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ON THE 4 IN
A MINIMAL INJECTIVE RESOLUTION II

HANS-BJORN FOXBY!

Let M be a module over a local (noetherian, commutative) ring 4 (with a
multiplicative identity). The ith injective module I}, is a minimal injective
resolution

O->-M->Iy—>Iy— ... Li— ...

of M decomposes into the direct sum of indecomposable injective modules and
for each prime ideal p in A4 the cardinal number p; (p, M) denotes the number of
copies of E,(A/p) (=the injective hull of A/p) in this decomposition. This
number y;(p, M) is only depending on i, p, and M, and it is finite if M is finitely
generated, see Bass [2].

The previous paper [6] dealt with the question: For which integers i does
E,(A/p) appear in the decomposition of I}, (that is, g'(p, M)>0)? In the first
part of the present paper we are interested in what happens if there is exactly
one copy of E 4(A/p) in the decomposition of I for a certain i (that is, u; (p, M)
=1). The theme is that if this happens for an i less or equal to the (Krull)
dimension of A, then i is equal the depth of the A,-module M,, (provided M is
finitely generated).

Before these results are discussed more precisely it should be mentioned that

Ha(p, M) = piy (pAp, M),

so it suffices to consider the number ui(M)= u} (m, M) for the maximal ideal m
in A. If M is finitely generated then it turns out that the least i for which p'(M)
>0 is the depth of M, while the largest i with p'(M)>0 is the injective
dimension id, M of M (this might be infinite). The question of [6] was: Is
#(M)>0 for all i with depthM<i<idyM (So00) (when M is finitely
generated)? and affirmative answers were given in special cases. In the more
recent papers [5] (by Fossum, Foxby, Griffith, and Reiten) and [23] (by
P.Roberts) this question has been answered in general (in the affirmative).
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In the present paper stronger results are obtained. Namely, if M is a non-
zero finitely generated A-module we show that y'(M)=2 if depth M <i<d—1
where d is the (Krull) dimension of 4, and even p'(M)=2 if depth M <i<d
provided 4 is (essentially) equicharacteristic (for definition see the beginning of
Section 1). This has connection to the following conjecture of Vasconcelos [28,
p. 53]: A is a Gorenstein ring if (and only if) 4 is of type one (that is, u?(4)=1
for d=dim 4). We prove that this conjecture — as well as a corresponding
conjecture for modules (Conjecture B of Section 3) — holds for (essentially)
equicharacteristic rings. This is Corollary (3.7), and the proof relies on a
version of Peskine’s and Szpiro’s socalled New Intersection Theorem. This
version is proved in Section 1. Also Grothendieck’s Local Duality Theorem
(see Section 2) is used.

We include also results in mixed characteristics, e.g. Vasconcelos’ conjecture
holds if A is a complete local ring without embedded prime divisors of 0, or if
the dimension of A is at most two (see Section 4).

Section 5 contairs the following result: u (p, M) < u'f ! (q, M) for prime ideals
p<Sqin 4 and all i, provided [ is the dimension of the local ring 4,/pA4, and M
is a finitely generated A-module. The proof uses Grothendieck’s theory of
dualizing complexes (which is discussed in Section 2) and a formula from [8]
which allows passage to completions.

In Section 6 we give a lower bound for the injective dimension of a (not
necessarily finitely generated) module of depth zero, provided A is essentially
equicharacteristic. This result is known for finitely generated modules.

Notation and conventions.

We will use the notation of the previous paper [6] with the following three
exceptions.

id4 M =the injective dimension of the A-module M.
pd4 M =the projective (=homological) dimension of M.
fd4 M =the flat (=weak homological) dimension of M.

By the dimension dim4 M of an A-module M we mean the dimension of the
support Supp, M of M, so if M is finitely generated then dim, M is the (Kruil)
dimension of the local ring A/Ann, M, and in general, if M is the union of the
submodules M; (for i in an index set I) then

dimy M = sup {dim, M; | iel}.

Convention: dim,0=—1.
Though references in general will be given, the reader is assumed to be
familiar with the basic facts about minimal injective resolutions, the numbers
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ty(p, M), and Gorenstein rings (as in § 1-4 of Bass’ paper [2]). Some of these
facts are summarized in Section 1 of [6]. In particular we mention that
uy(p, M) is the dimension of

Exty (4/p, M), = Extly, ((k(p), M,)

considered as a vector space over k(p)=A,/pA,, and we write u'(M)
= pu'(m, M).
Finally let us repeat the standing assumption thoughout the entire paper:

(A, m,k) is a local ring of dimension d.

1. The New Intersection Theorem.

A complex of A-modules is said to be non-trivial if at least one of the
homology modules is non-zero. In this section of the paper we discuss — for a
given bounded non-trivial complex of finitely generated free A-modules — a
relation between the dimension of A4, the dimensions of the homology modules,
and the length of the complex. The best relation is obtained for the rings
covered by the following definition.

DEerFINITION. The ring A is said to be essentially equicharacteristic, if there
exists an ideal a in 4 with dim A/a=dim A4 such that A/a is equicharacteristic
(that is, A/a contains a field (as a subring)).

The New Intersection Theorem of Peskine and Szpiro [22], and
independently of P. Roberts [23], asserts:

THEOREM (1.1). Let 0 — F,— ... > Fy— 0 be a non-trivial complex of
finitely generated free modules and let t be an integer such that

dmH(F) <t foralli.

Then dim A <s+t, provided A is essentially equicharacteristic.

As it is the case with the original Intersection Theorem (see [2, Théoréme
(2.1)] and [15, p. 8]) also the New Intersection Theorem follows from
Hochster’s remarkable theorem on the existence of (socalled) big maximal
Cohen-Macaulay modules over essentially equicharacteristic rings (cf. [15]
and [16, (6.1) Theorem]).

For our applications we need the slightly stronger version of the New
Intersection Theorem stated below.
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THEOREM (1.2). Let 0 - F,— ... - F, — 0 be a non-trivial complex of
finitely generated free A-modules and let t be an integer such that

dimH,(F) < t+i forall i.

