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ON LINNIK’S CONSTANT

MATTI JUTILA

1. Introduction.

Let p(g,a) denote the least prime in the arithmetic progression ng+a. A
famous theorem of Linnik [11]-[12] states that for (a,q)=1

-(1.1) p(g,0) < 4~

where L is a constant. All known proofs of (1.1) are based on two theorems
concerning the distribution of the zeros of Dirichlet’s L-functions: Linnik’s
density theorem and Linnik’s theorem on the Siegel zero (the Deuring-
Heilbronn phenomenon). For the numerical estimation of Linnik’s constant L
it is desireable to have good values for certain constants occuring in Linnik’s
theorems. Turan [20] and Knapowski [10] proved these theorems by Turan’s
power-sum method, and the present author [7]-[8] carried out the calculations
with the result L <550.

Linnik’s density theorem is very delicate near =1, where the usual
Dirichlet polynomial method gives only trivial results. However, Selberg
pointed out in [19] that a refined version of this method can be used in proving
density estimates of the Linnik type. The key is the concept of a
“pseudocharacter”. Generally speaking, a square-free number r and a
multiplicative arithmetic function f determine a periodic multiplicative
function f,, defined by

1.2) ’ S = f((r,n),

which we call a pseudocharacter. Selberg used pseudocharacters for f(n)
=u(n)e(n); in our proof of Linnik’s second theorem we will choose f(n)
=u(n)2~ ™y, where as usual w(n) denotes the number of different prime
factors of the number n.

Selberg’s idea was to introduce pseudocharacters into the Dirichlet
polynomial, detecting the zeros by the means of an identity which will be
formulated as lemma 1 below. Averaging over r saves a logarithm in the zero-
density estimate, and this is already enough for the proof of Linnik’s density
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theorem. Furthermore, this argument gives surprisingly good numerical
results. Let

R(a,T) = {o+it| a<e<1,|t|<T},

and let N(a, T, x) denote the number of zeros of Dirichlet’s L-function L(s, ) in
the rectangle R(a, T); further let

N@T,q9 = Y N(@Ty),

xmodq

N*@T,Q)= Y Y *N@Ty,

g=Q xmodg

where the asterisk indicates that the sum is over primitive characters. Selberg’s
method gave the estimates [15]

(L.3) N(o,T,q) <, (qT)®+90-=,
(14 N*(@ T,Q) <<, (Q°T3)+90 -9,

where the constants implied by Vinogradov’s symbol << depend on &. Density
theorems of the type (1.3) and (1.4) are originally due to Fogels [3] and
Gallagher [4]. Motohashi [17] refined these estimates for $<a <1 as follows:

(1.5) N T,q) <, (2T3)*+o0-a,
(L.6) N*(o, T,0) <, (Q*T31+at-o

We will prove a further refinement, extending the density hypothesis to the
interval [£,1].

THEOREM 1. For $<a<1, T=1, we have
(L7 N(,T,q) <, (@T)?*20"2,
(1.8) N*(,T,Q) <, (Q*T)?*90-2,

A new feature of the proof is the application of Halasz’s inequality (in the
form of lemma 7); in order that this argument be successful we need an
additional device of integrating the inequality with respect to certain
parameters.

Theorem 1 was proved in the unpublished paper [9]. After having finished it
I learned from Dr. M. N. Huxley of a remarkable theorem of S. Graham [5],
formulated as lemma 4 below, which is very useful in calculating the constants
implied by the symbols <<,. Also I succeeded in finding a new proof for
Linnik’s second theorem. After that all the necessary facts were available for
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the calculation of a substantially improved estimate for Linnik’s constant, and
I decided to write a new paper, pursuing a more complete treatment of the
subject.

As regards Linnik’s constant, a weak form of the estimate (1.7) is enough.
Let 7 be any real number, D=¢(|z|+ 1), and let N (1) denote the number of L-
functions (mod g) having at least one zero in the rectangle 1 —A/logD<o =1, |t
—1]= 1.

