A DESCRIPTION OF DISCRETE SERIES USING STEP ALGEBRAS

JOUKO MICKELSSON

1. Introduction.

In this paper we study the discrete series of an arbitrary complex finite dimensional Lie algebra \(\mathfrak{g} \) with respect to a reductive subalgebra \(\mathfrak{f} \) in \(\mathfrak{g} \), \(\text{rank } \mathfrak{f} = \text{rank } \mathfrak{g} \). Because our notion of discrete series differs slightly from the usual one even when \(\mathfrak{g} \) is semi-simple we shall introduce some notation in order to explain this difference.

So let \(\mathfrak{g} \) first be semi-simple. Let \(\mathfrak{h} \subseteq \mathfrak{f} \) be a Cartan subalgebra of \(\mathfrak{g} \), \(\Psi \) the system of roots for \((\mathfrak{g}, \mathfrak{h}) \) and \(\Delta_k \subseteq \Psi \) a positive system for \((\mathfrak{f}, \mathfrak{h}) \). Let \(\mathfrak{h}^* \) be the dual of \(\mathfrak{h} \) and let \((\cdot, \cdot) : \mathfrak{h}^* \times \mathfrak{h}^* \to \mathbb{C} \) be the dual of the Killing form of \(\mathfrak{f} \) restricted to \(\mathfrak{h} \). The set \(\Lambda \) of integral weights consists of those \(\lambda \in \mathfrak{h}^* \) for which

\[
\langle \lambda, \alpha \rangle = \frac{2\langle \lambda, \alpha \rangle}{(\alpha, \alpha)} \in \mathbb{Z} \quad \forall \alpha \in \Delta_k ,
\]

and the set \(\Lambda^+ \) of dominant integral elements is

\[
\Lambda^+ = \{ \lambda \in \mathfrak{h}^* \mid \langle \lambda, \alpha \rangle \in \mathbb{Z}_+ \quad \forall \alpha \in \Delta_k \}.
\]

where \(\mathbb{Z}_+ = \{0, 1, 2, \ldots \} \). Next we set

\[
\Lambda^+_{\text{reg}} = \{ \lambda \in \Lambda^+ \mid \langle \lambda, \alpha \rangle \neq 0 \quad \forall \alpha \in \Psi \} .
\]

The elements of \(\Lambda^+_{\text{reg}} \) are called regular weights. If \(\lambda \in \Lambda^+_{\text{reg}} \) then one can define a positive system \(\Delta^\lambda \) for \((\mathfrak{g}, \mathfrak{h}) \) by

\[
\Delta^\lambda = \{ \alpha \in \Psi \mid \langle \lambda, \alpha \rangle > 0 \} .
\]

Clearly \(\Delta_k \subseteq \Delta^\lambda \). The discrete representations \(D_{d^\lambda, \lambda - \delta_k + \delta_n} \) are parametrized by regular \(\lambda \), where

\[
\delta_k = \frac{1}{2} \sum_{\alpha \in \Delta_k} \alpha , \quad \delta_n = \frac{1}{2} \sum_{\alpha \in \Delta^\lambda \setminus \Delta_k} \alpha .
\]

The discrete representations have the following three properties:

(1) \[
D_{d^\lambda, \lambda - \delta_k + \delta_n} = \sum_{\mu} m_{\lambda}(\mu)X_{\mu}
\]

Received August 24, 1976.
where X_{μ} is the irreducible finite dimensional \mathfrak{f}-module with highest weight μ and the $m_\lambda(\mu)$'s are integers, $0 \leq m_\lambda(\mu) < \infty$.

(2) \[m_\lambda(\lambda - \delta_k + \delta_n) = 1. \]

(3) If $m_\lambda(\mu) \neq 0$ then $\mu = \lambda - \delta_k + \delta_n + v$, where v is a sum of elements in Λ.

For more information, see [1], [2] and [9].

In our approach we choose a basis $\{\alpha_1, \ldots, \alpha_l\}$ in Δ_k and define a lexicographical ordering in Λ with respect to this basis (section 2). If $\Omega \subset \Lambda^+$ is any subset then there exists a minimal element in Ω. Let V be a \mathfrak{f}-finite \mathfrak{g}-module, that is, V is a direct sum of the \mathfrak{f}-modules X_μ,

\[V = \sum_\mu \oplus n(\mu) X_\mu. \]

We set $V_\mu = n(\mu) X_\mu$. We say that V_λ is a minimal component of V if $V_\lambda \neq 0$ and $V_\mu = 0$ for $\mu < \lambda$. The ordering "<" is total when \mathfrak{f} is semi-simple, therefore the minimal component is unique for semi-simple \mathfrak{f} (and for any \mathfrak{g}). The motivation for our choice of the ordering "<" is the fact that for any \mathfrak{f}-finite \mathfrak{g}-module V there exists a minimal component V_λ and that it is compatible with the standard partial ordering on \mathfrak{h}^* defined by the choice of Δ_k: if $\lambda - \lambda'$ is a sum of elements of Δ_k then $\lambda > \lambda'$. Set

\[\Delta = \{ \alpha \in \Psi \mid \alpha > 0 \}. \]

Then Δ is a positive system for $(\mathfrak{g}, \mathfrak{h})$ (when \mathfrak{g} is semi-simple) and $\Delta_k \subset \Delta$. If V_λ is a minimal component for V then $V_{\lambda - \alpha} = 0$ for any $\alpha \in \Delta$. On the other hand, if $\Delta' \subset \Psi$ is an arbitrary positive system for $(\mathfrak{g}, \mathfrak{h})$ such that $\Delta_k \subset \Delta'$ (e.g. $\Delta' = \Delta'$ for a regular ν) then there does not always exist $0 \neq V_\mu \subset V$ such that $V_{\mu - \alpha} = 0$ for all $\alpha \in \Delta'$.

For a certain subset Λ_0^+ of Λ^+ we show that for each $\lambda \in \Lambda_0^+$ there exists a unique equivalence class $[V]$ of irreducible \mathfrak{f}-finite \mathfrak{g}-modules V with minimal component V_λ. For each $\lambda \in \Lambda_0^+$ there is an irreducible \mathfrak{g}-module V_λ with the three properties

(1)' \[V_\lambda = \sum_\mu \oplus n_\lambda(\mu) X_\mu, \quad 0 \leq n_\lambda(\mu) < \infty. \]

(2)' \[n_\lambda(\lambda) = 1. \]

(3)' If $n_\lambda(\mu) \neq 0$ then $\mu = \lambda + v$, where v is a sum of elements in $\Delta \setminus \Delta_k$.

The set Λ_0^+ plays more or less the role of Λ_{reg}^+ in the earlier approach. We shall call here the set of modules V_λ as the discrete series.

The method applied here is the same which was used in [8] for describing the irreducible $\mathfrak{gl}(2, \mathbb{C}) \oplus \mathfrak{gl}(2, \mathbb{C})$-finite $\mathfrak{gl}(4, \mathbb{C})$-modules. The irreducible modules with minimal \mathfrak{f}-type λ are parametrized by the action of certain
algebra D_λ, associated to the step algebra $S(g, \mathfrak{f})$, on the minimal component. If $\lambda \in \Lambda_0^+$ then $D_\lambda \cong \mathbb{C}$. In an earlier paper we gave a sufficient condition for $\lambda \in \Lambda^+$ in order that a g-module with minimal component V_λ belongs to the discrete series ([7, theorem 4.9]). However, the condition in [7] is unnecessarily severe.

