last index i,, for which y;, <0. Let v=A+pu;, + ... +u;,,,. We may
assume that v e A™; otherwise

S -5, €U(Q)J, = Ul@M,

im+2 *°
and therefore s e DN U(g)M ;. Then

SinSimer = 2, WSS HT
w2y
where a;; € C and r € '+ U(g)J, (lemma 2.5) and a;; can be different from
zero only when u;+p;=p; +p;,,,. f ve U(g)J, then vs;,,,...s;, € U(g)J,,
thus

/
S =Y @Sy Sin SiSSimes - -+ Siy T
w2

where 1’ € SP 7! + U(g)M,. Consider a typical term

S S

SiSSimsz -+ Siy -

ip* 0 Vim—1
If p;> 0 then pi 2 i implies y; >0 and we have reduced the number of factors s,
with negative weight u, by one (compared with s). If u;<0 then we can
consider s;s;, ., instead of s; s; ., and continue as above. Noting that a s, with

Im+2 im+1

1, <0 on the right gives zero modulo M, we can finally write

5 =4q,+q;

where g, € SP7! + M, and q, is a linear combination of monomials of degree p,
each of them containing one less factors s, with negative weight y, than the
original monomial s. We can make a second induction on the number of
negative factors and we arrive at s=w+q, where g € S + M, and w contains
no negative factors. Because w is of weight zero it contains no positive factors
either, and therefore w e U(h), which implies we C-1+1,. By the first
induction, g € C-1+DNU(g)M,, and thus s € C-1 modulo M ;. We have now
shown that D, =~C. From this and the fact that V' is an irreducible D,-module
it follows that dim V; =1.

Let O%x € V; and y € V. Then by [4, corollary I1.1.5 p. 297, there exists
s € Sy(g,F) such that y=sx. Using the same technique as above we can
eliminate all factors s; with y; <0 from s. Thus

k

s= Y Y aiy,. . .,ip)8; ... 8, mod M, ,
p=0 ;4,-‘+...+;4,-p=a—).
“i|’~~~,“i‘,>0

where a(i,. . .,i,) € C. This proves the last assertion.
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Next we shall describe explicitely the set Ay for three classes of classical
reductive Lie algebras with respect to a reductive subalgebra of equal rank.
Looking at the root space structure of the Lie algebras 4,, C, and D, (see e.g.
[5]) it is easily seen that these pairs are of type (A). In each case we shall see
that Ay is stable so that theorem 3.1 applies.

a) (9,0= (gl (p+4,C), ol (p, O)@gl (g, C)).
The Lie algebra g=gl (p+ g, C) consists of complex (p+ q) x (p + q)-matrices.
We define ¢;; as the matrix for which

(eij)kl = 5.‘1(511 s
where 4;;=0 when i=*j and §,=1. We define gl(p,C) as the subalgebra
generated by the elements e;;, 1 <i, j<p. The subalgebra gl (g, C) is spanned by
the elements e;, p+1<i,j<p+q. We set =gl (p,C)Pgl(q,C). A Cartan
subalgebra hcf of g is spanned by the diagonal matrices e;, 1 Si<p+gq. The
semi-simple part f; consists of trace zero matrices, f,=sl (p, C)®sl (q,C) and
bh,=hNT,. A positive system 4, for (f,b) is defined by setting
f,= Y Co+ Y Ce;.

1<i<jsp pt1si<jsp+q

Then f_ is obtained by transposing the matrices in f,. The simple roots
Ay,. ., 0p44-, correspond to the VeCtors e;p,€53,.. €5 1 p€pty, pt2s-- s
€p4q-1,p+g 1 A €D* we denote 1;=A(e;). The set of weights A consists of
those A € h* for which the numbers 4, —4; (154, j<p) and J,—4, (p+1=Kk,
I<p+gq) are all real integers. The dominant integral weights are given by

AtV = Qe | AMZhZ . 2h A1 2 A0 2 A}

An adf-invariant complement p of f in g is spanned by the vectors

epe;; 1Sisp, p+1s5jsSp+q.
We define
1 j
==Y h—— 2 i when 1<j<p—1;
J k=1 P—Jj k=741
) 1 j+1 piq
M= - Ag — e A when p<j<p+q-2.
j—p+1 k=§+l o J+P L
Then
pta-2
A= Ao
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where A°= 11 . As before, 1> 1" if the first non-zero number in the sequence
A—X1 A2 X2, .. is positive.
We denote the root corresponding to e;; by ;. Then

- ={o; | p+1SjSp+q} U oy | 28isp, p+1<jsSp+q},
R, = {ay;| p+1=5jSp+q} Uy | 25isp, p+1<jSp+a}.