Then dm A<Ls+t+1.
If moreover A is essentially equicharacteristic, then even dim A <s+t.

Though this version of the New Intersection Theorem is stronger than the
original version (1.1) in two ways (the bounds on the dimensions of the
homology modules have been weakened and there is also a conclusion in
mixed characteristics) a proof of the original version could — after only minor
modifications — give a proof of this version. However there is no complete
proof of (1.1) in the literature and this is one reason for including a proof here.
This proof relies on Hochster’s result on the existence of big maximal Cohen-
Macaulay modules (stated as Theorem (1.6) below) and gives —as a
biproduct — a sufficient condition for the finiteness of (homological) depth of
non-finitely generated modules, a fact to be used in Section 6. This is another
reason for including a proof of (1.2) here.

Recall that for a finitely generated module M the maximal length of an M-
regular sequence in m is the depth of M, and

depthM = inf{i | Ext'(k, M)+0}

(cf. [2]). For non-finitely generated modules the latter expression is taken as
the definition of depth.

DEFINITION. depthy M =inf {i | Ext' (k, M)+0} for any A-module M.

Note that even if M +0 then Ext’ (k, M) might be zero for all i, so depth M
=00 might occur. However, if a,,. . .,q, is an M-regular sequence such that m
is in Ass (M/(ay,. . .,a,)M) then it is easy to see that depth M =r. Note finally
that if n is an integer, and if 0 - K — L —» M — 0is a short exact sequence of
A-modules, then

D depthM = n if depthK > n and depthL = n.

Here — and in what follows — we have not assumed that the depths of the
involved modules are finite (unless explicitely stated).

The following useful lemma, which is known as the Acyclicity Lemma, has
been stated and proved by Peskine and Szpiro (see [21, chapter I, (1.8)]) for
finitely generated modules. With the above definition of the depth of a non-
finitely generated module this lemma holds also for general modules. The
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proof in the general case is exactly the same as in [21] using the remark (I)
above. We want to state the Acyclicity Lemma as follows.

LemMA (1.3). Let 0> C,— ... = Cqy— 0 be a complex of A-modules
satisfying for all i, 0<i<s, the following two conditions.

1) depth C;>i.
2) depth H;(C.)=0 or H,(C.)=0.

Then H,(C)=0 for all i (so the complex C. is trivial).

Proor. As in [21, p. 55] we get H,(C.)=0 for i>0, so the sequence
0-C,—» ... > Cy— Hy(C)— 0

is exact. This long exact sequence breaks up into short exact sequences, and if

the remark (I) above is applied to each of these, then we obtain depth Hy(C.)
>0, that is Hy(C.)=0.

COROLLARY (1.4). Let 0 » F,— ... - F, — 0 be a non-trivial complex of
finitely generated free modules such that H,(F.) is of finite length for all i20. Let
C be any A-module with mC =+ C. Then depth C <s.

Proor. Since the complex F. is non-trivial we can assume (by splitting off
irrelevant free modules) that H,(F.)#0. Each of the homology modules of the
complex F.®C satisfies

Supp H,(F.®C)

In

{m}

(since for each non-maximal prime ideal p the complex (F.), of free A,-
modules will be completely split, so (F.® 4 C), = (F.),® 4 C becomes completely
split too). In particular we have for all i that depth H,(F.® C)=0 or H,(F.QC)
=0. Now suppose depth C>s, and thereby depth (F;®C)>s=i for all i,
0<i<s. By the Acyclicity Lemma applied to the complex F.QC we get
H(F.®C)=0 for all i. However, Hy(F.® C)=Hy(F.)®C is a non-zero module
(by Nakayama’s Lemma using that H,(F.) is non-zero and finitely generated,
and using the assumption k®,C=+0). Thus the desired contradiction is
obtained.

The following immediate consequence of this Corollary will play a crucial
role in Section 6.

CoroLLARY (1.5). If the A-module C satisfies mC =+ C then depth C<dim 4
(< 00).
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ProoF. Let F. be the Koszul complex for a system of parameters for 4, and
apply (1.4).

Now we state Hochster’s result on the existence of big maximal Cohen-
Macaulay modules (cf. [15]).

THEOREM (1.6). If A is essentially equicharacteristic and if (a,,...,a,) is a
system of parameters for A, then there exists an A-module C such that a,,. . .,a,
is a C-regular sequence.

.

Such a module C, which need not be finitely generated, is called a big
maximal Cohen—Macaulay module. Note that the term “a;,. . .,q,is a C-regular
sequence” includes that (a,,...,a,)C+C, so depth C=d (by a remark made
earlier). We state this as a Corollary to Hochster’s Theorem (1.6).

CoroLLARY (1.7). If A is essentially equicharacteristic, then there exists a
module C such that mC =+ C and depth C=dim A.

For general rings (of possibly mixed characteristics) we can only do almost
as good.

CoroLLARY (1.8). If d=dim A >0 then there exists a module D with mD =D
and depthD=d—1.

Proor. If A4 is essentially equicharacteristic then let D=C/a,C (with C and
a, as above).

Now suppose that A is not essentially equicharacteristic and let p be the
characteristic of the residue field k (so p is necessarily a prime number). Then
the ring A= A/pA is equicharacteristic and of dimension d — 1, and hence there

exists (for a given system (a,,...,d,_,) of parameters for 4) a big maximal
Cohen-Macaulay module D over A. We have depth,D=d—1. (Pick
ai,...,a,_, € Asuch that the image in 4 of each a; is a,. Then a,,...,a,_,isa
D-regular sequence and m belongs to Ass (D/(ay,. . .,a4_,)D).)

Proor or THEOREM (1.2). Without any loss of generality we may assume
that 4 is complete (in the m-adic topology) and thereby catenary.

The next step is to reduce to the case where A4 is a domain by replacing A by
A/p for a suitable prime ideal p. Namely, pick p in Spec A with dim A/p
=dimA (such that if A4 is essentially equicharacteristic, then A/p is
equicharacteristic). Let for a short while F. denote the complex F.® ,A/p
which is a bounded complex of finitely generated free A/p-modules. It is a non-
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trivial complex since
H(F) = H(F) ® A/p £ 0 when j = inf{i | H,(F)+0}.