In section 3 we first give a general but rather complicated description of the set Λ_0^+. The structure of Λ_0^+ is worked out more explicitly for the following three classes of pairs (g, \mathfrak{f}):

$$(\text{gl} (p+q, \mathbb{C}), \text{gl} (p, \mathbb{C}) \oplus \text{gl} (q, \mathbb{C})), \quad (C_{p+q}, C_p \oplus C_q)$$

and $$(D_{p+q}, D_p \oplus D_q)$$

where C_{p} and D_{p} are classical simple Lie algebras of rank l. In all cases we have studied so far it is found that

$$\Lambda_0^+ = \delta + \Lambda^+,$$

where $\delta = 1/N \sum_{\alpha \in \Delta \setminus \Delta_k} \alpha$ and N is an integer depending on the pair (g, \mathfrak{f}).

To get a better idea of the methods used in the present work, the reader is recommended to look at the thesis of van den Hombergh, [4]. There all non-decomposable Harish-Chandra modules for certain real rank one pairs (g, \mathfrak{f}) were classified using the step algebra $S(g, \mathfrak{f})$.

Let \mathfrak{f} be a reductive subalgebra in a complex finite dimensional Lie algebra g. Thus the adjoint representation $\text{ad} \mathfrak{f}$ of \mathfrak{f} in g is completely reducible and there is an $\text{ad} \mathfrak{f}$-invariant complement p of \mathfrak{f} in g. Let \mathfrak{h} be a Cartan subalgebra of \mathfrak{f} and fix a positive system Δ_k for $(\mathfrak{f}, \mathfrak{h})$. Let $\{\alpha_1, \ldots, \alpha_l\}$ be a basis of Δ_k. We define $\langle \cdot, \cdot \rangle, \langle \cdot, \cdot \rangle$, Λ and Λ^+ as in introduction. Next we define

$$\mathfrak{f}_s = [\mathfrak{f}, \mathfrak{f}], \quad \mathfrak{h}_s = \mathfrak{h} \cap \mathfrak{f}_s.$$

For $\lambda \in \mathfrak{h}^*$ we define $\lambda^s \in \mathfrak{h}_s^*$ as the restriction of λ to the subspace $\mathfrak{h}_s \subset \mathfrak{h}$. If $\lambda \in \Lambda$ then

$$(1) \quad \lambda^s = \sum_{i=1}^{l} r_i \alpha_i^s$$

where each r_i is real and rational. If $\lambda \in \Lambda^+$ then $r_i \geq 0, 1 \leq i \leq l$. If $\lambda, \lambda' \in \Lambda$ and $(\lambda - \lambda')^s \neq 0$ then we define $\lambda > \lambda'$ if the first non-zero number in the row $r_1 - r'_1, r_2 - r'_2, \ldots$ is positive. This ordering on Λ is total if and only if \mathfrak{f} is semisimple, $\mathfrak{h}_s = \mathfrak{h}$. We define $\lambda \gg \lambda'$ if $\lambda - \lambda'$ is a sum of the simple roots α_i. Clearly $\lambda \gg \lambda'$ implies $\lambda > \lambda'$. The set $\{\lambda^s \mid \lambda \in \Lambda^+\}$ can be identified through (1) with a subset of \mathbb{R}^l which is known to be nowhere dense (in the ordinary topology of
R^l) and is bounded below by the vector 0. It follows that any subset Ω⊂Λ^+ has a minimal element and that is unique if ℱ is semi-simple.

Let \{t_1, \ldots, t_n\} be a basis in p consisting of weight vectors,

\[[h, t_i] = \mu_i(h)t_i, \quad h \in \mathfrak{h}, \quad 1 \leq i \leq n. \]

We can assume that \(\mu_1^l \geq \mu_2^l \geq \ldots \geq \mu_n^l \). The choice of \(\Lambda_k \) defines the splitting \(\mathfrak{f} = \mathfrak{f}_+ \oplus \mathfrak{h} \oplus \mathfrak{f}_- \). We denote by \(U(a) \) the enveloping algebra of a Lie algebra \(a \). We define

\[S'(g, \mathfrak{f}) = \{ u \in U(g) \mid \mathfrak{f}_+ u \subset U(g)\mathfrak{f}_+ \} \]

and we set \(S(g, \mathfrak{f}) = S'(g, \mathfrak{f})/U(g)\mathfrak{f}_+ \), the step algebra of the pair \((g, \mathfrak{f}) \). For each sequence \((i) = (i_1, \ldots, i_n) \in \mathbb{Z}_+^n \) we put \(t(i) = t_{i_1}^l \ldots t_{i_n}^l \in U(g) \). Consider the subspace \(U_1 \subset U(g) \),

\[U_1 = \sum_{(i)} t(i)U(\mathfrak{h}). \]

We can split

\[U(g) = U_1 \oplus U(g)\mathfrak{f}_+ \oplus U(\mathfrak{f}_-)\mathfrak{f}_- U_1, \]

\[U(g) = U_1 \oplus U(g)\mathfrak{f}_+ \oplus U_1 U(\mathfrak{f}_-)\mathfrak{f}_-. \]

Let \(P' \) denote the projection onto the first summand in the first formula, and \(Q' \) the corresponding projection in the second formula. We define projections \(P, Q : U(g)/U(g)\mathfrak{f}_+ \to U_1 \) by

\[P(u + U(g)\mathfrak{f}_+) = P'(u) \quad \text{and} \quad Q(u + U(g)\mathfrak{f}_+) = Q'(u). \]

For each \(i \in \{1, 2, \ldots, n\} \) there exists \(s_i \in S(g, \mathfrak{f}) \) of the form

\[s_i = t_i p_i + \sum_{\mu_j \geq \mu_i} u_j t_j p_j, \]

where \(u_j \in U(\mathfrak{f}_-) \), \(p_j \in U(\mathfrak{h}) \) and \(p_i \in U(\mathfrak{h}) \) has the following property:

\[p_i(\lambda) \neq 0 \quad \text{if} \quad \lambda + \mu_i + \delta_k \in \Lambda^+, \]

where \(\delta_k = \frac{1}{2} \sum \delta_k \); see proposition 1.1.8, page 18 in [4] and [3, proposition 1]. If \(p \in U(\mathfrak{h}) \) we denote by \(p(\lambda) \) the value of a polynomial on \(\mathfrak{h}^* \) obtained via the replacement \(h \mapsto \lambda(h) \).