TueoreM 3.2. For the pair (g,f) defined above, A ={i € A* | A;—1,>0}.
This set is stable.

Proor. We have to show that for each v=a_+a,, where a_ € R_ and
o, € Ry,n_(A4,v)=n,(4v) for all 1 € A* such that J, >4,. As an example we
shall consider the case v=0. The other cases are treated in similar manner and
are left to the reader. When v=0 the number n_ (4, v) (respectively n, (4, v)) will
be equal to the number n_(4) (respectively n,(4)) of the roots o; € R_
(respectively a;; € R,) such that A+a;; € A™. If we denote ' =4+, then Ak
=}, for k#t,f Ai=4+1 and Aj= /l 1. Thus ' e A iff 4,_;>4; and 4
> ;41 Let ny(4) be the number of indices 2<iZ<p-—1 for which 4,>4,,, and
let n,(4) be the number of indices p+1<j<p+qg—1 for which 4;>4;,,. It is
easily seen that

ny(A) = (n(A)+2)(n(A)+1) forall Aea*;

n_(A) = (n(A+2)(n,(H+1), Aed™, 1,>1,;

n_(A) = ny (A (ny(A)+1), e A*, Ai=4,.
Therefore n_(A)=n, (4) iff A,>1,. The stability of A follows from the fact
that A} —A,=4,—4;, or A} —Ay=4,—A,+1 for any o;; € R,

b) (99 f) = (Cp+q’ Cp®cq)'
Let y be the (2p+2q) x (2p +2q)-matrix defined by

0 ifit—j
vy = 1 ifi=—j<0; ij=+1,%2,...,%(p+q).
-1 ifi=—j>0

Then the classical Lie algebra g=C,,, consists of complex (2p+2q)x
(2p+2qg)-matrices a such that a'y+7ya=0 (a' is the transpose of a). A basis

(il bi=tL... £ p+a); S|l

for g can be chosen in such a way that

Lfi fud = vafu+rvafu+via+ vifu
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where we have defined the auxiliary vectors f;;=f;; for |i| >|j|. A subalgebra C,

is spanned by the vectors f;; where |i|,|jl<p and there is a subalgebra C,

spanned by the elements f, k|, |l|=p+1. We define t=C,®C,. A Cartan

subalgebra b of g in f is spanned by the vectors h;=f; _;, i=1,2,...,p+q.
We denote the root corresponding to f;; (i+ —j) by «;. We set

Oy = 0y gy Oy = Oy _35ec s 0pog = Up_y _p Oy = Oppy

Up+1 = Xp+1,—(p+2p- - > ¥ptg-1 = Fptg-1,—(p+ap ¥p+q = Fpta,p+a-

Then {a;,...,a,,,} is a set of simple roots for (f,h) and
A = {a; | WIS i>05 liLl<p or lilllzp+1} .
Now
A={deb*| Ah)e Z Vi}.

We define 4,=A(h;). Then

AtV ={Aed| Az 22,205 A, 2...24,,,20}.

p= ptl=- - =%pt+q=

Next we set

A=Y A for 1SiSp—1; 2 =34, +4,-4);

M= Y A for p+1<isSp+q-—1;
k=p+1
AP = 3 (pagtAprq-1) -
Then

ptq

A = 2: jﬁab Aed N
i=1

and A>4X" if A1 and the first non-zero number in the sequence A, —4,
Ay—2%,. .. is positive. Here

R, = {o;| 1<i<p, ljizp+1},
R_ = {oy;| —p<is—1, ljlzp+1}.