Now to justify that A can be replaced by A/p it only remains to prove that
dim H,(F)<t+i for all i>0. This is easy to see, because if for a fixed number |
the prime ideal q contains p and has dim A/q>[+t, then

H,(F.®A,) = H(F), =0 for igl,

and hence’
H(F), = H(F®A,®A/p) = 0 for i<|.
These first two steps shows that we in the rest of this proof can assume that
A is a catenary domain. Actually, the only thing we need is
(IL) dimA, = htp = dimA-1
for all p in Spec A with dimA/p=1.

The proof is continued by induction on d=dim A.

The case d=0 is trivial since necessarily t = —s.

The inductive step. The inductive hypothesis is that the result holds for rings
of dimension d— 1. Divide into two cases.

1°. dim H;(F.)<0 for all i. Let j=inf{i l H,(F)#0}. Then t= —j and Z;
=the kernel of F; — F;_, is a free module. Now applying (1.4) and (1.8),
respectively (1.4) and (1.7), to the complex

O>F,—>...>F,, —»Z;-0

we get d—1Ss—j<s+t, respectively d<s+t.

2°. dim H,(F.)>O0 for a suitable k. Pick p in Supp H,(F.) with dim A/p=1.
The complex L.= (F.), of finitely generated 4,-modules in non-trivial and has
homology modules H;(L.)=H(F.),, and

dim,, H;(F), < dim H;(F)—1 = t—1+i
for all i. By the inductive hypothesis and (II) we get
d—1 =dim4, £ s+(¢—-1)+1 + s+t
in general, and even d—1<s+t—1 if A is essentially equicharacteristic.
REMARK (1.9). Let % be a class of local rings such that € is closed under
completion and localization at prime ideals. and such that there to each

complete local ring (4, m, k) in this class € exists an A-module C and an ideal a
in A such that mC#C, depthC=dimA=dimA/a, and A/a is an
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equidimensional ring (that is, all the minimal prime ideals in the ring have the
same coheight, namely the dimension of the ring). Besides the example where ¢
is the class of essentially equicharacteristic local rings (cf. Hochster’s Theorem
(1.6)) there are two immediate examples: 1) € =the class of Cohen—Macauly

local rings, and 2) € =the class of local rings of dimension at most two. (If 4 is
complete and dim 4 <2 then the depth of the finitely generated A-module QY is
d=dim A, see Section 2 and [17].) It follows from the proof of (1.2) that the
condition “A is essentially equicharacteristic” in the last paragraph of the

statement in (1.2) could be replaced by “A is in such a class € of local rings”.

2. Local cohomology and dualizing complexes.

In the remainder of the paper E denotes the injective hull E, (k) of the
residue field k, and ~denotes Matlis duality, that is M =Hom, (M, E) for an A4-
module M.

The section functor I',,, with support in the closed point m is defined by

I'y(M) = {xe M| mix=0 for j>0}
= lim;Hom (4/mi, M)

for an A-module M. The ith right derived functor of this left exact functor is
called th ith local cohomology functor, it is denoted by H:,, and for each module,
M and each i we have

Hi (M) = l_i_nngxt" (A/mi, M) .
For this, and for other details about local cohomology, see [11] or the more
elementary accounts [26] and [19].
For future reference we list the first two basic properties of the local
cohomology functors, namely the relation to dimension and depth.
LemMA (2.1). Let M be any A-module. Then
(1) H M) =0 for i>dimM and
Hi(M)+ 0 if n=dimM and M is finitely generated.
(20 H (M) =0 for i < depthM and
H,. (M) +0 if t=depthM < 0.
Proor. (1) is [11, Proposition 6.4] and [26, 6.1. Theorem] and (2) follows as

the corresponding result for finitely generated modules, see [19, p. 20 lines 13-
18].
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COROLLARY (2.2). If mM M then
depthM =< dimM (<o0).

ProOOF. t=depthM is finite by (1.5), and hence H!,(M)#+0 by (2) of the
Lemma, so t<dim M follows from (1) of the Lemma.

Dualizing complexes. In order to facilitate the discussion of dualizing
complexes we will in the rest of this Section assume that 4 is a homomorphic
image of a Gorenstein local ring R of dimension n (=d=dim A). Let Q" be the
minimal injective resolution of R (as an R-module). Then

0 = [l Egr(R/q) forall i (cf. [2]).

htq=i

So in particular Q'=0 if i>n (=dimR) (or i<0).

In general for a complex X" and an integer I let X [I] denote the complex X~
shifted I places to the left, that is X' sits degree i—I in the complex X [[].

The complex D' =Homg (4,Q°) [n—d] is called the dualizing complex of A
(with respect to R). Note that H (D')=Extg" 9% (4,R) is finitely generated
and that

D'= I E4/p).
dim A/p=d—i

So in particular D'=0 for i>d (or i<0). Hartshorne’s notes [13, chapter V]
serves as the basic reference for dualizing complexes, but a more elementary
account can be found in Sharp’s paper [27]. Hartshorne’s account works in the
derived category (here denoted by 2) of the category of A-modules (cf. [13,
chapter I7), but the only thing we need to know is that isomorphic complexes
in 2 have isomorphic cohomology modules. For complexes X" and Y' the
notation Hom' (X',Y") denotes the complex in which the module
[1,Hom (X?, Y?*¥) is sitting in degree i (and with the obvious differentiations).

Now we state the first fundamental property of the dualizing complex D".

ProrosiTiION (2.3). For each bounded complex X' with finitely generated
cohomology modules there is an isomorphism in 2:

X' = Hom’ (Hom' (X",D’),D’) .

See [13, chapter V, Proposition 2.1, p. 258] and [27, (3.6) Theorem].
Actually the duality of (2.3) characterizes the dualizing complexes among the
bounded complexes of injective modules having finitely generated cohomology
modules. Also the dualizing complex is unique (up to isomorphism in £ and
translation) (cf. [13] or [27]).
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DEeFINITION. For a finitely generated A-module M and an integer i write
Q4 = Exty ¢t (M, R)

(with R as above).