For each \(\lambda \in \mathfrak{h}^* \) we define the left ideal

\[I_\lambda = U(g)\{ h - \lambda(h) \cdot 1 \mid h \in \mathfrak{h} \} \]

and for each \(\lambda \in \Lambda^+ \) let \(J_\lambda \) be the left ideal in \(U(\mathfrak{f}) \) which annihilates the vector with highest weight in the finite dimensional \(\mathfrak{f} \)-module \(X_\lambda \). Let \(\pi_\lambda : U(g) \to U(g)/I_\lambda \) be the projection and set \(P_\lambda = \pi_\lambda \circ P, \quad Q_\lambda = \pi_\lambda \circ Q \). Then
if $\lambda + \mu_i + \delta_k \in \Lambda^+$. We say that $s \in S(g, \mathfrak{l})$ has weight μ if $s = s' + U(g)\mathfrak{l}_+$, where $s' \in S'(g, \mathfrak{l})$ such that $[h, s'] = \mu(h)s'$ for all $h \in \mathfrak{h}$. The step s_i has the weight μ_i ([4, proposition I.1.8]).

Lemma 2.1. Suppose $s \in S(g, \mathfrak{l})$ has weight μ, and $\lambda \in \Lambda^+$. If $\lambda + \mu \notin \Lambda^+$, then $s \in U(g)J_{\lambda}/U(g)\mathfrak{l}_+$.

Proof. Consider the g-module $V = U(g)/U(g)J_{\lambda}$. It contains a finite dimensional \mathfrak{l}-module with highest weight λ and highest vector $x = 1 + U(g)J_{\lambda}$. Clearly $V = U(g)x$. From [6, proposition 4.2], it follows that V is \mathfrak{l}-finite. The elements of $S(g, \mathfrak{l})$ act in a natural way on \mathfrak{l}_+-extreme vectors in V. Consider the vector $y = sx$. Then

$$\mathfrak{l}_+y = 0, \quad hy = (\lambda + \mu(h))y \quad \forall h \in \mathfrak{h}.$$

Therefore $y = sx = 0$ if $\lambda + \mu \notin \Lambda^+$. But the annihilator of x is $U(g)J_{\lambda}$ and the assertion follows.

We say that the pair (g, \mathfrak{l}) is of type (A) if

$$|\langle \mu_i, \alpha_j \rangle| \leq 1 \quad \text{for } 1 \leq i \leq n \text{ and } 1 \leq j \leq l.$$

Here again $\langle \mu, \alpha \rangle = 2(\mu, \alpha)/(\alpha, \alpha)$.

Lemma 2.2. Let (g, \mathfrak{l}) be of type (A) and let $\lambda \in \Lambda^+$ such that $\lambda + \mu_{i_0} \in \Lambda^+$ for some $1 \leq i_0 \leq n$. Then for t_j such that $\mu_j = \mu_{i_0}$ there exists

$$r_j = \sum_{\mu_i = \mu_{i_0}} a_i s_i \in S(g, \mathfrak{l}) \quad (a_i \in \mathbb{C})$$

such that $Q_\lambda(r_j) = t_j$.

Proof. (1) Let N_λ be the Verma module for \mathfrak{l} with highest weight λ. First we show that $N_{\lambda - v + \mu} \subset N_\lambda$ when $\mu = \mu_{i_0}$ and $v = \mu$, $v \in \{\mu_1, \ldots, \mu_n\}$. Namely, if $N_{\lambda - v + \mu} \subset N_\lambda$ then $\lambda - v + \mu + \delta_k = w(\lambda + \delta_k)$ for some w in the Weyl group of \mathfrak{l}. Now $\lambda \in \Lambda^+$ so $w(\lambda + \delta_k) \notin \Lambda^+$ for $w \neq 1$ and $\langle w(\lambda + \delta_k), \alpha_i \rangle < 0$ for some $1 \leq i \leq l$. But $\langle \lambda + \mu, \alpha_i \rangle \geq 0$ so

$$0 > \langle w(\lambda + \delta_k), \alpha_i \rangle = \langle \lambda + \mu, \alpha_i \rangle + \langle \delta_k, \alpha_i \rangle - \langle v, \alpha_i \rangle$$

$$\geq 1 - \langle v, \alpha_i \rangle \geq 0 ,$$

a contradiction.

(2) Let $S_\mu \subset S(g, \mathfrak{l})$ be the subspace spanned by the vectors s_i with $\mu_i = \mu_{i_0} = \mu$.

If \(s \in S_\mu \), we can write

\[
(*) \quad s = \sum_{\mu_i = \mu} a_{i}s_i = \sum_{\mu_i = \mu} a_{i}t_{i}p_{i} + \sum_{\mu_i \gg \mu} v_{i}t_{i}p_{i}
\]

where \(p_i \in U(h) \) such that \(p_i(\lambda) \neq 0 \) for \(\mu_i = \mu \) and \(v_i \in U(f_-)f_- \). Thus

\[
Q_\lambda(S_\mu) \subset p_\mu,
\]

where \(p_\mu \) consists of vectors with weight \(\mu \) in \(p \). Because \(\dim S_\mu = \dim p_\mu \), we only have to show that the mapping \(Q_\lambda : S_\mu \rightarrow p_\mu \) is injective. If the second term in (*) is in \(I_\lambda \) then

\[
Q_\lambda(s) = \sum_{\mu_i = \mu} a_{i}t_{i}p_{i}(\lambda)
\]

and \(Q_\lambda(s) = 0 \) implies that all \(a_i = 0 \), and thus \(s = 0 \). In other cases we write

\[
s = \sum_{\mu_i = \mu} t_{i}p'_{i} + \sum_{\mu_i \gg \mu} t_{i}v'_{i}p'_{i} + t_{j_0}v_{j_0}p_{j_0}
\]

where again \(p'_i \in U(h) \), \(v'_i \in U(f_-)f_- \) and \(\mu_{j_0} \) is a minimal weight such that \(v_{j_0}p_{j_0} \notin I_\lambda \). If now

\[
Q_\lambda(s) = \sum_{\mu_i = \mu} t_{i}p'_i(\lambda) = 0
\]

then \(s \in U(g)I_\lambda \) by [7, lemma 4.4], or [4, proposition II.2.12]. From \(f_+s \subset U(g)f_+ \) it follows that

\[
f_+v_{j_0} \subset U(f)f_+ + I_\lambda.
\]

But \(\text{ad} h(v_{j_0}) = (\mu - \mu_{j_0})(h) \) for \(h \in h \) and this implies \(N_{\lambda - \mu_{j_0} + \mu} \subset N_\lambda \), a contradiction with (1). Thus \(Q_\lambda(s) \neq 0 \) for \(s \neq 0 \), \(s \in S_\mu \).

Lemma 2.3. Let \(s \in S(g,f) \) be of weight \(\mu \) and let \(\lambda \in \Lambda \) such that \(\lambda + \mu \in \Lambda^+ \) and \(P_\lambda(s) = 0 \). Then \(s \in I_\lambda/U(g)f_+ \).

