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RINGS WITH AN ALMOST
NOETHERIAN RING OF FRACTIONS

EFRAIM P. ARMENDARIZ

Assume R is a commutative ring with 1. We shall call an R-module M an
almost Noetherian R-module if each proper submodule of M is a finitely
generated R-module. The p-quasicyclic group Z - is an example of an almost
Noetherian Z-module which is not Noetherian; in fact any almost Noetherian
Z-module is either Noetherian or isomorphic to Z  for a suitable prime p [1,
Theorem 2.2]. On the other hand it is well-known that the quotient field of a
discrete valuation domain R has each of its proper submodules isomorphic to
ideals of R; more generally Shores and Lewis have shown that for any
valuation domain R, the proper submodules of the quotient field of R are
isomorphic to ideals of R [3, Proposition 2.2]. Hence in case R is a discrete
valuation domain its quotient field K is an almost Noetherian R-module.
These observations lead us to pose the question: Which rings have an almost
Noetherian ring of fraction?

The purpose of this paper is to provide an answer and this is given by
Theorem 2.1:

A ring R has an almast Noetherian ring of fractions if and only if R is either

(i) a Noetherian ring in which each maximal ideal has nonzero annihilator; or

(i) a 1-dimensional local Noetherian domain whose integral closure is a
discrete valuation ring which is module-finite over R.

1. Preliminaries.

In this section we will provide some basic properties of almost Noetherian
modules. The proof of the first proposition is essentially the same as that of [1,
Lemma 2.1] and so will be omitted.

ProrosITION 1.1. Let M be an almost Noetherian module which is not
Noetherian.

(a) For each proper submodule H of M, M/H is an almost Noetherian module
which is not Noetherian.
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(b) Each proper submodule of M is small; i.e., if H,K are submodules of M
and M=H+K then M=H or M=K.

One immediate observation which follows from part (a) of the preceding is
that if R is a ring for which all modules have maximal submodules, e.g., perfect
rings, then any almost Noetherian module is Noetherian.

ProrosITION 1.2. Suppose M is an almost Noetherian module which is not
Noetherian.

(a) For any x € R either xM=0 or xM =M.

(b) Ann (M) is a prime ideal of R and M is either a torsion or torsionfree
divisible module over the integral domain R/Ann (M).

Proor. (a) Each element x of R induces an endomorphism of M via
multiplication; its kernel is

Anny(x) = {ue M : xu=0}.

If xM #0 then Anny(x)$ M so by Proposition 1.1(a), xM &~ M/Anny,(x) is not
Noetherian. Hence xM =M.

(b) If x,y € R with x ¢ Ann (M) and y ¢ Ann (M) then by (a), xM=M
= yM, hence M =xyM. Thus xy ¢ Ann (M) showing that Ann (M) is a prime
ideal of R. By passing to R/Ann (M) we may assume that R is a domain and
Ann (M)=0. Then for x € R with x+0 we have xM=M so that M is a
divisible R-module. Now suppose M is not torsion-free and select x € R, x+0,
such that Anny,(x)%0. Then

Anny(x) € Anny(x?) € ...
is an ascending chain of submodules of M. Further,
Anny(x) # M and M/Anny(x) * M

so that the chain is strictly increasing. This means that U ; Ann,,(x%) cannot
be a proper submodule of M and so U2 ; Anny, (x)= M. It follows that M is a
torsion R-module.

For the next result the blanket assumption that R be a commutative ring is
not necessary.

PropositioN 1.3. If M is an almost Noetherian R-module which is not
Noetherian then E=Endg (M) has no nonzero zero-divisors.

Proor. As in Proposition 1.2(a) if « € E with a+0 then Ma=M. Thus if
o,f € E and a#0, f+0 then M(af)=MpB=M so af +0.
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2. Principle result.
We proceed to our principle result.

THEOREM 2.1. Let R be a ring with ring of fractions K. Then K is an almost
Noetherian R-module if and only if R is either

(i) a Noetherian ring in which each maximal ideal has nonzero annihilator; or

(i) a 1-dimensional local Noetherian domain whose integral closure is a
discrete valuation ring module-finite over R.

Proor. We shall first show that rings of type (i) or (ii) have an almost
Noetherian ring of fractions. First assume that R is of type (i). If t € Risnot a
zero-divisor then ¢ belongs to no maximal ideal of R hence t is a unit in R. Thus
in this case R=K and K is, in fact, a Noetherian R-module. Next assume R is
of type (ii) and let S=integral closure of R. Then K is the quotient field of S
and as mentioned in the introduction K is an almost Noetherian S-module.
Because S is a finitely generated R-module, in order to show that K is an
almost Noetherian R-module it suffices to show that if A is a proper R-
submodule of K then SA+ K. Now

S = Ru;+Ru,+...+Ru,

hence there exists b € R such that S Rb™ 1. If 4 is an R-submodule of K such
that K=SA4 then

K = SA < Rb™'4A = Ab™!

so that K=A4b"!. Hence A=Kb=K establishing our statement. We remark
that if R is a domain whose integral closure S is a discrete valuation ring
modulefinite over R then R is necessarily local 1-dimensional by [2, Theorems
44 and 48] and Noetherian by the Eakin—Nagata theorem [2, p. 54].

For the converse‘suppose first that R=K. Then R is a Noetherian ring in
which each nonzero-divisor is a unit. By [2, Theorem 86] each proper ideal has
nonzero annihilator; in particular each maximal ideal has nonzero annihilator,
so in this case R is a ring of type (i). Thus we assume R+ K. Then R is a
Noetherian ring while K is not a Noetherian R-module. Because Ann (K)=0,
R is a domain by Proposition 1.2(b) and so K is the quotient field of R. We will
establish that R is local by showing that the non-units of R form an ideal. Let
x € R, x#+0, be a non-unit; then R[x~1] is an R-submodule of K. If
R[x~']+K then R[x~ '] is a Noetherian R-module and so x~* is integral over
R. But then x ' e R, a contradiction. Thus we must have R[x"!']=K
whenever x+0 is a non-unit of R. Applying [2, Theorem 19] we conclude that
the non-units of R coincide with the intersection of the nonzero prime ideals of
R. Thus, in fact, R is local and 1-dimensional. The integral closure S of R is a
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proper R-submodule of K hence S is module-finite over R. Furthermore K is
an almost Noetherian S-module so the preceding argument can be applied to
S. Hence S is local, 1-dimensional, Noetherian and integrally closed, i.e., S is a
discrete valuation ring.

By combining this theorem with Proposition 1.2 (b) we have

THEOREM 2.2. Let R be a ring having an almost Noetherian R-module. M
which is not Noetherian. If M is a torsion-free R/Ann (M)-module then M is
isomorphic to the quotient field of R/Ann (M); hence R/Ann (M) is a domain of

type (ii).

ReMARK. Rings of type (i) need not be Artinian. An example of such a ring is
the ring

R = F[[x,y])/(x%xy),

where F is any field. We should note however that if R is of type (i) then R is
semi-local. This is because

Homg (R/I,R) =~ Ann (I)

for any ideal I of R. Hence each simple R-module is isomorphic to an ideal of
R. Thus if T is the socle of R and J is the intersection of the maximal ideals of
R then J=Ann (T). Because R is Noetherian, R satisfies the descending chain
condition on annihilators so that

J = Ann (Ru;+...+Ruy) for some u,,...,u, €T.

Then R/J embeds in Ru;@®... ®Ru,cT® and T® is a finitely generated
completely reducible R-module.
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