RINGS WITH AN ALMOST NOETHERIAN RING OF FRACTIONS

EFRAIM P. ARMENDARIZ

Assume R is a commutative ring with 1. We shall call an R-module M an almost Noetherian R-module if each proper submodule of M is a finitely generated R-module. The p-quasicyclic group $Z_{p^{\infty}}$ is an example of an almost Noetherian Z-module which is not Noetherian; in fact any almost Noetherian Z-module is either Noetherian or isomorphic to $Z_{p^{\infty}}$ for a suitable prime p [1, Theorem 2.2]. On the other hand it is well-known that the quotient field of a discrete valuation domain R has each of its proper submodules isomorphic to ideals of R; more generally Shores and Lewis have shown that for any valuation domain R, the proper submodules of the quotient field of R are isomorphic to ideals of R [3, Proposition 2.2]. Hence in case R is a discrete valuation domain its quotient field K is an almost Noetherian R-module. These observations lead us to pose the question: Which rings have an almost Noetherian ring of fraction?

The purpose of this paper is to provide an answer and this is given by Theorem 2.1:

- A ring R has an almost Noetherian ring of fractions if and only if R is either
- (i) a Noetherian ring in which each maximal ideal has nonzero annihilator; or
- (ii) a 1-dimensional local Noetherian domain whose integral closure is a discrete valuation ring which is module-finite over R.

1. Preliminaries.

In this section we will provide some basic properties of almost Noetherian modules. The proof of the first proposition is essentially the same as that of [1, Lemma 2.1] and so will be omitted.

PROPOSITION 1.1. Let M be an almost Noetherian module which is not Noetherian.

(a) For each proper submodule H of M, M/H is an almost Noetherian module which is not Noetherian.

Received January 18, 1977.

(b) Each proper submodule of M is small; i.e., if H, K are submodules of M and M = H + K then M = H or M = K.

One immediate observation which follows from part (a) of the preceding is that if R is a ring for which all modules have maximal submodules, e.g., perfect rings, then any almost Noetherian module is Noetherian.

Proposition 1.2. Suppose M is an almost Noetherian module which is not Noetherian.

- (a) For any $x \in R$ either xM = 0 or xM = M.
- (b) Ann (M) is a prime ideal of R and M is either a torsion or torsionfree divisible module over the integral domain R/Ann(M).

PROOF. (a) Each element x of R induces an endomorphism of M via multiplication; its kernel is

$$Ann_M(x) = \{u \in M : xu = 0\}.$$

If $xM \neq 0$ then $\operatorname{Ann}_M(x) \neq M$ so by Proposition 1.1(a), $xM \approx M/\operatorname{Ann}_M(x)$ is not Noetherian. Hence xM = M.

(b) If $x, y \in R$ with $x \notin \text{Ann}(M)$ and $y \notin \text{Ann}(M)$ then by (a), xM = M = yM, hence M = xyM. Thus $xy \notin \text{Ann}(M)$ showing that Ann(M) is a prime ideal of R. By passing to R/Ann(M) we may assume that R is a domain and Ann(M) = 0. Then for $x \in R$ with $x \neq 0$ we have xM = M so that M is a divisible R-module. Now suppose M is not torsion-free and select $x \in R$, $x \neq 0$, such that $\text{Ann}_M(x) \neq 0$. Then

$$\operatorname{Ann}_{M}(x) \subseteq \operatorname{Ann}_{M}(x^{2}) \subseteq \ldots$$

is an ascending chain of submodules of M. Further,

$$Ann_M(x) \neq M$$
 and $M/Ann_M(x) \approx M$

so that the chain is strictly increasing. This means that $\bigcup_{i=1}^{\infty} \operatorname{Ann}_{M}(x^{i})$ cannot be a proper submodule of M and so $\bigcup_{i=1}^{\infty} \operatorname{Ann}_{M}(x^{i}) = M$. It follows that M is a torsion R-module.

For the next result the blanket assumption that R be a commutative ring is not necessary.

PROPOSITION 1.3. If M is an almost Noetherian R-module which is not Noetherian then $E = \operatorname{End}_R(M)$ has no nonzero zero-divisors.

PROOF. As in Proposition 1.2(a) if $\alpha \in E$ with $\alpha \neq 0$ then $M\alpha = M$. Thus if $\alpha, \beta \in E$ and $\alpha \neq 0$, $\beta \neq 0$ then $M(\alpha\beta) = M\beta = M$ so $\alpha\beta \neq 0$.

2. Principle result.

We proceed to our principle result.