THEOREM 1'. For all A>0 and D sufficiently large
1.9 N(J) £ 10e''*,

Linnik’s second theorem gives a quantitative estimate for the effect of the

possibly existing Siegel zero upon the other zeros. We will prove it in the
following form.

THEOREM 2. Let x, be a real non-principal character (mod q), §;,=1—08, a real
zero of L(s, %), x a character (mod q), and 9= +it=1—0+it a zero of L(s,y)
with d<%, B<PB,. Suppose that D=gq(t|+1) is sufficiently large, that is,
D=Dy(¢). Then

(1.10)

52

L 2 (1—-68)D~@+00I(1-63 /816 D
Now theorems 1’ and 2 imply an estimate for L.
THEOREM 3. Linnik’s constant L < 80.

We do not appeal to Siegel’s theorem, so that everything can be made

explicit. In fact, it would not be too difficult to calculate a constant L, such
that

p(g,a) < glo

for all g=2 and (q,a)=1.

The author is grateful to Dr. S. Graham and Prof. Y. Motohashi for making
available unpublished material, and to Dr. M. N. Huxley for his helpful
comments concerning an earlier draft of this paper.

2. Lemmas for the proof of theorem 1.
We recall the notation (1.2) for a pseudocharacter. For the sake of brevity

we will write f,f,.(n)=f,(n)f,(n), and Y’ will denote a sum over square-free
numbers coprime with q.



48 MATTI JUTILA
We will need several times the known estimate
L(s,x) <, E(/ls—1]+ (q(t|+ D) ~2*  0<0<1.

where E(x)=@(q)/q if x=yx0, and E(y)=0 otherwise.

Our lemmas 1, 2, and 3 are partly generalized formulations of lemmas 2, 3
and 4 in Motohashi’s paper [17]; for the sake of completeness we briefly sketch
the proofs.

LEmMA 1. Let

@) M(ypf) = d; La@f,@d™ [T {1+ (f()=Dxpp~"},

pl;jr;{)
where £;=0(1). Then for Res>1
22 L(s, )M (s, 1.1,) = ; <; éd)x(n)fr(n)n‘s.

Proor. The right hand side of (2.2) is

23 S Caldd™ 3 x>,

But since r is square-free and f is multiplicative,

fi(nd) = f(d)f,(n)

where t =r/(r,d). Using this relation and the Euler product for the generating
function of the multiplicative function x(n)f,(n), it is easily verified that (2.3)
equals the left hand side of (2.2).

LEMMA 2. Define the numbers h(d;r,r’) by the equation

[T 0+00-10p™) TT (+(20-1p7) = 3 hdinrid™.
4 A pl(r,r d=1

Then
Sifem) = Y h(d;rr).

din

Proor. By the multiplicativity of the function f,f, (n) it is easily seen that

3 ffon™ = L6 ﬁ hd; r)d*
n= =1
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LemMma 3. If, in particular, f(n)= u(n)p(n), then

Z h(d;rar,)d—l = 5,9,«([)(") s
d

where 6, . is Kronecker’s symbol. Further,

Zdllh(d;r,r')l = I—|[ e+D [T (p+1).

pir’

Proor. Follows from lemma 2.

The next lemma is related to Selberg’s sieve method. Barban and Vehov [1]
posed the following problem: to minimize the quadratic form

(2.4) S=% (Z ia>2

n<x \d|n

under the conditions

_ ju@ for 1=d<z,,
23) ha = { 0 for d>z,,

where (1<) z; <z, are given numbers. The result of Barban and Vehov was
that if

(2.6) Ay = p(d) log (zy/d)/log (z5/z)), z3Sd=z,,
then
2.7 S <« x/log(z,/z,) .

Motohashi [16] worked out the somewhat sketchy proof in more detail.
Recently S. Graham [5] has sharpened the estimate (2.7) to an asymptotic
formula, even with an estimate for the error. We state his result as

LeEMMA 4. In the notation of the equations (2.4)-(2.6) we have
S = x/log (z,/z,)+ O(x/log? (z5/zy))  for x=z,,
§ = xlog (x/z))/log? (z;/2)) + O(x/log? (z,/2,))  for z;<x<z, .