Proof. First we write

\[
s = \sum_{\mu(i) = \mu} t(i)p(i) + \sum_{\mu(i) \gg \mu} v(i)t(i)p(i)
\]

where \(p(i) \in U(h) \), \(v(i) \in U(f_-)f_- \) and \(\mu(i) = i_1\mu_1 + \ldots + i_n\mu_n \). Then \(p(i)(\lambda) = 0 \) for \(\mu(i) = \mu \). If \(s \notin I_\lambda \) then we can choose a minimal \(\mu(i_0) \gg \mu \) such that \(p(i_0)(\lambda) \neq 0 \). From \(f_+s \subset U(g)f_+ \) it follows that

\[
f_+v(i_0) \subset U(f)f_+ + I_{\lambda + \mu(i_0)}.
\]

Thus \(v(i_0) \) is \(f_+ \)-extreme with weight \(\lambda + \mu \) in the Verma module

\[
N_{\lambda + \mu(i_0)} = U(f)/(U(f)f_+ + I_{\lambda + \mu(i_0)}).
\]
It follows that

\[N_{\lambda + \mu} \subset N_{\lambda + \mu(i_0)} . \]

There is an element \(w \) in the Weyl group of \(\mathfrak{f} \) such that \(\lambda + \mu + \delta_k = w(\lambda + \mu(i_0) + \delta_k) \) so

\[\lambda + \mu(i_0) + \delta_k = w^{-1}(\lambda + \mu + \delta_k) \ll \lambda + \mu + \delta_k \]

because of \(\lambda + \mu \in \Lambda^+ \). But this inequality is in contradiction with \(\mu(i_0) \gg \mu \).

Let \(S_0(\mathfrak{g}, \mathfrak{f}) \) be the subalgebra of \(S(\mathfrak{g}, \mathfrak{f}) \) which is generated by the \(s_i \)'s and \(U(\mathfrak{h}) \). We define \(S^k \subset S_0(\mathfrak{g}, \mathfrak{f}) \) as the subspace of elements which are at most of degree \(k \) in the variables \(s_i \). We set

\[S^k(\mu) = \{ s \in S^k \mid s \text{ is of weight } \mu \} , \]

\[S_+ (\mu) = S^1(\mu) + \left\{ s \in S^2(\mu) \mid s = \sum_{\mu_i \leq \mu_j} s_i s_j p_{ij}; \ p_{ij} \in U(\mathfrak{h}) \right\} , \]

\[S_- (\mu) = S^1(\mu) + \left\{ s \in S^2(\mu) \mid s = \sum_{\mu_i \leq \mu_j} s_i s_j p_{ij}; \ p_{ij} \in U(\mathfrak{h}) \right\} , \]

\[S_\pm (\lambda, \mu) = (S_\pm (\mu) + U(\mathfrak{g})J_\lambda)/U(\mathfrak{g})J_\lambda, \ \lambda \in \Lambda^+ . \]

Lemma 2.4. Let \((\mathfrak{g}, \mathfrak{f}) \) be of type \((A)\), \(\lambda \in \Lambda^+ \), and \(\mu \in \Lambda \) such that \(\lambda + \mu \in \Lambda^+ \). Then \(S^2(\mu) \subset S_+ (\mu) + I_\lambda \).

Proof. Because of lemma 2.3 it is sufficient to show that for any \(t_i t_j \) with \(\mu_i + \mu_j = \mu \) there is \(s_{ij} \in S_+ (\mu) \) such that \(P_\lambda(s_{ij}) = t_i t_j \). For any \(t_i \) with \(\mu_i = \mu \) there is \(s_i \in S^1(\mu) \) such that \(P_\lambda(s_i) = t_i p_i(\lambda) \) where \(p_i(\lambda) \neq 0 \). Thus we can forget the first order terms. Now \(t_i t_j = t_j t_i \mod \mathfrak{g} \) so we can assume for example that \(\mu_i \leq \mu_j \).

We prove the existence of \(s_{ij} \) by induction on \(j \). The assertion is true for \(j = 1 \) because \(s_1 = t_1 \) and

\[P_\lambda(s_i s_1) = P_{\lambda + \mu_1}(s_i) t_1 = t_i t_1 p_i(\lambda + \mu_1) . \]

Now \(\lambda + \mu_1 + \mu_1 + \delta_k = \lambda + \mu + \delta_k \in \Lambda^+ \) so \(p_i(\lambda + \mu_1 + \delta_k) \neq 0 \) and we can set

\[s_{i1} = (p_i(\lambda + \mu_1))^{-1} s_i s_1 . \]

Suppose that the assertion is true for \(j = k \). But

\[P_\lambda(s_i s_{k+1}) = t_i t_{k+1} p_i(\lambda + \mu_{k+1}) p_{k+1}(\lambda) + \sum_{\mu_i + \mu_j = \mu \mu_i \gg \mu_{k+1}} t_i t_j a_{rs} \]

where \(a_{rs} \in \mathbb{C} \). By the induction hypothesis, there is \(s \in S_+ (\mu) \) such that \(P_\lambda(s) \) is
equal to the last term in the above formula. If \(a = p_i(\lambda + \mu_{k+1})p_{k+1}(\lambda) \neq 0 \) we can define
\[
s_{ik+1} = a^{-1}(s_is_{k+1} - s) .
\]
The first factor \(p_i(\lambda + \mu_{k+1}) \neq 0 \) for the same reason as before. As for the second,
\[
\langle \lambda + \mu_{k+1} + \delta_k, \alpha_m \rangle = \langle \lambda, \alpha_m \rangle + \langle \mu_{k+1}, \alpha_m \rangle + 1 \geq \langle \lambda, \alpha_m \rangle
\]
for a pair \((g, l)\) of type \((A)\), so \(\lambda + \mu_{k+1} + \delta_k \in \Lambda^+ \) and therefore \(p_{k+1}(\lambda) \neq 0 \).

Lemma 2.5. Let \((g, l)\) be of type \((A)\). Let \(\lambda \in \Lambda^+ \), \(\mu \in \Lambda \) such that \(\lambda + \mu \in \Lambda^+ \). Let \(n_+(\lambda, \mu) \) (respectively \(n_-(\lambda, \mu) \)) be the number of pairs \((t_i, t_j)\) such that \(\mu = \mu_i + \mu_j \), \(\mu_i \leq \mu_j \) and \(\lambda + \mu_i \in \Lambda^+ \) (respectively \(\lambda + \mu_i \in \Lambda^+ \)). If \(n_+(\lambda, \mu) \leq n_-(\lambda, \mu) \) then \(S_+(\lambda, \mu) = S_-(\lambda, \mu) \).

Proof. From lemma 2.4 it follows that \(S_-(\lambda, \mu) \subset S_+(\lambda, \mu) \). All we need to show is \(\dim S_-(\lambda, \mu) \geq \dim S_+(\lambda, \mu) \).

From lemma 2.1 follows immediately the inequality
\[
\dim S_+(\lambda, \mu) \leq n_+(\lambda, \mu) + \dim \left((S^1(\mu) + U(\mu)J_\lambda)/U(\mu)J_\lambda \right) .
\]
For each pair \((t_i, t_j)\) such that \(\mu_i + \mu_j = \mu \), \(\mu_i \leq \mu_j \) and \(\lambda + \mu_i \in \Lambda^+ \) we choose \(r_i, r_j \in S^1 \) such that \(Q_\lambda(r_i) = t_i \) and \(Q_{\lambda+\mu}(r_j) = t_j \) (see lemma 2.2). To show that
\[
\dim S_-(\lambda, \mu) \geq n_-(\lambda, \mu) + \dim \left((S^1(\mu) + U(\mu)J_\lambda)/U(\mu)J_\lambda \right) .
\]
we prove that the elements \(r_j^ir_i \) are linearly independent in \(S_-(\lambda, \mu) \). Suppose that
\[
s = \sum a_{ij}r_j^ir_i \in U(\mu)J_\lambda \quad (a_{ij} \in \mathbb{C}) .
\]
Then \(Q_\lambda(s) = 0 \). Let \(a_{i0} \neq 0 \) but \(a_{ij} = 0 \) when \(i < i_0 \). Then
\[
Q_\lambda(s) = a_{i0}t_{i0}t_i + \sum_{\mu_j \leq \mu_{i0} \atop \mu_i > \mu_{i0}} b_{ij}t_{fi} \neq 0 ,
\]
a contradiction. Thus all \(a_{ij} = 0 \) and the \(r_j^ir_i \)'s are linearly independent in \(S_-(\lambda, \mu) \).

