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THE VARIETY COVERING THE VARIETY
OF ALL MODULAR LATTICES

BJARNI JONSSON

It was first noted by Kirby Baker that the join of two finitely based lattice
varieties need not be finitely based. His example has not appeared in print, but
later I discovered and published, in [3], a different example. The principal
purpose of that paper, however, was to prove the following positive result.

THEOREM 1. If ¥ and ¥ are finitely based varieties, and if ¥" < .M and (V")
= A3, then ¥+ is finitely based.

Here 4 is the variety of all modular lattices, 4" is the variety generated by
the pentagon (the five-element non-modular lattice), and (¥”)° is the variety
defined by all the 3-variable identities that hold in ¥”. In particular, therefore,
this shows that .#* =.# + ./, the unique lattice variety that covers .4, is
finitely based. '

As was pointed out in [3], one could theoretically find a basis for ¥+ ¥,
using the bases for ¥" and ¥”, by means of the techniques developed by Baker
in [1], but even in the simplest cases this would be hopelessly inefficient, and
the axioms would be far too complicated to be of any interest. We have
therefore undertaken to find, by more special methods, a more manageable
basis for the particular variety .#*. We are indebted to G. A. Gritzer and
R. Padmanabhan for suggestions that led to a simplification of the final steps
in the proof of our principal result, Theorem 12, and to the elimination of a
redundant identity from that theorem.

We write u<v if v covers u. By a critical edge in a subdirectly irreducible
lattice L we mean a non-trivial quotient v/u that is collapsed by the minimal
non-zero congruence relation on L. The maps t — tx and t — t+x are called
weak transpositions, and a composition of weak transpositions is called a weak
projection. An interval v/u is said to transpose weakly down, respectively up,
onto v'/u’ if there exists a weak transposition ¢t — tx, respectively t — t+x,
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that takes v into v’ and u into u'. If there exists a weak projection that takes v
into v’ and u into u/, then we say that v/u projects weakly onto v'/u'.
Throughout this paper we fix the lattice polynomials

a=pq+pr, b=gq, c=pg+pr)

and hence either a=c, or else g, b and c generate a pentagon. (We freely
identify the variables and polynomials with their values under an assignment.)
Our first result is motivated by the observation that for L e .#* the
congruence relation con (g,c) generated by identifying a and c has a very
simple form. First consider the case when L is subdirectly irreducible. If a=c,
then con (g, ¢) is of course trivial, but if a<c, then L is simply the pentagon
generated by g, b and ¢, and con (g, ¢) identifies no two distinct elements other
than a and c. Using these observations one can prove that in an arbitrary
member L of A4 7,

con (a,¢) = {{u,v) e LxL: u+vSuv+c A (u+v)(uv+a)=uv} .

The proof of this assertion is quite easy. Call the right hand side of the
equation 6. It is obvious that #<con (a,¢) and afc, and thus we need only
prove that 0 is a congruence relation. Represent L as a subdirect product of
lattices L; (i € I) and denote the image of an element u € Lin L; by u;. We claim
that 0 is in fact the congruence relation on L induced by the congruence
relations

6; = con (a;¢)

on the lattices L, i.e., that u 0 v iff u; 0, v; for all i € I. Since the conditions ufv
and uv 6 (u+v) are clearly equivalent, it suffices to consider the case when u=<v.
In this case we have ufv iff vSu+'c and v(u+a)=u, ie., iff

1) v; S u;+c¢; and  v(y;+a) = y

for all i € I. If a;=c;, then these conditions hold just in case u;=v;, but if a;<c;,
and hence L, is a pentagon with c;/q; as its critical edge, then there is one more
solution, namely u;=a; and v;=c,. Thus in either case, (1) holds iff u; 6, v;.