LEMMA 5. For logR = (logq)* and R — oo we have

Yt = 6n"2 [] (1+p~") log R(1 +o(1)) .

r=R rle

Math. Scand. 41 - 4
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Proor. Use the generating function

y {(s) 51
L= gy LT+

LEMMA 6. Let y be a non-principal character (mod q), and let ¢=[f+it be a
zero of the function L(s,y) in the rectangle R(x, T). Choose in lemma 1

S) =) = pom), &= 44,

where the numbers A, are defined in (2.5) and (2.6), and write

a(n) = ‘% Aq
Suppose that <a<1, T21, ¢>0 and that the numbers R21, X 21 satisfy
(logg)* < logR < log(qT),
(2.8) X* = ((gT)*Rz,)* *=.

Let x=Xlog? (qT),

(29) gls,x) = ZS a(n)y(n)e " Xn"* ;R r ().
Then
(2.10) lg(e. )l = (1—¢)(e(g)/q)(6/n*)logR ,

provided that qT exceeds a certain bound, depending on .

Proor. First of all note that a;,=1 and a,=0 for 2<n=z,. Hence,
multiplying the equation (2.2) by r~! and summing over r, we obtain by
Mellin’s transformation (see [18, p. 380, Satz 3.2])

(2.11) e VXN i Y amxme " X¥nTe Y rTly,(n)
rsR

rs<R n>z,

= LT Ltu )L (= B+iX 2% S+ M (e +u), 1Y) -
2n -0 r<R

Since by (2.1)
Y IM(itL gy, <z Y, re () < Rz,,
r<R rs<R

the right hand side of (2.11) is <<, 1 if X satisfies (2.8). Also it is easily seen that
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if the series in (2.11) are cut at x, the rest is <<, 1. Hence (2.10) follows by lem-
ma 5.

LeMMA 7. Let

N

fls0) = % amn™.

n=1
Then
J 2 N J
(2 |f(sjan)'> < Z Ianlzbn_l Z r_’jrlkB(§j+Sk,2ij)’
j=1 n=1 jok=1

where the n; are certain complex numbers of absolute value 1, and

Bls7) = ¥ burln ™,

where the b, are any non-negative numbers such that b,>0 whenever a, + 0 and
the series B(s,y) is absolutely convergent for all pairs (s, %)= (5;+ S, X;Xi)-

This is a modified form of Halasz’s inequality (see [14, Lemma 1.6]); usually
the coefficients #; are eliminated by taking absolute values.

LEMMA 8. The number of zeros of the function L(s, y) in the square
a<o <1, =T £ 3(1-a)

is < (1—a)log (q(T+1)+1.

This is the well-known density lemma of Linnik [18, p.331].

3. Proof of theorem 1.

For $<a <1—¢ the assertions follow from [6]; hence we may suppose that a
21—e We first consider the estimate (1.7) and after that sketch the
modifications required for the proof of (1.8).

In view of known results about the zeros of {(s), we may restrict ourselves to
the zeros of L(s,y) with y=x,.

Let D=gT,A=1/log D, and split up the rectangle R(x, T) into smaller ones:

3.1) x <o <1, max(—Tkd) <t < min(T,(k+1)4),

k=0,+1,... For each function L(s, ), having zeros in the rectangle (3.1),
choose arbitrarily one of these zeros. Considering the even and odd numbers k
separately, we get two “A-well-spaced” systems. Let J denote the cardinality of
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the system containing at least a half of the selected zeros. In view of lemma 8, it
is sufficient to prove an estimate of the type (1.7) for the number J.
Let g(s,x) be as in lemma 6, and let

R = De 21 = D§+7e 22 = D4}+Se X = D1+128.
Then the conditions of lemma 6 are satisfied, and

(3.2 lg(e, 1) >, (¢(q)/q) log D

for the zeros under consideration.
We apply lemma 7 to the Dirichlet polynomial f(s,y)=g(s+a,x), and
choose

2
(3.3) bn = n—-l< Z’ r_ll//,.(n)> (e—n/N_e—n/M) .
r<R
Actually we let M and N be variable,
(3.4) M=¢, ¢&el(l-9logz,logz,],
(3.5) N =¢" nellogx, (1+e)logx],

because at the end of the proof we have to integrate with respect to & and #.