3. **Discrete series.**

We denote
\[
\Lambda^+_0 = \{ \lambda \in \Lambda^+ \mid n_+(\lambda, \mu_i + \mu_j) \leq n_-(\lambda, \mu_i + \mu_j) \quad \forall i, j \text{ such that } \mu_i < 0 < \mu_j \text{ and } \lambda + \mu_i + \mu_j \in \Lambda^+ \}.
\]
We say that \(A_0^+ \) is stable if
\[
(A_0^+ + \mu_k) \cap A^+ \subset A_0^+ \quad \forall \mu_k > 0.
\]

As we shall see later, in many interesting cases \(A_0^+ \) is in fact stable.

A \(g \)-module \(V \) is said to be \(\mathfrak{l} \)-finite if it is a sum of finite dimensional \(\mathfrak{l} \)-modules. If \(\lambda \in A^+ \) then \(V_\lambda \) denotes the sum of all \(\mathfrak{l} \)-submodules in \(V \) with highest weight \(\lambda \). We set
\[
V_\lambda^+ = \{ x \in V_\lambda \mid \mathfrak{f}_+ x = 0 \}.
\]

Let \(D \) be the centralizer of \(h \) in \(S_0(\mathfrak{g}, \mathfrak{l}) \), i.e. the subalgebra of elements with weight zero. We set
\[
A_{\beta, \alpha} = \{ u \in U(\mathfrak{g}) \mid uV_\alpha^+ \subset V_\beta^+ \text{ for any } \mathfrak{g}-\text{module } V \},
\]
\[
M_\alpha = \sum_{\beta < \alpha} A_{\beta, \alpha},
\]
\[
D_\alpha = D/D \cap U(\mathfrak{g})M_\alpha,
\]
\[
R_+ = \{ \mu_i \mid \mu_i > 0 \}, \quad R_- = \{ \mu_i \mid \mu_i < 0 \}.
\]

If \(V \) is a \(g \)-module such that \(V_\alpha = 0 \) for \(\alpha < \lambda \), then \(V_\lambda^+ \) is in a natural way a \(D_\lambda \)-module. In [8, theorem 1], it was shown that the mapping \(V \mapsto V_\lambda^+ \) determines a bijection from the set of equivalence classes of irreducible \(\mathfrak{l} \)-finite \(g \)-modules for which \(V_\lambda \neq 0 \) and \(V_\alpha = 0 \) if \(\alpha < \lambda \), onto the set of equivalence classes of irreducible \(D_\lambda \)-modules.

Theorem 3.1. Let \((\mathfrak{g}, \mathfrak{l}) \) be a pair of type (A) such that \(\mu_i^\pm \neq 0 \forall i \in \{1, 2, \ldots, n\} \) (if \(\mathfrak{l} \) is semi-simple the last condition is equivalent with \(\text{rank } \mathfrak{l} = \text{rank } \mathfrak{g} \)). In addition, we assume that \(A_0^+ \) is stable. Then for each \(\lambda \in A_0^+ \) there is one and only one equivalence class \([V] \) of irreducible \(\mathfrak{l} \)-finite \(g \)-modules such that \(V_\lambda \neq 0 \) but \(V_\alpha = 0 \) for \(\alpha < \lambda \). Furthermore, \(\dim V_\lambda^+ = 1 \), and \(\dim V_\alpha^+ \leq \) the number of sequences \(\{\mu_{i_1}, \ldots, \mu_{i_p}\} \) of elements in \(R_+ \) such that \(\mu_{i_1} + \ldots + \mu_{i_p} + \lambda = \alpha \).

Proof. We shall show that \(D_\lambda \cong \mathbb{C} \) from which the first assertion follows immediately using the remark above. A general element in \(D \) is a linear combination of vectors of type \(s = s_{i_1} \ldots s_{i_p} u \), when \(u \in U(\mathfrak{h}) \) and
\[
(*) \quad \mu_{i_1} + \ldots + \mu_{i_p} = 0.
\]

From \(\mu_i^\pm \neq 0 \) follows that either \(\mu_{i} > 0 \) or \(\mu_{i} < 0 \). Now \(I_\lambda \subset M^{\lambda, \lambda} \), thus \(u \) is a complex number modulo \(M_\lambda \). We shall show by induction on \(p \) that each \(s_{i_1} \ldots s_{i_p} u \) is a complex number modulo \(M_\lambda \). We saw already that this is the case for \(p = 0 \). Suppose that it is true for \(p = k \) and let us consider the case \(p = k + 1 \). If \(\mu_{i_p} < 0 \) then \(s_{i_p} \in M_\lambda \) and \(s \in D \cap U(\mathfrak{g})M_\lambda \). Suppose then that \(\mu_{i_p} > 0 \). By
(*) there is a last index i_m for which $\mu_{i_m} < 0$. Let $v = \lambda + \mu_{i_p} + \ldots + \mu_{i_m+2}$. We may assume that $v \in \Lambda^+$; otherwise

$$s_{i_{m+2}} \ldots s_{i_p} \in U(g) J_\lambda \subset U(g) M_\lambda$$

and therefore $s \in D \cap U(g) M_\lambda$. Then

$$s_{i_m} s_{i_{m+1}} = \sum_{\mu_j' \geq \mu_j} a_{ij} s_i s_j + r$$

where $a_{ij} \in \mathbb{C}$ and $r \in S^1 + U(g) J_v$ (lemma 2.5) and a_{ij} can be different from zero only when $\mu_i + \mu_j = \mu_{i_m} + \mu_{i_{m+1}}$. If $v \in U(g) J_v$ then $vs_{i_{m+2}} \ldots s_{i_p} \in U(g) J_\lambda$, thus

$$s = \sum_{\mu_{j} \geq \mu_{j}'} a_{ij} s_i \ldots s_{i_{m-1}} s_j s_{i_{m+2}} \ldots s_{i_p} + r'$$

where $r' \in S^{p-1} + U(g) M_\lambda$. Consider a typical term

$$s' = s_{i_1} \ldots s_{i_{m-1}} s_i s_j s_{i_{m+2}} \ldots s_{i_p}.$$

If $\mu_j > 0$ then $\mu_i' \geq \mu_j'$ implies $\mu_i > 0$ and we have reduced the number of factors s_h with negative weight μ_i by one (compared with s). If $\mu_j < 0$ then we can consider $s_j s_{i_{m+2}}$ instead of $s_{i_m} s_{i_{m+1}}$ and continue as above. Noting that a s_h with $\mu_i < 0$ on the right gives zero modulo M_λ, we can finally write