We do not make direct use of the above observations, but rather we need to
find an identity that holds in .#* and is such that the above characterization
of con (a, b) holds in every lattice L that satisfies this identity. With 0 defined as
before, we therefore look for properties that imply that 6 is a congruence
relation. Since 0 is obviously reflexive and u v iff uv 0 (u+v), we can use the
Gritzer-Schmidt Criterion (cf. [2], p. 149), which tells us that 6 is a
congruence relation iff
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2) usv=wand ufvOw imply u6w,
(3) u=<vand ufv imply (u+w)0 (v+w),
4 u=<v and ufv imply uwow.
The first implication holds in any lattice, for if uSv<w and u6v0w, then
v S u+ce, vu+a)=u,
w=v+e, ww+a) =v,
and therefore w<u+c and
w(u+a) = wv+a)(u+a) = v(u+a) = u,

yielding u @ w. For (3) and (4) we need to know that f uSv=<u+aand v(u+a)
=u, then

v+w S u+wte, @+wu+w+a) = utw,
vw < uw+c, vwuw+a) = uw .

Of these four conditions, the first and the last hold in any lattice. To transform
the implications

w=sov) A Ulv) > (v+wyu+w+a) = ut+w,
w=sv) A Wlv) > vw gl uw+c
into identities, we consider arbitrary lattice elements u and v and let
u = vu+a), v =ovu+tc).
Then v'<v' and v' (W' +a)=v(u+a)=1/, and the inclusion
V(W +c) £ V(W +a)+c
holds in #*, so that u' 8v'. In #* we therefore have
%) (v+c)+w)(v(u+a)+w+a) = vu+a)+w,
6) vu+ow £ v(u+aw+c.

On the other hand, if these identities hold, then the two implications are also
satisfied, for if u <v and u 6 v, then ' =u and v =v. Actually, we can use in place
of (5) and (6) the single identity

)] (vu+c)+w)u+w+a) = v(u+a)+w.

It is obvious that (7) implies (5), and to derive (6) we replace v by vw and w by
¢. Furthermore, (7) obviously holds when a=c, so that in order to show that
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(7) holds in .# * we need only consider the case when c/a is a critical edge in a
pentagon. If u £ a, then a+u=c+u, and (7) holds, but if u<q, then (7) reduces
to (vc+ w)(w+a)=va+w. To verify this equation consider two cases, c<v and
c£v, noting that in the latter case cv=av.

We now summarize our results up to this point.

LEMMA 2. The identity
I (vw+c)+w)u+w+a) = vu+a)+w
holds in M ™. In any lattice L that satisfies (I),

con(a,c) = {{u,v) e LXxL: u+vSuv+c A (u+v)(uv+a)=uv} .

We next look for another identity (IT) which also holds in .# *, and such that
in any subdirectly irreducible lattice L that satisfies (I) and (II), the condition a
< c implies that ¢ coversa and that c/a is a critical edge of L. First observe that
if (I) holds, then con (a, c) does not collapse any interval v/u with cSu<v or u
<v=a.Infact,if cSu<v, thenvfu+c, and if u<v=a, then v(u+a)=v=+u. If
now a<d<c, then a, d and b generate a pentagon, and we can apply the above
observation with ¢ replaced by d to infer that con (c,d) does not collapse d/a,
and that d/a is therefore not a critical edge. Similarly ¢/d cannot be a critical
edge. From this it follows that if some subinterval ¢'/a’ of c/a is a critical edge
of L, then a=d', ¢'=c, and a<c.

Assuming still that L satisfies (I), suppose v/u is a critical edge of L. Then
con (u,v) identifies the elements a’'= (u+a)c and ¢'= (v+a)c, and hence either
a'=c or else ¢'/a’ is a critical edge of L. Thus if we can exclude the case a’'=¢,
we will be able to infer that a<c and that c/a is a critical edge of L.

To say that a’' <’ is equivalent to the assertion that con (a’, ¢') identifies u
and v, and since we are assuming that (I) holds, this is true just in case

v S u+c and v(u+d)=u.
The second equation does in fact hold, for
v(u+a) = v(u+c(u+a) = v(u+a) =a.
The first condition can be written v<u+c(v+a) or, since vSu+c,
v(u+c) £ u+c(v+a).

In this form it is actually an identity that can easily be seen to hold in .# *, for
it is obviously satisfied when a=c, and we therefore need only consider the
case of a pentagon with c/a as its critical edge. We have therefore found the
required identity (II).
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LEMMA 3. The identity
(I vu+c) £ utc(v+a)

holds in 4 *. In any subdirectly irreducible lattice that satisfies (I) and (II), if
a<c, then a<c and c/a is a critical edge of L.