We consider f (s, x) at the points s;=g;—a, where ¢; runs over the J selected
zeros. Hence 0<g;<¢, |t;j<T. Writing down the inequality of lemma 7,
integrating with respect to ¢ and n over the intervals given in (3.4)-(3.5), and
dividing by log? D, we get by (3.2)

(3.6) J?(¢(g)/q)* log® D

<, (logD)™? Z la(n)'znhch Mk IJB(§j+sk’ink)d§d”
ik

z;<nsx

<, (IOSD)ﬂzxz_za Z ;M jjB(§j+sk9 ijk)df'T s
ik

the last step by lemma 4.
Now by lemma 2, for 00 <3,

B = 3 (e N —e" M1 5 ()t S hidi)

r,r din

S )Y h(dsr )y (dd i x(m)m=1=5(e~mUIN — g~ mdiM)
rr d m=1

The sum over m is equal to
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1

5= J L(1+s+w, ) ((N/d)*—(M/d)")I (w)dw
2mi Rew=1

= E()((N/d)™* = (M/d)")[ (=) +14(5, ) ,

where 1,(s, y) is the contour integral over the line Rew= —1+¢. If s=0, then
((N/d)=s— (M/d)~*)['(—s) is interpreted as log (N/M).
The integrals I,(s,x) give to (3.6) a negligible contribution. Indeed,

Id(s’ X) <<s D%(M/d)_1+£3

whence the contribution is
<, JPTBEPI00 Y (1)L Y h(dsr, )|
r,r d

this is by lemma 3 and by our choices of z,,x, and R
<, J*x?"DTR? <« J?,

Next consider the residues. In this case j;x; =10, and the contribution of the
residues to (3.6) is

(log D) *(p(q)/q)x*~2* Y (1)1 Y. h(d;r,r)d ™" Z;’ 1l M X
rr d J»

XJ (e %6+ — S ¥)(—5,— 5, )dEdn

where the sum )" is restricted by the condition j,x,=yx,. Carrying out the
integrations, then summing over d by using lemma 3 (after that only the terms
with r=r' survive), and finally summing over j, k and r, the above is seen to be

<, J(¢(9)/q)*x***1og? D .
Hence (3.6) takes the form

(¢(9)/q)*J* 108’ D <, (¢(9)/q)*Jx*~**log? D +J?,
which implies (1.7).
For the proof of the estimate (1.8) we may modify the above argument in the

following way, suggested by M. N. Huxley. It is easily seen that Haldsz’s
lemma may be stated as the inequality

J N 2
3.7) L T anClo i
N J 00 )
< Y lalbt Y dime Y Clm ) Cm, )b (mygmym 5%,
n=1 i k=1 m=1
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where the #; are arbitrary complex numbers. Choose 7; so that || =q;/p(q)) (if
X; is a character modulo g;), and let

Cmy) = % w2 mr .
ot
Note that C(m, ) depends only on the modulus of y. Because of primitivity,
XX is principal only when y;=y,. The estimate (1.8) is now easy to prove,
starting from (3.7) and arguing as before.
In fact, as was pointed out by Huxley, this method gives for o near 1 the
estimate

N*(,T,Q) <, (Q3T?)t+ou-a,

4. Proof of theorem 1'.

The estimate (1.9) requires a proof only if 4 is less than a certain constant
since otherwise the assertion follows from (1.7). As before we may restrict
ourselves to non-principal characters.

Let x;, j=1,...,J be the non-principal characters (mod g) for which the
corresponding L-function has a zero in the rectangle under consideration, and
select for each index a zero ¢;. Now we may repeat the steps of the proof of
(1.7), with considerable simplifications however. In particular, the integration
device is needless, so that we may choose the numbers b, as in (3.3), with M
=2z,, N=Xx. The proof can be made explicit by using lemmas 4 and 5. Suppose
that we have chosen

z; = D% i=12; R = D*, X = D,
where a;, a,, b and ¢ are certain constants satisfying

i+a,+b—c <0, 1-a,+2b<0.
Then the result is that for D sufficiently large

_ 2
J é (n2/6)b((c—a—_%e2d
2 1

To prove (1.9) choose now a,=5/2, a,=4, c=11/2, b=1—¢.