Let ¢: R, — R_ be the bijection defined by ¢ (a;)=a_,;, ¢(;)=0a_; -, ; for
25isp, ljlzp+1. If Ae A™, A,>0, then it is easily seen that A+a;; € A™ iff
A+@(x;) € A* for any o;;€ R,. Let v=a_+o, wherea_ € R_and «, € R,.
If v=0, a;; € R, then ay+o;;=v iff k=—i and I= —j. In that case, for any
(a_;, — ;) such that A+a;; € A*, there is (— @ (a;), @(2;) with A+ (o)) € A7,
where Ae A*, 1,>0. Thus n_(4,v)=n,(4,v) when v=0, 1,>0. The
case v=a_y+ay; (I+—j) is treated in the same way. If v=o,+a;; where
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k+—iand A, A+ve A then A+a;;€ A" iff A+0,;€ A", It follows that for
each pair (xy,q;;) such that v=a,+a;; and A+a; € A" there corresponds a
pair (o o) such that v=o,;+a; and 1 +oy; € A+ We have now shown that
n_(4,v)=n,(4,v) for all (4,v)e A" x (R_+R,) such that 1+ve A%, 1,>0.
Noting that A,=4, or A,=4,+1 when A'=o;+4 and a;;€ R,, we get the
following result

TueoReM 3.3. For the pair (3,9)=(C,,,C,®C,), Ay is equal to the set
{Ae A} | 2,>0} and it is stable.

C) (g, f):: (Dp+q, Dp®Dq)‘
If we think of D, as the Lie algebra of complex antisymmetric 2n x 2n-
matrices, then we have the following subalgebras in g=D,,,

= {aeg| a;=0 when i>2p or j>2p},
= {aegl a;;=0 when i<2p or j<2p} .
We set t=D,®D,. Let h<=T be a Cartan subalgebra of g and let
{o | liI<jl; ij=%1,£2,..., +(p+q)}
be the set of roots for (g,bh) such that
{og | liI<IilSp} U {ag; | 11>l Zp+1}
is the set of roots for (f,h). There exists a basis {h,,...,h,,,} in b such that
a;(h) = Ou+0u—0_y—0_j.
As the set of simple roots for (f,h) we take {a;,...,a,,,} where
o = o; _3+1y When 15i<p—1 or p+1Zisp+q-1,
U, = 0,y p
We denote 4;=A4(h;). Then
={Aeb*| L, eZVI<isp or 4L+ eZV1<i<p;

Xp+q = O%p+g—1,p+q -

leZVp+1=Zisp+qor Ai+ieZVp+1=Zi<p+q},
={dled| Lh=z...2h_  2A,2—A,_;

p

App1 2 =4

pti1=-+-- ptg—-1= Ap'i-q__ p+q 1}

Any 1 € A can be written in the form 1=3 A'a;, where
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1 1 Pt &
- — 1 — 1
=3 Y A=A ) =53 4,
j=1 j=1

A= ¥ A p+lsSisptq-2,

j=pt+1
ptq-1 ptq
Jpta-1 1 2 A—2A Apta — 1 Z yl
2 . Jj p+q p - 2 i
Jj=p+1 j=p+1

We define again a lexicographical ordering “<” in A with respect to the basis
{01, . 0,44} Now

R, = {a;| 15isp—1 or i=—p; |jlzp+1},
R = {oy;| 1=pSis—1 or i=p; [izp+1}.

The proof of the following theorem is a simple counting of different types of
pairs (ax_,a,) € R_xR,.

THEOREM 3.4. For the pair (3,)=(D,,,D,®D,), As is equal to the set
{Ae A* | A,_y>1,} and it is stable.

RemMARk. Let N =2q for the cases a), b) and let N =4q for c). Set

5=7\]_ Z o.

a€eR,

Then Ag =A*+4. This kind of rule seems to be more generally valid; for

example, when g =G, (exceptional simple algebra of rank 2) and f= A4,, then it
is found that

Ag =AT+6 ford=4% 3 a.

a€R,
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