Note that Qi,=H'(Hom, (M,D")) (since Hom, (M,D’)=Homg (M,Q")).
That Qi is independent of the choice of the Gorenstein local ring R is one
consequence of the next fundamental property of dualizing complexes. This
result is known as the Local Duality Theorem (cf. [13, chapter V, Theorem 6.2,

p. 278]).

THEOREM (2.4). For each finitely generated module M with the minimal
injective resolution I, there is an isomorphism in 9:

I(Iy) = Hom, (M,D)[—d] .
In particular for all i:

Hi (M) =~ (247 (as modules) .

COROLLARY (2.5). For a finitely generated non-zero A-module M the following
hold.

(a) Q47'=0 ifi>dimM or i<depth M, and
Qiri+0  if i=dim M or i=depth M.

(b) M is a Cohen—Macaulay module of dimension n if and only if
Q=0 for i+n.

() dimQ'<i  for all i (20).

(d) If n=dim M then Ass Q4; " consists of the p in Supp M with dim A/p=n.
In particular Q47 "+0 and dim Qi "=n=dimM.

Proor. (a) follows directly from (2.1) and (2.4), and (b) follows from (a). (c)
and (d) are [11, Propositions 6.4 and 6.6].

If A is a Cohen—Macaulay ring, then the dualizing complex D" has only one
non-vanishing cohomology module, namely QY in degree zero. Q4 is in this
case called the dualizing module, and we have depth Q4 =id Q% =d (since D" is
the minimal injective resolution of Q%) and Hom (2%, %)= 4. Other names
for this module are canonical module (in [14]) and Gorenstein module of rank one
(in [25] and [7]).

Note furthermore that it follows from the definition of dualizing complexes,
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that if p is a prime ideal then (D"),[d —dim A/p —htp] is a dualizing complex
for the ring A, (which is a homomorphic image of the Gorenstein local ring R,
where q is the prime ideal in R with g4 =p). In particular

Q4 = Q4 where u = dimA/p+htp (£d).

Thus we have obtained the following result.

REMARK (2.6). If p is a minimal prime ideal in 4 (so A4, is an artinian ring),
then (Q47%), is zero for i%dim A/p, while

(Q4ImA®), = E4 (k(p)

which is an 4,-module of length equal to the length of A, itself (since Matlis
duality preserves the length of A4,).

Now let (as in (2.4)) I; denote the minimal injective resolution of the finitely
generated A-module M. Then I',,(I},) = E*™ for all j (cf. [11, Corollary 4.8]),
so if F. denotes the complex I',(I3;) then for each j we have

Fj = T(ly) = (EY00 = 3200
(where ~ denotes the completion with respect to the m-adic topology) and
H/(F) = H,(M)" = Q4;/

(by (2.4)). We collect these observations in the following remark.

ReMARk (2.7). To each finitely generated module M there exists a complex
F.=...—->F—...>F >F,—>0
such that each F; is a free A-module of rank p/(M), and such that

Q47 for depthM<j<dimM
0 otherwise .

H/F) = {

Therefore dim H;(F.)<ifor all i and dim H,,(F.)=dim M if n=dimM (by (2.6.c)
and (2.6.d)).

3. Essentially equicharacteristic rings.

Two of the best characterizations of Gorenstein rings contained in Bass [2]
is that 4 is a Gorenstein ring if and only if A is a Cohen-Macaulay ring with
some system of parameters generating an irreducible ideal (that is, an ideal
that is not the intersection of two strictly larger ideals) or equivalently: A is a
Cohen—Macaulay ring with p?(4)=1 (d=dim A). Vasconcelos has conjectured
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that in the latter characterization the condition “A is a Cohen—-Macaulay ring”
can be omitted (see [28, p. 53]), and he proves that this is the case if dim A=1
and A, is Gorenstein for all minimal prime ideal p.

ConJECTURE A. If u?(4)=1 (d=dim A) then A is a Gorenstein ring.

Using our version of the New Intersection Theorem and the Local Duality
Theorem it is possible to prove that this Conjecture holds for essentially
equicharacteristic rings. This is done in this Section. In the next Section we
shall see that the Conjecture holds for special rings of mixed characteristics, e.g.
complete local rings without embedded prime divisors of 0. Conjecture A has
also been touched by Peskine and Szpiro in Proposition 5.7 in the unpublished
notes “Notes sur un air de H. Bass”.

The following simple example shows that the condition “4 is a Cohen—
Macaulay ring” can not be omitted in the first of the two characterizations of
Gorenstein rings mentioned above.

ExampLE. Let R be a 2-dimensional Gorenstein local ring and let x, y be an
R-regular sequence. Though the ring A=R/x(x,y) is not Cohen—Macaulay,
and hence not Gorenstein, the image j of y in 4 forms a system of parameters
and the ideal () in A is irreducibel (since 4/(¥)=R/(x2,y) is Gorenstein).

The following result is a generalization to modules of the second of the
characterizations of Gorenstein rings mentioned in the beginning of this
Section. See also [14, Korollar 6.12] and [7, Corollary 4.3].

ProrosiTiON (3.1). Let M be an n-dimensional Cohen—Macaulay module such
that p"(M)=1. Then the local ring B=A/AnnM is Cohen—Macaulay (of
dimension n) and M is a dualizing B-module.

This proposition (which will be proved below) leads to the following
conjecture (strengthening Conjecture A).

ConJecTURE B. If M is an n-dimensional finitely generated module with
w"(M)=1, then both M and B=A/Ann M are Cohen-Macaulay and M is a
dualizing B-module.