5. Lemmas for the proof of theorem 2.

Throughout this and the next section, x, will denote a real non-principal
character (mod g). Let
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a, =Y, x:(d).
din

Then

a, = pla_”[ A+x )+ ... +x:(0%)

hence a,=0. If n is square-free, then a, =0 if there exists a prime divisor p of n
such that y,(p)= —1, and otherwise

a, = 2°0
. )

LEMMA 9. Let y be a Dirichlet character, f a multiplicative function, r and r'
square-free numbers such that y,(p)=1 for all prime divisors of rr', and define for
Res>1

Grop52) = 3 12 hag ()i~
Then

(5.1) G, (s,0) = L(s, )L(s, xx:1)Py, (5, 0Q (5 1) »

where

P 0= [1 +2x@f@p™) [ (1+2x()f *(p)p~7)x

Aoy pltrer)
x IIT (1+2x(pp™) 7",
plrr’
Q0= [I A=zep0+2xep™ I (-2 @p>).
xi(p)=1 x(p)=-1

ProoF. Let, for a.moment, [T’ denote a product over primes satisfying x, (p)
= 1. The generating function of the multiplicative function u?(n)a,y(n)f.f. (n) is

[T A+2x@)ffo (PP~ =

p

[T t+2x@p™ T1 (+2x@f@p™ [T +2@) 207

phrr’ f{‘ re’ plr,r)
pHr, 1)

If this is divided by the Euler product of L(s, x)L(s, xx;), the quotient is easily
seen to be P, (s, x)Q(s, %)

LeMMA 10. In the preceding lemma, choose

fn) = p(m2=°"n,
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and suppose also that L(y,,B,)=0, where f, =1—40, is a real number satisfying
32<By<1. Then for the sum

T= i’ a,,e"'/yn"’l(Z’ a,f,(n)r'1>2
n=1 r=R

we have the asymptotic formula

(52 T= (p(@/))Q(L zoL(L x)T (6,)Y*1S +0,(Rg!*Y*/*~Fi+),
where y, is the principal character (mod q), and

R A
S= Y art.
r<R

Proor. By Mellin’s transformation and lemma 9
2miT= Y () 'aa, J Gy,re(5+ By, X (5) Y¥ds .
r,r<R Res=1

By (5.1) the functions G, ,.(s,x) are meromorphic in the half-plane Res> 3.
Move the integration to the line Re (s+ f;)=3%+¢. The zero s=p, of L(s,x,)
compensates the pole s=0 of I'(s), and the pole s=1 of L(s, x,) gives the main
term in (5.2); note that

P, ,(1,x) =0 forr+r,
P, ,(1,x0) = ra*.
To estimate the contour integral observe tha;t by lemma 9
G, G+e+it,xo) <<, (q(lt|+ 12 *(rr (r,r)) 254
and that

" aa,. ()" (e () < R
r,r<R

LemMA 11. We have

S 2 (0(@/9)Q(1, xo)L(1, x)07 L + O (R~ 12 *eglid+e)

Proor. The generating function of u?(n)a,y,(n) is

F(s) = L(s, x1)L(s, x0)Q (5, 20) 5
hence

SZR %Y arh
rsSR
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a+iRq
= (R"‘l/Zni)J F(s+pB,)R*s 'ds+0O(R"1?),
a—iRq
where a=4, + 1/log (gR). The proof is completed by moving the integration to
the line Re (s+B,)=1+¢, where the integral is estimated by using Holder’s
inequality and mean fourth power estimates.