$$s = q_1 + q_2$$

where $q_2 \in S^{p-1} + M_\lambda$ and q_1 is a linear combination of monomials of degree p, each of them containing one less factors s_h with negative weight μ_i than the original monomial s. We can make a second induction on the number of negative factors and we arrive at $s = w + q$, where $q \in S^{p-1} + M_\lambda$ and w contains no negative factors. Because w is of weight zero it contains no positive factors either, and therefore $w \in U(l)$, which implies $w \in \mathbb{C} \cdot 1 + I_\lambda$. By the first induction, $q \in \mathbb{C} \cdot 1 + D \cap U(g) M_\lambda$, and thus $s \in \mathbb{C} \cdot 1$ modulo M_λ. We have now shown that $D_\lambda \cong \mathbb{C}$. From this and the fact that V_λ^+ is an irreducible D_λ-module it follows that $\dim V_\lambda^+ = 1$.

Let $0 \neq x \in V_\lambda^+$ and $y \in V_\lambda^+$. Then by [4, corollary II.1.5 p. 29], there exists $s \in S_0(g, l)$ such that $y = sx$. Using the same technique as above we can eliminate all factors s_i with $\mu_i < 0$ from s. Thus

$$s \equiv \sum_{p=0}^{k} \sum_{\mu_i + \ldots + \mu_p = \alpha - \lambda} a(i_1, \ldots, i_p) s_{i_1} \ldots s_{i_p} \mod M_\lambda,$$

where $a(i_1, \ldots, i_p) \in \mathbb{C}$. This proves the last assertion.
Next we shall describe explicitly the set A_0^+ for three classes of classical reductive Lie algebras with respect to a reductive subalgebra of equal rank. Looking at the root space structure of the Lie algebras A_t, C_t and D_t (see e.g. [5]) it is easily seen that these pairs are of type (A). In each case we shall see that A_0^+ is stable so that theorem 3.1 applies.

a) $(g, l) = (gl (p + q, \mathbb{C}), gl (p, \mathbb{C}) \oplus gl (q, \mathbb{C}))$.

The Lie algebra $g = gl (p + q, \mathbb{C})$ consists of complex $(p + q) \times (p + q)$-matrices. We define e_{ij} as the matrix for which

$$(e_{ij})_{kl} = \delta_{ik}\delta_{jl},$$

where $\delta_{ij} = 0$ when $i \neq j$ and $\delta_{ii} = 1$. We define $gl (p, \mathbb{C})$ as the subalgebra generated by the elements $e_{ij}, 1 \leq i, j \leq p$. The subalgebra $gl (q, \mathbb{C})$ is spanned by the elements $e_{ij}, p + 1 \leq i, j \leq p + q$. We set $l = gl (p, \mathbb{C}) \oplus gl (q, \mathbb{C})$. A Cartan subalgebra $h \subset l$ of g is spanned by the diagonal matrices $e_{ii}, 1 \leq i \leq p + q$. The semi-simple part l_s consists of trace zero matrices, $l_s = sl (p, \mathbb{C}) \oplus sl (q, \mathbb{C})$ and $h_s = h \cap l_s$. A positive system Δ_k for (l, h) is defined by setting

$$l_+ = \sum_{1 \leq i < j \leq p} C \cdot e_{ij} + \sum_{p + 1 \leq i < j \leq p + q} C \cdot e_{ij}.$$

Then l_- is obtained by transposing the matrices in l_+. The simple roots $\alpha_1, \ldots, \alpha_{p+q-2}$ correspond to the vectors $e_{12}, e_{23}, \ldots, e_{p-1,p}, e_{p+1,p+2}, \ldots, e_{p+q-1,p+q}$. If $\lambda \in h^*$, we denote $\lambda_i = \lambda (e_{ii})$. The set of weights Λ consists of those $\lambda \in h^*$ for which the numbers $\lambda_i - \lambda_j$ ($1 \leq i, j \leq p$) and $\lambda_k - \lambda_l$ ($p + 1 \leq k, l \leq p + q$) are all real integers. The dominant integral weights are given by

$$A^+ = \{ \lambda \in \Lambda \mid \lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_p; \lambda_{p+1} \geq \lambda_{p+2} \geq \ldots \geq \lambda_{p+q} \}.$$

An $ad l$-invariant complement g of l in g is spanned by the vectors

$$(e_{ij}, e_{ji}; 1 \leq i \leq p, p + 1 \leq j \leq p + q).$$

We define

$$\lambda^j = \frac{1}{j} \sum_{k=1}^{j} \lambda_k - \frac{1}{p-j} \sum_{k=j+1}^{p} \lambda_k \quad \text{when} \ 1 \leq j \leq p - 1;$$

$$\lambda^j = \frac{1}{j-p+1} \sum_{k=p+1}^{j+1} \lambda_k - \frac{1}{q-j+p-1} \sum_{k=j+2}^{p+q} \lambda_k \quad \text{when} \ p \leq j \leq p + q - 2.$$

Then

$$\lambda^s = \sum_{j=1}^{p+q-2} \lambda^s_j x_j^s,$$
where $\lambda^s = \lambda \mid_{\mathfrak{h}}$. As before, $\lambda > \lambda'$ if the first non-zero number in the sequence $\lambda^1 - \lambda'^1, \lambda^2 - \lambda'^2, \ldots$ is positive.

We denote the root corresponding to e_{ij} by α_{ij}. Then

$$ R_- = \{ \alpha_{j1} \mid p + 1 \leq j \leq p + q \} \cup \{ \alpha_{ij} \mid 2 \leq i \leq p, p + 1 \leq j \leq p + q \}, $$

$$ R_+ = \{ \alpha_{1j} \mid p + 1 \leq j \leq p + q \} \cup \{ \alpha_{ji} \mid 2 \leq i \leq p, p + 1 \leq j \leq p + q \}. $$

Theorem 3.2. For the pair (g, \mathfrak{l}) defined above, $A_0^+ = \{ \lambda \in \Lambda^+ \mid \lambda_1 - \lambda_2 > 0 \}$. This set is stable.