We shall (in this section) see that this conjecture holds if either n<d=dim 4
or n=dim A and 4 is essentially equicharacteristic. In the next section other
partial results are given.
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Proor ofF (3.1). As usual (see for example the beginning of the proof of [6,
Theorem 2.5]) we will assume that A is complete, or just a homomorphic
image of Gorenstein local ring R (cf. [4]). We may furthermore assume dim R
=dim A=d (by taking R modulo a maximal R-regular sequence in Anng A).
Note that M is a Cohen—Macaulay module of dimension n also as an R-
module. From [6, Corollary 3.6] (or from the corresponding results in [14]) it
follows that Q§; "=Ext% " (M, R) is a Cohen-Macaulay module of dimension
n and with pk(M) as the minimal number of generators. Now uk (M) =y (M)
=1 (by [14, 1.22 b)]), so Q4;" is a cyclic module, that is

Qi = AjAnn, Qi7"

From [6, Corollary 3.6] it follows also that Exty " (Q4;/",R)=M, so in
particular Ann, Q4; "= Ann, M, that is Q4; "= A/Ann, M =B, and hence B is
Cohen-Macaulay of dimension n and M=Ext4 " (B,R) is a dualizing B-
module.

Together with Remark (2.7) the following consequence of our version of the
New Intersection Theorem will be essential to the results in this section.

LEMMA (3.2). Let t be an integer, 0<t=<dim A, and let F. be a complex of
finitely generated free A-modules, such that F. is bounded to the right by t,
that is

F.=...>F—->...—>F, —-F-—-0.
Let r; denote the rank of F;, and let s; denote the alternating sum
§; = r—ri_i+... .+ (=17,

Assume furthermore that
dimH;(F) £i foralliSdimA4.
Then s, 20 for all m<dim A, and even s,,>0 provided mzt, F,+0, and

either 0) m<dim A4 —1,
or 1) dim H,(F.)=m,
or 2) m<dim A and A is essentially equicharacteristic.

Proor. Let Z,, denote the kernel of F,, — F,_, and let F.|m denote the
truncated complex

Fim=0—>F,—> ...>F4, —»F—-0.
Then

Z,
Hi(F.Im) = {Hi(F.) for i<m.
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For a prime ideal p with dimA4/p=m (and such exists) the assumption
dim H;(F.)<ifor i<dim A gives that (Z,), is a free 4;,-module of rank s, so in
particular s,, =0 for m<dim 4. Now suppose s,,=0, that is (Z,,), =0 for all p in
Spec A with dim A/p=m, or in other words dim Z, <m. This gives

dimH,(F) £ dimZ, < m

(contrary to assumption 1)). Furthermore if we apply the New Intersection
Theorem (1.2) to the bounded complex F.|m we get that dim4A<m+1, and
even dim A <m if A is essentially equicharacteristic (contrary to assumptions 0)
and 2) respectively).

Using Remark (2.7) one can translate this Lemma into a result on the
1 (M)s.

THEOREM (3.3). Let M be a finitely generated non-zero A-module and let m be
an integer such that depth M <m=<dim A. Write

o"(M) = p"(M)—pu" ' (M)+ ...+ (—1)""‘u'(M) where t=depth M .
Then ¢™(M) =0, and even ¢™(M)>0 provided

either 0) m<dimA—1,
or 1) m=dim M,
or 2) m<dim A and A is essentially equicharacteristic.

CoroLLARY (3.4). If M is a finitely generated non-zero A-module then the
following hold (with d=dim A).

a) u™(M)=2 for all m with depth M <m<d—1, and p*"*(M)21.
b) u!"'(M)22 if depth M <d—1 and either

1) dmM=d-1, or
2) A is essentially equicharacteristic.

c) p(M)=2 if depthM <dim M =d and A is essentially equicharacteristic.
Proor. Use the Theorem and the fact that if o™ !(M)>0 and ¢™(M)>0
then
um(M) > pr(M)—e" (M) = a"(M) > 0,
and hence u™(M)=2.
ReMARK (3.5). Point a) of this Corollary gives an affirmative answer to the

question of [6]: If M is non-zero and finitely generated then ™ (M)>0 for all m
with depth M Sm<id M (Z£00) (cf. also [2, (3.5) Lemma] or [6, Proposition
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2.6]). However, this result is known, see Fossum, Foxby, Griffith and Reiten [5,
Theorem (1.1)] (where the proof also uses Hochster’s big maximal Cohen—
Macaulay modules in equal characteristics to get the result in general).
P. Roberts has given a different proof (see [23]) which relies on dualizing
complexes and local duality. We shall use these ideas in Section 5.

Remark (3.6). If M is a finitely generated non-zero A-module of finite
injective dimension id M =depth 4 (cf. [2, (3.3) Lemmal) then (3.4.a) and c)
give depth A=id M =dim 4 — 1, and even depth A =dim A4 (that is, 4 is Cohen—
Macaulay) if A is essentially equicharacteristic, and thus we have rediscovered
the fact that the socalled Bass’ conjecture holds for essentially equicharacteris-
tic rings, see [21, chaptitre II, Théoréme (5.1)] and [15, p. 10].

CoroLLARY (3.7). If M is a finitely generated A-module of dimension n such
that p"(M)=1, then M is a dualizing A/Ann M-module provided either

1) n<dim 4, or

2) n=dim A and A is essentially equicharacteristic.

In particular, if A is essentially equicharacteristic and u*(A)=1 (d=dim A),
then A is a Gorenstein ring.

In view of Remark (1.9) we get (with the notation of Lemma (3.2)) s,,>0
provided t<m<dim 4 and A is Cohen—Macaulay and from this we get the
following result.

ProposiTioN (3.8). If A is Cohen—Macaulay and M is a finitely generated A-
module, then

u"(M)'=2 2 ifdepthM < m < dimA4,
and
w(M) =22 ifdepthM <d = dimM = dim4 .

REMARK (3.9). This shows that Conjecture B holds for modules over a
Cohen—Macaulay ring, a fact that is also covered by Proposition (4.2) in the
next section.

So far we have only been concerned with the numbers u™ (M) for m between
depth M and dim A (Proposition (4.3) will be the only exception). The last result
of this Section gives the reason for this: For m>dim 4 (even for m2dim M)
U™(M) can be expressed as some Betti number of a certain module, and
problems on Betti numbers seem to require different methods.