LemMA 12. Let 8, be as in the preceding lemmas, and suppose also that L(g, x)
=0, where y is a character (mod q), and ¢ =B +it, 2<B<p,. Put D=q(|t|+1).
Then in the case x=yxo, X1, We have

(5.3) T= S2(1 + Y +e)(ﬂ—ﬂ1))+0£(RD1/2 Yl2-58 +s) .
If x=yo or x,, then either

(5.4) Tz 52(1 +%y(1 ”W’_ﬂ‘))+05(RD”2 Y1/2-ﬁ1+5) ,
or

(5.5) 5, 2 3P (1—9) {1+ 0, (R™12*egla*e))

ProoF. Assume first that y = y,,x,. Consider the series

00 2
T,= Y uz(n)anx(n)e'"’yn“’<2’ a,f,(n)r") :

n=1 r<R

where f£,(n) is as in lemma 10. As in the proof of lemma 10, T, can be expressed
by the means of the functions G, ,(s,x), but now the integrand is regular
between the lines Res=1 and Re (s+B)=1+e. Hence

(5.6) T, <, RDY2Y'2-h+e,

On the other hand, write for a moment
T, = Y ae " 'nF.
n=1
Then o, =52, so that by (5.6)

00

Y o "Yne
n

n=2

[\

SZ +OE(RD1/2 Yl/Z—ﬂ+e) ;

hence

S2+0,(RD'2Y'V27F*e) < % o le™""n"F

n=2

< Y(1+s)(B1—ﬂ) i ld,,le_"/yn—ﬂ"i'O(Y—l),

n=2
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provided that Y is sufficiently large. The proof is now completed by observing
that

[o ¢}
T=Y laje " n b,

n=1
If y=yx, or x;, the above argument does not work since the function
L(s, x)L(s, xx;) is not regular at s=1. Instead of (5.6) we have
T, = (¢(9)/q)Q(Lxo)L(1, x )T (1—@)Y' ¢S+ O (RD2Y'27F+e) .
Hence in T,
o0

X

= 5> — (0(9)/q)Q (L, xo)L(L, x)IT (1 =) Y' ¥

+0,(RDYV2YYV2F*+%) = 4+ 0,(...),
say. There are two possibilities:
(5.7 Az 382,
(5.8) A < 182,

)\

In the case (5.7) we get (5.4) by the same argument as above. If (5.8) is true,
then

(5.9) S = 0(¢@/a)Q(L xo)L(Lx)IF 1= Y77,

where 2/3 £0<2. The assertion now follows by comparing (5.9) and lemma 11.

6. Proof of theorem 2.

The idea of the proof is to compare the results of lemmas 10 and 12. We may
suppose that §, << 1/log D. The parameters Y and R will be chosen below; for
the moment we suppose only that log RY < log D. Let us consider the case y
% 20, X first.

The estimates (5.2) and 5.3) imply that

(0(@/9)Q(L, X)L (L, x)[ (3 Y1S = S*(1+ Y4 *99)+ 0, (RD'2Y!277) .

Cancelling this inequality and substituting for S its estimate from lemma 11, we
obtain

Ydl g (51r(51))—1(1+Y—-(l+.~:)6)+Oe(RDIIZY—1/2+:)+Oa(R—1/2+eDl/4+s) .
Since 8,I'(6,) = 1+0(4,), it follows that
(6.1) Yi—1 2 Y U*940(3,)+0,(RDV2 Y2494 0 (R 12 +epliate),
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Now choose
— PD2/(1 -6+ 1+28)/(2 —
Y=D I( ) e,, R = D( +23)/(2 126)+s2’
where ¢, and ¢, are small numbers depending on ¢, in order that the terms

O,(...) in (6.1) be of a lower order of magnitude than Y ~*9 Then (6.1)
implies that

(6.2) 0, 2 (1-g Y U*99/K(Y,9,),
where
(6.3) K(Y,8,) = 6;1(Y1—1) = e*logY, ae 0,6,l0gY).

We may suppose that J,log Y<% since otherwise theorem 2 clearly holds.
Hence a <3, so that the inequality (1.10) follows from (6.2) and (6.3).