We next add an identity that will guarantee that if v/u is a quotient such that
con (u,v) collapse a non-trivial subinterval of c/a, then either con (bu, bv) or
con (cu, cv) collapses a non-trivial subinterval of ¢/a. We only consider the case
when the subinterval of c/a can be reached from v/u by a short sequence of
weak transposition, since later identities will guarantee that a longer sequence
can always be shortened.

LemMA 4. The identity

(I11) (t+x)y+a)c = ((ct+x)y+a)c+ ((bt+x)y+a)c
holds in M ™.

Proor. Since the identity obviously holds when a=c, we need only consider
the case of a pentagon with c/a as its critical edge. If (III) fails, then ¢ must be
strictly larger than bt and ct, and must therefore be the top element of the
pentagon. Thus it suffices to show that

(y+a) = (by+a)c+ (cy+a)c.

If y=>b or y 2, then both sides of this equation are equal to ¢, but if y<a, then
both sides have the value a.
Suppose L satisfies (III), and consider the weak projectivity

f@® = (t+x)y+a)c.

If f maps an interval v/u onto a non-trivial subinterval of c/a, then f maps
either bv/bu or cv/cu onto a non-trivial subinterval of c/a. Le., if f (u) < f (v), then
fbu)<f(bv) or f(cu)<f(cv). Assuming first that f maps cv/cu onto a non-
trivial subinterval of ¢/a, we want to find a simpler weak projectivity with the
same property. We try

gt) = (t+x)c+a.

This will work in any lattice in which f(ct) can be expressed as a function of
g(ct). We try

fct) = ((glct)y+xy)y+a)c .
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Ifa=c, then‘both sides equal q, so in order to show that this holds in #* we
need only verify that it holds in a pentagon with c/a as its critical edge. This is
of course a simple matter.
LemMA S. The identity
(v) (ct+x)y+a)c = (((ct+x)c+a+xy)y+a)c
holds in #*. If L is any lattice in which (IV) holds, and if the weak projectivity
t— ((t+x)y+a)

maps the interval cv/cu of L onto a non-trivial subinterval of c/a, then so does
the weak projectivity

t— (t+X)c+a.

We now consider the case when f(bu)<f(bv). Here we try the weak
projectivity

h(t) = (t+a)c.

This will work provided f(bt) can be expressed as a function of h(bt). The
identity that works here is somewhat more involved, but as with the others, it
is easy to check that it holds in .#*.

LEMMA 6. The identity
) ((bt+x)y+a)c = ((bt+a)c+ xy)((b+x)y+a)c
holds in #*. If L is any lattice in which (IV) holds, and if the weak projectivity
t— ((t+x)y+a)

maps the interval bv/bu of L onto a non-trivial subinterval of c/a, then so does the
weak projectivity

t— (t+a)c.

We are now ready to show that one need not consider long sequences of
weak projectivities.

LemMA 7. Suppose L is a lattice that satisfies (III), (IV) and (V) and their
duals. If u,v € L, u<v, and con (u,v) collapses a non-trivial subinterval of c/a,
then there exist x,y € L such that either

(ux+y)c+a < (vx+y)e+a or ((+x)y+a)c < ((v+x)y+a).
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Proor. There exists a sequence of intervals v/u=uvy/ug, v1/uy,. . ., V,/u, With
asu,<v,<c such that for i=1,2,...,n—1, v/u; transposes weakly
alternatingly up and down onto v;, ,/u;,,. We may assume that the last two
maps are t — t+a and t — tc in one order or the other. Subject to this
restriction, we assume that n has been chosen as small as possible, and the
problem reduces to showing that in this case n<4.

Suppose, to the contrary, that n= 5. By duality, we may assume that the last
map is t — tc. Then for some xg, x;, x,, the map

t — ((txo+x1)x, +a)c

maps v,-s/u,_s onto a non-trivial subinterval of c¢/a, and therefore one of the
maps

t — (txoc+x)c+a, t— (txob+a)c

maps v,_s/u,_s onto a non-trivial subinterval of c¢/a. Thus the number of steps
can be reduced by at leat one.