Proof. We have to show that for each $\nu = \alpha_- + \alpha_+$, where $\alpha_- \in R_-$ and $\alpha_+ \in R_+$, $n_-(\nu, \nu) \geq n_+(\nu, \nu)$ for all $\lambda \in \Lambda^+$ such that $\lambda_1 > \lambda_2$. As an example we shall consider the case $\nu = 0$. The other cases are treated in similar manner and are left to the reader. When $\nu = 0$ the number $n_-(\lambda, \nu)$ (respectively $n_+(\lambda, \nu)$) will be equal to the number $n_-(\lambda)$ (respectively $n_+(\lambda)$) of the roots $\alpha_{ij} \in R_-$ (respectively $\alpha_{ij} \in R_+$) such that $\lambda + \alpha_{ij} \in \Lambda^+$. If we denote $\lambda' = \lambda + \alpha_{ij}$, then $\lambda'_k = \lambda_k$ for $k \neq i, j$, $\lambda'_i = \lambda_i + 1$ and $\lambda'_j = \lambda_j - 1$. Thus $\lambda' \in \Lambda^+$ iff $\lambda_{i-1} > \lambda_i$ and $\lambda_j > \lambda_{j+1}$. Let $n_1(\lambda)$ be the number of indices $2 \leq i \leq p - 1$ for which $\lambda_i > \lambda_{i+1}$ and let $n_2(\lambda)$ be the number of indices $p + 1 \leq j \leq p + q - 1$ for which $\lambda_j > \lambda_{j+1}$. It is easily seen that

$$ n_+(\lambda) = (n_1(\lambda) + 2)(n_2(\lambda) + 1) \quad \text{for all } \lambda \in \Lambda^+; $$

$$ n_-(\lambda) = (n_1(\lambda) + 2)(n_2(\lambda) + 1), \quad \lambda \in \Lambda^+, \lambda_1 > \lambda_2; $$

$$ n_-(\lambda) = n_1(\lambda) \cdot (n_2(\lambda) + 1), \quad \lambda \in \Lambda^+, \lambda_1 = \lambda_2. $$

Therefore $n_-(\lambda) \geq n_+(\lambda)$ iff $\lambda_1 > \lambda_2$. The stability of A^+_0 follows from the fact that $\lambda'_1 - \lambda'_2 = \lambda_1 - \lambda_2$ or $\lambda'_1 - \lambda'_2 = \lambda_1 - \lambda_2 + 1$ for any $\alpha_{ij} \in R_+$.

b) $(g, \mathfrak{l}) = (C_{p+q}, C_p \oplus C_q)$.

Let γ be the $(2p + 2q) \times (2p + 2q)$-matrix defined by

$$ \gamma_{ij} = \begin{cases} 0 & \text{if } i \neq -j \\ 1 & \text{if } i = -j < 0; \quad i, j = \pm 1, \pm 2, \ldots, \pm (p + q) \\ -1 & \text{if } i = -j > 0 \end{cases} $$

Then the classical Lie algebra $g = C_{p+q}$ consists of complex $(2p + 2q) \times (2p + 2q)$-matrices a such that $a^t \gamma + \gamma a = 0$ (a^t is the transpose of a). A basis

$$ \{ f_{ij} \mid i, j = \pm 1, \ldots, \pm (p + q); |i| \leq |j| \} $$

for g can be chosen in such a way that

$$ [f_{ij}, f_{kl}] = \gamma_{ik} f_{jl} + \gamma_{il} f_{jk} + \gamma_{jk} f_{il} + \gamma_{jl} f_{ik}. $$
where we have defined the auxiliary vectors \(f_{ij} = f_{ji} \) for \(|i| > |j| \). A subalgebra \(C_p \) is spanned by the vectors \(f_{ij} \) where \(|i|, |j| \leq p \) and there is a subalgebra \(C_q \) spanned by the elements \(f_{k|l|} \) for \(|k|, |l| \geq p + 1 \). We define \(\mathfrak{f} = C_p \oplus C_q \). A Cartan subalgebra \(\mathfrak{h} \) of \(\mathfrak{g} \) in \(\mathfrak{f} \) is spanned by the vectors \(h_i = f_{i, -i}, \quad i = 1, 2, \ldots, p + q \).

We denote the root corresponding to \(f_{ij} \) (\(i \neq -j \)) by \(\alpha_{ij} \). We set

\[
\alpha_1 = \alpha_{1-2}, \quad \alpha_2 = \alpha_{2-3}, \ldots, \quad \alpha_{p-1} = \alpha_{p-1, -p}, \quad \alpha_p = \alpha_{pp},
\]

\[
\alpha_{p+1} = \alpha_{p+1, -(p+2)}, \ldots, \quad \alpha_{p+q-1} = \alpha_{p+q-1, -(p+q)}, \quad \alpha_{p+q} = \alpha_{p+q, p+q}.
\]

Thus \(\{\alpha_1, \ldots, \alpha_{p+q}\} \) is a set of simple roots for \((\mathfrak{f}, \mathfrak{h}) \) and

\[
\Lambda_k = \{\alpha_{ij} \mid |i| \leq |j|, \quad i > 0; \quad |i|, |j| \leq p \quad \text{or} \quad |i|, |j| \geq p + 1\}.
\]

Now

\[
\Lambda = \{\lambda \in \mathfrak{h}^* \mid \lambda(h_i) \in \mathbb{Z} \quad \forall i\}.
\]

We define \(\lambda_i = \lambda(h_i) \). Then

\[
\Lambda^+ = \{\lambda \in \Lambda \mid \lambda_1 \geq \ldots \geq \lambda_p \geq 0; \quad \lambda_{p+1} \geq \ldots \geq \lambda_{p+q} \geq 0\}.
\]

Next we set

\[
\lambda_i = \sum_{k=1}^{i} \lambda_k \quad \text{for} \quad 1 \leq i \leq p - 1; \quad \lambda^p = \frac{1}{2}(\lambda_p + \lambda_{p-1});
\]

\[
\lambda_i = \sum_{k=p+1}^{i} \lambda_k \quad \text{for} \quad p + 1 \leq i \leq p + q - 1;
\]

\[
\lambda^{p+q} = \frac{1}{2}(\lambda_{p+q} + \lambda_{p+q-1}).
\]

Then

\[
\lambda = \sum_{i=1}^{p+q} \lambda^i \alpha_i, \quad \lambda \in \Lambda,
\]

and \(\lambda > \lambda' \) if \(\lambda \neq \lambda' \) and the first non-zero number in the sequence \(\lambda_1 - \lambda_1', \lambda_2 - \lambda_2', \ldots \) is positive. Here

\[
R_+ = \{\alpha_{ij} \mid 1 \leq i \leq p, \quad |j| \geq p + 1\},
\]

\[
R_- = \{\alpha_{ij} \mid -p \leq i \leq -1, \quad |j| \geq p + 1\}.
\]