If x =y, or x,, we have the two possibilities (5.4) and (5.5) of lemma 12. In
the case (5.4) the argument is as above, and the resulting lower bound for ¢, is
half of that in (6.2).

In the case (5.5) we make use of the estimate

(6.4) 1—g| = 0.28/loggq .

This is trivial in the case y=y,, and otherwise it follows either from lemma 12
of [13] (¢ real) or from lemma 3b of [7] (¢ non-real). Now (5.5) and (6.4)
together imply a sufficiently good lower bound for §,, and the proof of theorem
2 is complete.

7. Linnik’s constant.
As in [8], we use a formula of Turdan [20]. Let k=2,

K(w) = é™"(e"—e™™)2w, K,(w) = K(2wlogg),

1

J K2 (w)n~dw .
Rew=2

Then (see [20])
R(n) = 0 if 1=n=<g* %, or n2g**4
R(n) < l/logq if ¥ *<n<g***,
and for (a,q)=1

(1.1)
1
AMRmn™" = @ {1— Ex:i(a) > Kf(ex—l)}+0(q’2) s

gHk-d<p<ghk+a Py

n = a(mod q)
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where g, for each character y (mod g) runs over the non-trivial zeros of L(s, y).
For w=(—A+it)/logq we have

(7.2) IK}(W)| < e” P min {1, (4(2*+7%) 7'},
since for Rew=<0
[(e**—1)2w| < min (1,|w] ™).

Let us first consider the case when there is no Siegel zero. For a suitably chosen
number k the quantity {...} in (7.1) will be bigger than a positive constant,
and then obviously

p(g,a) < g*+*.

For sufficiently large g, the region

(7.3) o1

“TSiogg M1 =4
is free of zeros of all L-functions (mod g). This follows from a more general
theorem of Miech [13] except that Miech had the constant 20 instead of 15.
The widened zero-free region (7.3) is obtained by using in Miech’s argument
the estimate of Burgess [2] for L-functions.

Subdivide the strip 0<¢=<1 into rectangles Ry,R;;,R.;,... by the
horizontal lines t = +1/logq, +2/logq, +3/logg,... Consider the zeros in the
rectangles

(7.4) 1-J/logg o =1, || = 1/logg
and
(75) 1-Xlogg = 0 =1, vflogg =t = (v+1)/logg, |v = g°logqg.

By lemma 3b of [7], the number of zeros of any single L-function (modg) in
(7.4)is <3for A£2, and <e”for A=2; also, the number of zeros in (7.5) is <2
for A<1 and <e*for 1=1. Hence by (7.2) and theorem 1’ the contribution of
the zeros in R, to the sum in (7.1) is at most

2
30e—(4k—15)/15+330J‘ e_(4k_15)ldl+108—(4k_16)2+
1/15

0 330
12 —(4k—-16)A —(4k—-15)/15
+120 L e di < (30+4k_15>e

120 —2(4k—16)
+<10+4k_16>e .
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Similarly, the zeros in the rectangles R, with 1§iv|§qslogq contribute all in
all at most

220 120
2 - (4k—15)/15 - (4k~16)
(m /12){(20+4k_15>e +(10+4k_16)e } .

Hence the total contribution of the zeros with [Img|<g¢® is <1 in absolute
value if k=19. It is easily seen that the zeros with |Im g| >g¢° can be neglected,
so that by our previous remark theorem 3 holds at least in the case when there
is no Siegel zero for any L-function (mod g).

If a Siegel zero B,(>1—1/15loggq) does exist, then in any case the region

(7.6) o 2 1-03/logg, I < ¢

is by theorem 2 free of the other zeros. Since the region (7.6) is considerably
wider than (7.3), the estimation of the sum in (7.1) is less delicate than was
above. Using theorems 2 and 1’ it can be seen by crude estimations that the
term

1-|K3 (B, — D)

dominates the sum over the non-exceptional zeros. We do not enter into the
details, but note only that it is convenient to consider separately the cases J,
2q7°% (g*logq) ™' < 6, <q = Of course, the latter possibility could be avoided
by appealing to Siegel’s theorem, but this is not necessary. So all estimations
are in principle effective.
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