Math. Scand. 41 - 3
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ProposiTiON (3.10). To each finitely generated module M of dimension n there
exists a finitely generated A-module N such that

WiM) = BA_(N)  forallmzn.

Proor. The truncation
.—»F,—>...->F,,—->F,—-0

of the complex from Remark (2.7) is a free resolution of N =the cokernel of
F,., — F,. This is even a minimal free resolution, since for all i the map
k®F,,, — k®F, is zero, because it is the Maltis dual of the map

Hom (k, I',,(I3)) — Hom (k, ', (Iif 1)),

which is nothing but the map Hom (k,Ii;) —» Hom (k,Ii;') and thus zero
(when I, is a minimal injective resolution of M).

ReMARK (3.11). Note that it follows from the proof that Q4, " is a submodule
of N and that the homomorphisms F;,; — F;are non-zero for j2n=dim M if
id M = o0.

4. Unmixedness conditions and rings of low dimension.

In this Section we prove that Conjecture B holds if A is complete and O is
unmixed in 4 in the sense of Nagata [20, p. 82], that is 4 is equidimensional
and 0 is without embedded prime divisors in A4, or in other words

AssA = {p e Spec A | dimA/p=d},
so if Z is a non-zero submodule of a finitely generated free module then dim Z

=d (=dim A).

LemMA (4.1). In the situation of Lemma (3.2) assume that s,,=0 for a fixed
m=dim A and that dim A/p=m for all p in Ass A. Then the homomorphism
F,., — F, is zero.

Proor. With the notation of the proof of (3.2) we get dim Z,, <m (as there),
and hence Z, =0 (by assumption).

ProrosiTioN (4.2). Conjecture B holds if dim A/q>d1mA—-1 for all q in
Ass A. In particular, Conjecture B holds if 0 is unmixed in A.

Proor. As usual we will assume that A is complete. Since Conjecture B holds
when dim M <d (=dim A), we will also assume that dim M =d. By Proposition
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(3.1) it suffices to show that M is Cohen—Macaulay (provided u*(M)=1), so we
assume moreover that depth M <d=dim M, and thus we are required to prove
i (M)=2.

Now ¢¢(M)>0 by Theorem (3.3.1), and hence “¢? !(M)>0" is the only
thing left to justify, so assume ¢?~!(M)=0. Lemma (4.1) gives that F, — F,_,
is the zero homomorphism. From Roberts’ proof of the non-vanishing of the y'
(mentioned in Remark (3.5)) (cf. [23, p. 106]) we get M =M'@M" where id M’
<d and depth M"” =zd. By [21, Corollaire (4.9)] one of the modules M’ and M"”
must be zero. We have assumed depth M <d, so M" =0, and hence depth 4
=id M <d. But on the other hand dim M =d and id M < oo implies that id M
=d (by [2, (3.2) Corollary]), and thus we have obtained the desired
contradiction.

Even if we drop the condition that 4 is equidimensional Conjecture A holds.
If we let Min A4 denote the set of minimal prime ideals in A, then the only
condition we need is Min A =Ass 4, that is, 0 is without embedded prime
divisor in A. Actually we prove more.

PROPOSITION (4.3). If there exists an integer m=d (=dim A) such that
w™(A)<1, and if O is without embedded prime divisors in A, then A is a
Gorenstein ring.

ProoF. Again we assume that A is complete. Furthermore let us assume that
there exists an m>d such that y™(4)=1 (u?(4)=0 is impossible and u"(4)=0
for some m>d implies that A is Gorenstein, cf. [2, (3.5) Lemma]). So F,=A4
when F.=T,(I}) as usual.

Let L. denote the truncated complex

0>A—>F, ,—...>F—->0
where t =depth 4, énd let b=Z, =the kernel of A — F,,_,. We have
Q4" for i<m
Hi(L) = {b for i=m.
Now let p be a minimal prime ideal. For dim 4/p <m we have (by (2.6))

E, (k(p) for i=dim A/p
H((L),) = ‘bp for i=m,

0 otherwise
and for dim A/p=m we have

for i=m,
otherwise .

b
H{((L),) = {0‘”
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For all p in Min 4 and all A,-modules X let [,(X) denote the length of X, so
l,(X)<oo if X is finitely generated over A4,. For short we write

Ip) = 1,(4,) = L(E4,(k(®)) and  n(p) = L(b,)/I(p)
(so 0=n(p)=1).
Let x denote the Euler-characteristic of the complex L., that is,

L= L (1))

0gism

We have (for p in Min A)
e =% (=D (LYp) = X (=D (Hi(L)) ,

SO

(0) = (=Dl)+ (=D"n(p)i(p) if e=dimA/p<m,
) = n(p)l(p) if dimA/p=m.

Whence

_ f(=1F+(=1)"n(p) if e=dimA/p<m,
~ \n(p) if dimA/p=m,

so n(p) is an integer, and thus n(p)=0 or 1.

Now divide the search for a contradiction into two cases.

1°. m>d (and hence m>dim A/p for all p in Min A). In this case there are
only five possibilities for y (namely —2, —1,0,1,2,). If x is odd then n(p)=0,
and thereby b, =0, for all p in Min A=Ass 4, so b=0, that is the image of
F, ., — F, is zero. This is a contradiction by Remark (3.11). If on the other
hand y is even then n(p)=1 for all p in Min 4, that is (4/b),=0 for all p in
Min A=Ass A, but A/b is a submodule of the free module F,,_,, so A/b=0.
Again we have obtained a contradiction: the image of F,, — F,_, is zero.

Now that we have outruled the case m>d we turn to the case m=d, and if A
is Cohen—Macaulay we are done.

2°, m=d. We will assume t=depth4<d and are again looking for a
contradiction. If a denotes the image of F;,; — F; (= A4) we have a short exact
sequence

0—-a—->b—>0Q%—-0.