Let \(\varphi: R_+ \to R_- \) be the bijection defined by \(\varphi(\alpha_{1j}) = \alpha_{-p,j}, \varphi(\alpha_{ij}) = \alpha_{-(i-1)}, j \) for \(2 \leq i \leq p, \quad |j| \geq p + 1 \). If \(\lambda \in \Lambda^+ \), \(\lambda_p > 0 \), then it is easily seen that \(\lambda + \alpha_{ij} \in \Lambda^+ \) iff \(\lambda + \varphi(\alpha_{ij}) \in \Lambda^+ \) for any \(\alpha_{ij} \in R_+ \). Let \(v = \alpha_{ij} + \alpha_{+} \) where \(\alpha_{-} \in R_- \) and \(\alpha_{+} \in R_+ \). If \(v = 0 \), \(\alpha_{ij} \in R_+ \), then \(\alpha_{kl} + \alpha_{ij} = v \) if \(k = -i \) and \(l = -j \). In that case, for any \((\alpha_{-i}, -p \alpha_{ij}) \) such that \(\lambda + \alpha_{ij} \in \Lambda^+ \), there is \((-\varphi(\alpha_{ij}), \varphi(\alpha_{ij})) \) with \(\lambda + \varphi(\alpha_{ij}) \in \Lambda^+ \), where \(\lambda \in \Lambda^+ \), \(\lambda_p > 0 \). Thus \(n_-(\lambda, v) = n_+(\lambda, v) \) when \(v = 0 \), \(\lambda_p > 0 \). The case \(v = \alpha_{kl} + \alpha_{ij} \) (\(l \neq -j \)) is treated in the same way. If \(v = \alpha_{kl} + \alpha_{ij} \) where
If \(k
eq -i \) and \(\beta, \gamma \in \Lambda \) then \(\beta + \alpha_{ij} \in \Lambda^+ \) iff \(\beta + \alpha_{kj} \in \Lambda^+ \). It follows that for each pair \((\alpha_{kl}, \alpha_{ij})\) such that \(\beta = \alpha_{kl} + \alpha_{ij} \) and \(\beta + \alpha_{ij} \in \Lambda^+ \) there corresponds a pair \((\alpha_{kj}, \alpha_{ij})\) such that \(\beta = \alpha_{kj} + \alpha_{ij} \) and \(\beta + \alpha_{kj} \in \Lambda^+ \). We have now shown that \(n_-(\beta, \gamma) = n_+(\beta, \gamma) \) for all \((\beta, \gamma) \in \Lambda^+ \times (R_- + R_+)\) such that \(\beta + \gamma \in \Lambda^+ \), \(\lambda_p > 0 \).

Noting that \(\lambda'_p = \lambda_p \) or \(\lambda'_p = \lambda_p + 1 \) when \(\lambda = \alpha_{ij} + \lambda \) and \(\alpha_{ij} \in R_+ \), we get the following result:

Theorem 3.3. For the pair \((g, l) = (C_{p+q}, C_p \oplus C_q)\), \(A_0^+ \) is equal to the set \(\{ \lambda \in A_p^+ \mid \lambda_p > 0 \} \) and it is stable.

c) \((g, l) = (D_{p+q}, D_p \oplus D_q)\).

If we think of \(D_n \) as the Lie algebra of complex antisymmetric \(2n \times 2n \)-matrices, then we have the following subalgebras in \(g = D_{p+q} \):

\[
D_p = \{ a \in g \mid a_{ij} = 0 \text{ when } i > 2p \text{ or } j > 2p \},
\]

\[
D_q = \{ a \in g \mid a_{ij} = 0 \text{ when } i \leq 2p \text{ or } j \leq 2p \}.
\]

We set \(f = D_p \oplus D_q \). Let \(\mathfrak{h} \subset f \) be a Cartan subalgebra of \(g \) and let

\[
\{ \alpha_{ij} \mid |i| < |j|; \ i, j = \pm 1, \pm 2, \ldots, \pm (p+q) \}
\]

be the set of roots for \((g, \mathfrak{h})\) such that

\[
\{ \alpha_{ij} \mid |i| < |j| \leq p \} \cup \{ \alpha_{ij} \mid |j| > |i| \leq p + 1 \}
\]

is the set of roots for \((f, \mathfrak{h})\). There exists a basis \(\{ h_1, \ldots, h_{p+q} \} \) in \(\mathfrak{h} \) such that

\[
\alpha_{ij}(h_k) = \delta_{ik} + \delta_{jk} - \delta_{-ik} - \delta_{-jk}.
\]

As the set of simple roots for \((f, \mathfrak{h})\) we take \(\{ \alpha_1, \ldots, \alpha_{p+q} \} \) where

\[
\alpha_i = \alpha_{i, -(i+1)} \quad \text{when } 1 \leq i \leq p - 1 \text{ or } p + 1 \leq i \leq p + q - 1,
\]

\[
\alpha_p = \alpha_{p-1, p}, \quad \alpha_{p+q} = \alpha_{p+q-1, p+q}.
\]

We denote \(\lambda_i = \lambda(h_i) \). Then

\[
\Lambda = \{ \lambda \in \mathfrak{h}^* \mid \lambda_i \in \mathbb{Z} \forall 1 \leq i \leq p \text{ or } \lambda_i + \frac{1}{2} \in \mathbb{Z} \forall 1 \leq i \leq p; \lambda_i \in \mathbb{Z} \forall p + 1 \leq i \leq p + q \text{ or } \lambda_i + \frac{1}{2} \in \mathbb{Z} \forall p + 1 \leq i \leq p + q \},
\]

\[
\Lambda^+ = \{ \lambda \in \Lambda \mid \lambda_1 \geq \ldots \geq \lambda_{p-1} \geq \lambda_p \geq -\lambda_{p-1}; \lambda_{p+1} \geq \ldots \geq \lambda_{p+q-1} \geq \lambda_{p+q} \geq -\lambda_{p+q-1} \}.
\]

Any \(\lambda \in \Lambda \) can be written in the form \(\lambda = \sum \lambda^i \alpha_i \), where

\[
\lambda^i = \sum_{j=1}^{i} \lambda_{jp}, \quad 1 \leq i \leq p - 2,
\]
\[\lambda^{p-1} = \frac{1}{2} \left(\sum_{j=1}^{p-1} \lambda_j - \lambda_p \right), \quad \lambda^p = \frac{1}{2} \sum_{j=1}^{p} \lambda_j, \]

\[\lambda^i = \sum_{j=p+1}^{i} \lambda_j, \quad p + 1 \leq i \leq p + q - 2, \]

\[\lambda^{p+q-1} = \frac{1}{2} \left(\sum_{j=p+1}^{p+q-1} \lambda_j - \lambda_{p+q} \right), \quad \lambda^{p+q} = \frac{1}{2} \sum_{j=p+1}^{p+q} \lambda_j. \]

We define again a lexicographical ordering "<" in \(\Lambda \) with respect to the basis \(\{\alpha_1, \ldots, \alpha_{p+q}\} \). Now

\[R_+ = \{ \alpha_{ij} \mid 1 \leq i \leq p - 1 \text{ or } i = -p; \ |j| \geq p + 1 \}, \]

\[R_- = \{ \alpha_{ij} \mid 1 - p \leq i \leq -1 \text{ or } i = p; \ |j| \geq p + 1 \}. \]

The proof of the following theorem is a simple counting of different types of pairs \((\alpha_-, \alpha_+) \in R_- \times R_+\).

Theorem 3.4. For the pair \((g, \mathfrak{f}) = (D_{p+q}, D_p \oplus D_q)\), \(\Lambda^+_0 \) is equal to the set \(\{ \lambda \in \Lambda^+ \mid \lambda_{p-1} > \lambda_p \} \) and it is stable.

Remark. Let \(N = 2q \) for the cases a), b) and let \(N = 4q \) for c). Set

\[\delta = \frac{1}{N} \sum_{\alpha \in R_+} \alpha. \]

Then \(\Lambda^+_0 = \Lambda^+ + \delta \). This kind of rule seems to be more generally valid; for example, when \(g = G_2 \) (exceptional simple algebra of rank 2) and \(\mathfrak{f} = A_2 \), then it is found that

\[\Lambda^+_0 = \Lambda^+ + \delta \quad \text{for} \quad \delta = \frac{1}{2} \sum_{\alpha \in R_+} \alpha. \]

References