THEOREM 2.1. Let R be a ring with ring of fractions K. Then K is an almost Noetherian R-module if and only if R is either

- (i) a Noetherian ring in which each maximal ideal has nonzero annihilator; or
- (ii) a 1-dimensional local Noetherian domain whose integral closure is a discrete valuation ring module-finite over R.

PROOF. We shall first show that rings of type (i) or (ii) have an almost Noetherian ring of fractions. First assume that R is of type (i). If $t \in R$ is not a zero-divisor then t belongs to no maximal ideal of R hence t is a unit in R. Thus in this case R = K and K is, in fact, a Noetherian R-module. Next assume R is of type (ii) and let S = integral closure of R. Then K is the quotient field of S and as mentioned in the introduction K is an almost Noetherian S-module. Because S is a finitely generated R-module, in order to show that K is an almost Noetherian R-module it suffices to show that if A is a proper R-submodule of K then $SA \neq K$. Now

$$S = Ru_1 + Ru_2 + \ldots + Ru_n$$

hence there exists $b \in R$ such that $S \subseteq Rb^{-1}$. If A is an R-submodule of K such that K = SA then

$$K = SA \subseteq Rb^{-1}A = Ab^{-1}$$

so that $K = Ab^{-1}$. Hence A = Kb = K establishing our statement. We remark that if R is a domain whose integral closure S is a discrete valuation ring module finite over R then R is necessarily local 1-dimensional by [2, Theorems 44 and 48] and Noetherian by the Eakin-Nagata theorem [2, p. 54].

For the converse suppose first that R = K. Then R is a Noetherian ring in which each nonzero-divisor is a unit. By [2, Theorem 86] each proper ideal has nonzero annihilator; in particular each maximal ideal has nonzero annihilator, so in this case R is a ring of type (i). Thus we assume $R \neq K$. Then R is a Noetherian ring while K is not a Noetherian R-module. Because Ann (K) = 0, R is a domain by Proposition 1.2(b) and so K is the quotient field of R. We will establish that R is local by showing that the non-units of R form an ideal. Let $x \in R$, $x \neq 0$, be a non-unit; then $R[x^{-1}]$ is an R-submodule of K. If $R[x^{-1}] \neq K$ then $R[x^{-1}]$ is a Noetherian R-module and so x^{-1} is integral over R. But then $x^{-1} \in R$, a contradiction. Thus we must have $R[x^{-1}] = K$ whenever $x \neq 0$ is a non-unit of R. Applying [2, Theorem 19] we conclude that the non-units of R coincide with the intersection of the nonzero prime ideals of R. Thus, in fact, R is local and 1-dimensional. The integral closure S of R is a

proper R-submodule of K hence S is module-finite over R. Furthermore K is an almost Noetherian S-module so the preceding argument can be applied to S. Hence S is local, 1-dimensional, Noetherian and integrally closed, i.e., S is a discrete valuation ring.

By combining this theorem with Proposition 1.2 (b) we have

THEOREM 2.2. Let R be a ring having an almost Noetherian R-module. M which is not Noetherian. If M is a torsion-free R/Ann(M)-module then M is isomorphic to the quotient field of R/Ann(M); hence R/Ann(M) is a domain of type (ii).

REMARK. Rings of type (i) need not be Artinian. An example of such a ring is the ring

$$R = F[[x, y]]/(x^2, xy)$$
,

where F is any field. We should note however that if R is of type (i) then R is semi-local. This is because

$$\operatorname{Hom}_R(R/I,R) \approx \operatorname{Ann}(I)$$

for any ideal I of R. Hence each simple R-module is isomorphic to an ideal of R. Thus if T is the socle of R and J is the intersection of the maximal ideals of R then $J = \operatorname{Ann}(T)$. Because R is Noetherian, R satisfies the descending chain condition on annihilators so that

$$J = \text{Ann}(Ru_1 + \ldots + Ru_k)$$
 for some $u_1, \ldots, u_k \in T$.

Then R/J embeds in $Ru_1 \oplus \ldots \oplus Ru_k \subseteq T^{(k)}$ and $T^{(k)}$ is a finitely generated completely reducible R-module.

REFERENCES

- R. Gilmer and M. O'Malley, Non-Noetherian rings for which each proper subring is Noetherian, Math. Scand. 31 (1972), 118-122.
- 2. I. Kaplansky, Commutative Rings, Allyn and Bacon, Boston, 1970.
- T. S. Shores and W. J. Lewis, Serial modules and endomorphism rings, Duke Math. J. 41 (1974), 889-909.

UNIVERSITY OF TEXAS AUSTIN, TEXAS U.S.A.