The contradiction will be obtained by showing a,=0 for all p in Min 4.
If p € Min 4 has dim 4/p=d (and such exists) then (%), +0, so b, +0, and
hence y=n(p)=1. Since (Qﬁ)p has length I(p) we get a,=0. .
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If e=dim A/p <d then 1=y=(—1)°+n(p) so n(p)=0 (and e is even), and
hence b, =0, that is a,=0.

As indicated in Remark (1.9) the New Intersection Theorem holds for very
short complexes also in mixed characteristics. This is stated below and we give
a completely elementary proof of this fact.

LEmMA (44). If0 > H, - F, > F, —» H, — 0 is an exact sequence of A-
modules with F, and F, finitely generated free and H,+0, then

dimA < max{dimH,+1,dimH,} .

ProoF. Let t =max {dim H,+ 1, dim H,} and assume dim A >t. Choose p in
Spec A with dim A/p>t. The exact sequence induces an isomorphism (F,),
= (Fo)p, so F, and F, have the same rank, and hence the determinant a of F,
— F, exists and is not a unit in A (since Hy,+0). Now dim 4/(a)=dimA4A—12=¢,
so pick q in Spec 4 such that a € q and dim 4/q=t>dim H,,. Since the image
of ain A is not a unit, the homomorphism (F,), — (F,), can not be surjective,
that is (Ho)q¢0, a contradiction.

In view of Remark (1.9) it is not surprising that the Conjectures A and B
hold for rings of dimensions at most two, but the above lemma gives slightly
stronger results.

CoRrOLLARY (4.5). If M is a finitely generated non-zero A-module with t
=depth M <dim A4, then p'**(M)> p'(M)>0.

CoRroLLARY (4.6). Conjecture B holds for finitely generated modules M with
depth M >dim 4 2.
Conjecture A holds for rings A with depth A=dim A —2.

5. The y' under localization.

THEOREM (5.1). Let p and q be prime ideals in the ring A such that pSq, and
let I denote dim (A,/pA,). For each finitely generated A-module M and for all
integers i there is an inequality:

pp,M) £ wt, M) .
Proor. By [2, (2.4) Corollary] it suffices to prove the following statement:
1 (p, M)< i+ (M) for all i and all p in Spec A with dim 4/p=1.

The proof of this is divided into two steps.
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1°. A is complete. Since A (by [4]) is a homomorphic image of a regular local
ring we may apply (2.3) and (2.4). Let I, be a minimal injective resolution of
M and write F.=T",,(I};)". Then F. is isomorphic (in the derived category 2) to
Hom (M, D*) [d] by (2.4)), and hence

X" = Hom' (F',D’) ¥ M[—-d] (in 9)

(by (2.3)). We have used the convention F'=F _; and M[ —d] is the complex
with the module M’in degree d and zero in other degrees. We have
M for i=d,
0 otherwise .

H(X) = {

This means that we can break the complex X' up into exact sequences as
follows:

i
(I11) 0 74 X4 Xiti— ...

Before we continue we will look more closely on the modules X*. Using the
fact that FP=F _, is free of rank pu~?(M) (cf. Remark (2.7)) and the definition of
X' we get for a fixed i:

x* =[] Hom (F?, D7+

p

— IT Hom (42~™, {] E(4/p))

*p “P(M)
=11 (IJ E(A/p))"
= LI Eajpy=e"®
p

where (of typographical reasons LI*P means the sum over the p in Spec A with
dim A/p=d—p—i and where u(i,p)=dim A/p+i—d.
In other words, X' is an injective module and

W, XY) = p&P(M) foralli.

Now back to the diagram (III). The top row shows that B? is injective, so the
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column splits: Z?=B‘@M. We get also: X‘=B*@X¢ and hence an exact
sequence:

0> M- X4 xa+1 o, | 5 x4,

that is, an injective resolution of M (not necessarily minimal). We get (for
p € Spec A)

1o, M) £ 10, XY £ 10(p, X% = p'(M) and
KE,M) < 40, X749 = @t (M) for all i>0,

where [=dim A/p (so u(i+d, p)=i+1), and hence we are done with the proof in
the complete case.

2°. The general case. Let p (e Spec A) be fixed and put /=dim A/p. Choose q
in Spec A such that q2pA4 and dim A/q=I. This is possible since dim A/p
=dim A/pA4, and q is necessarily minimal in Supp; (4/pA), so C= flq/pﬁq is an
artinian ring, and hence u2(qC, C)+0.

Using [8] and Case 1° we get the desired assertion:

Ha(p, M) < p(aC, C)uiy (p, M)

< Y @G O)uy(p, M)
ptqg=i

= p(a, M)

< Wi (M) = M)

6. Injective dimension of modules of depth zero.
THEOREM (6.1). If A is essentially equicharacteristic and if M is an A-module
with depth M =0 then
dimA4 < idM+dim (M) .
Note that the module M is not supposed to be finitely generated, but if M is

finitely generated then the result is known (since it is the Bass’ conjecture, see
[21] and [15], but also Remark (3.6)).

ProoF. One of the standard duality formulas [3, chapter VI] gives
Tor; (L, M )=Ext (L, M) for all i and all finitely generated modules L, and
hence k@ M +0 and id M =fd M. This shows that it suffices to prove the dual
version (6.2) of (6.1) stated just below.

THEOREM (6.2). If A is essentially equicharacteristic and if the A-module N is
such that mN £ N then

dimA4 £ fdN+dimN .
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In the proof of (6.2) we need the existence of a big maximal Cohen—
Macaulay module satisfying the conditions of the following Proposition in
which the (countably generated) big maximal Cohen—Macaulay module C has
been constructed by Griffith (see [10]) (beginning with Hochster’s big maximal
Cohen—Macaulay module).

PrOPOSITION (6.3). Let A be a complete essentially equicharacteristic local
ring. Then there exists a (countably generated) maximal Cohen—Macaulay A-
module C such that

Tord (C,N) = 0

for all i>0 and all modules N of finite flat dimension.

Proor. Pick p in Spec A such that B=A/p is equicharacteristic and of
dimension d =dim A4. This complete domain B is a module-finite extension of a
regular local subring R (by [4]). In this situation Griffith has constructed a
(countably generated) B-module C which is free as an R-module (cf. [10,
Theorem 3.1]). This module C is a maximal Cohen—Macaulay module both as
an R-module, as a B-module, and as an A-module, since if (a,,...,a,) is a
system of parameters for 4 such that the images (a,,...,a,) in B lie in R and
form a system of parameters for R, then qa;,. . .,a, is a C-regular sequence. It is
this module C that works in the Proposition.

To see this let €, (for 0<h<d) denote the class of non-zero B-modules D
such that D is free over R/(ry,. . .,r;) for a suitable R-regular sequence r,. . .,r,
of length h in Anng D. Note that C belongs to ¢, and hence €,=+ & for all h,
0<hzd.

CLAM 1. The classes €, have the following property: For any D in ¢, and
any q in Supp4 D with ht4 q> h there exists a D-regular element x in q such that
D/xD belongs to €, ,.

Proor oF CLAIM 1. Let D be in €, say D is free over R=R/(ry,. . .,r,) where
- . .,r, is an R-regular sequence. Since A is complete, it is catenary, so all
saturated chains of prime ideals between p and m have the same length, namely
d (=dim A). From this follows that the prime ideal ¢’ = q/p in B has height >h,
so the prime ideal t=¢’ N R in R has also height > h (since B is module-finite
over R). Therefore, and since R is a regular local ring, the R-regular sequence
ri,...,r, (€ 1) can be extended to an R-regular sequence ry,. . .,rly+; in t of
length h+ 1. Pick x in A such that its image in Bis r,, ;. Then D/xD is free over
R/ry,1R=R/(ry,... Ty 1ys+,) and x is D-regular (since r,,, is R-regular and D
is R-free).
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The Proposition follows from the next Claim.

CrLamM 2. Tor; (D,N)=0 for i>h if D € ¢, and fd N <oo.

Proof of Claim 2 by descending induction on h. Note first of all that fd N <d
if fd N <oo (cf. [1, Theorem 2.4]) so the case h=d is trivial.

The inductive step. Assume i>h and Tor;(D,N)=+0, and pick q in
Ass Tor; (D, N). If ht q > h then there exists (by Claim 1) a D-regular element x
in q such that D=D/xD € €, ,. The short exact sequence 0 —» D % D — D
— 0 induces an exact sequence:

Tor,,, (D, N) — Tor;(D,N) % Tor; (D, N) .

Here Tor;,, (D, N)=0 by the inductive hypothesis, and hence x is regular on
Tor; (D, N) contrary to the assumptions x € q and q € Ass Tor; (D, N).
Therefore necessarily ht q<h, but this leads also to a contradiction:

Torfs (D, N,) = Tor{ (D,N), + 0,
so isfdy N,<dim A,=htq<h (cf. again [1, Theorem 2.4]).

PRrOOF OF (6.2). The proof is divided into 3 steps, and throughout the proof
we assume (of course) fd N < oco.

Step 1. It suffices to assume that A4 is complete, since

dimA = dim4, fd;(N®44) =fd N,
and R
dim; (N®4A4) = dimy N .

The equality of the flat dimensions follows since A is faithfully flat over A4, and
dim; (N® 4 A)=dim4 N, since this holds if N is finitely generated, and in
general N is the direct union of finitely generated submodules and tensoring
with 4 respects direct unions.

From now on A is complete and C is the module from Proposition (6.3).

Step 2. For all N with fd N<oo and all i with 0<i<d we have an
isomorphism

HY{(C®N) = Tor, (H&(C),N) .

ProoF. Let T denote the functor H%(C® —) from the category & of
modules of finite flat dimension to the category of modules. T is a right exact
functor on # and T commutes with direct limits, so there is an isomorphism of
functors on #:

T~ HLO® - .
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Now the result of Step 2 follows, because the ith left derived functor L;Tof T'is
Hi {(C® —), since if P is a projective module, then depth C® P=d, so
H: (C®P)=0 for i+d, and since C® — is exact by Proposition (6.3).

The last step completes the proof of (6.2).

Step 3. f{d N=>d—dim N.

Proor. Since (C N)®@,k=(CR, k)R, (N®4k)%0 by assumption,
Corollary (2.2) gives that

t = depth (C®N) < dim (C®N) < dim N,
and hence
Tor,_, (H*(C),N) = H'(C®N) # 0
by Step 2 and Lemma (2.1.2).

REMARK (6.4). For M finitely generated Theorem (6.2) follows immediately
from the New Intersection Theorem. We get even dim B<pd N +dim (B®N)
for all finitely generated modules B and N. So it might be that (6.2) also in the
general case follows directly from an appropriate generalization of the New
Intersection Theorem to complexes of flat modules.

COROLLARY (6.5). If there exists a non-zero A-module N such that Supp N
={m}, mN*£N, and fd N <oo, then A is Cohen—Macaulay (and pd N=fd N
=dim 4 =depth A) provided A is essentially equicharacteristic.

Proor. From (6.2) it follows that dim A <fd N, and hence A is Cohen-
Macaulay by [1, Theorem 2.4]. From [12, Corollaire (3.2.7)] (see also [9,
Corollary 3.4]) it follows that pd N <dim A.

ExAMPLE (6.6). If A is a two-dimensional Cohen—Macaulay ring with an A-
regular sequence x,y, then C=A@E/(A4/(y)) is a big maximal Cohen—
Macaulay module (x, y is a C-regular sequence (but y, x is not)) and fd (4/(y))
=1<00. However,

Tor, (C,4/(y) = {ce C| yc=0} + 0.

This shows that not any big maximal Cohen—Macaulay module C works in
Proposition (6.3).
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ADDED IN PROOF. Szpiro has informed me that the New Intersection
Theorem holds in general for complexes of length two (that is, s=2 in
Theorem (1.2)). This is a consequence of [21, Chap. II Théoréme (1.3)], and it
shows that the bound =dim A4 —2 in both paragraphs of Corollary (4.6) can be
replaced by =dim 4 —3.
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