CoROLLARY 8. For any interval v/u in a lattice that satisfies (III), (IV) and (V)
and their duals, if con (u,v) collapses a non-trival subinterval of c/a, then so does
either con (bu, bv) or con (cu, cv).

COROLLARY 9. Suppose v/u is an interval in-a lattice that satisfies (III), (IV),

and (V) and their duals, and suppose con (u,v) collapses a non-trivial subinterval
of c/a. If v=c, then

(u+x)c+a < (v+x)c+a)
for some x. If v<b, then

(u+a)c < (v+al.

CoRroLLARY 10. For any element t in a lattice that satisfies (III), (IV) and (V)
and their duals, con (bt +ct,t) does not collapse a non-trivial subinterval of c/a.

CoROLLARY 11. If Lis a subdirectly irreducible lattice that satisfies (I»-(V) and
the duals of (III), (IV) and (V), and if a<c, then bt+ct=t for all t € L.

Suppose L is a subdirectly irreducible lattice that satisfies (I}-(V) and the
duals of (III), (IV) and (V), and suppose a < c. We know that a<c, and that c/a
is a critical edge. We also know that, for all t € L, t =bt +ct and, dually, t= (b
+1t)(a+1). Thus b+ c is the largest element of Land bc the smallest. It is easy to
show that be<b. In fact, if bc <t < b, then both con (bc, t) and con (¢, b) collapse
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c/a, and hence by Corollary 9,
a = (bc+a)jc < (t+a)x < (b+a)k = c,

contrary to the fact that a<c. Dually, b<b+c. Next note that c<b+c, for if
cSt<b+c, then bc<bt<b, hence bt=bc, which implies that t=bt+ct=c.
Dually, bc<a.

We are now ready to prove that L must be a pentagon, i.e. that the only
elements of L are a, b, c,bc and b+ c. Since every element ¢ of L has the form ¢
=x+y with x<b and y<c, and since there is no element strictly between bc
and b, it suffices to show that the only element strictly between bc and c is a. So,
assume that bc<x<c and x#a. Then a and x must be incomparable, and
hence a+x=c. Also, b and x must be incomparable, and therefore b<b+x,
which implies that b+x=b+c. Consequently, x=(a+x)(b+x)=c, a
contradiction.

Our eight identities hold in the pentagon, as well as in every modular lattice,
and they therefore hold in .#*. We have now shown that the pentagon is the
only subdirectly irreducible non-modular lattice in which they hold, and we
conclude that they do in fact form an equational basis for .#™*.

THEOREM 12. The following identities (I}-(V) and the duals of (I111), (IV) and
(V) form an equational basis for #*.

M (x+y+2)x+z+a) = (x+a)y+z.
(I (x+oy=x+(y+a).
()  (¢+x)y+a)c=((ct+x)y+a)c+ ((bt +x)y +a)c.
(IV)  ((ct+x)y+a)c+ (((ct+x)c+a+xy)y+a)c.
V) ((bt+x)y+a)c=((bt+a)c+xy)((b+x)y+a)c.

Here a=pq+pr, b=q and c=p(q+rq).

COROLLARY 13. A lattice Lbelongs to #* iff every sublattice of L generated by
a set with six elements or less belongs to #*.

This follows from the fact that none of the identities (I)-(V) contains more
than six variables. It is an open question whether the number six can be
replaced by five, or even by four, but certainly three will not suffice. In fact,
several of the lattices listed by McKenzie in [4] that generate varieties covering
A" cannot be generated by fewer than four elements, and of course every
proper sublattice belongs to 4", and therefore to .#*.

Each of the lattices in McKenzie’s list must fail to satisfy one of the identities
in Theorem 12, and since each lattice is generated by four elements or less, each
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must violate some four variable special case of one of the identities. In fact, the
identity

8) cx £ ax+b,
which is a special case of (I), fails in P§, P, and Q*, and a special case of (III),
9) (x+a) = (bx+a)c+cx,

fails in Qy, Q;, Q,, O3, Q4 and N. Of course, the dual of (8) fails in P, and Q**,
and the dual of (9) fails in Q%, 04, Q4 and Q,. Together, the identities (8) and (9)
and their duals therefore exclude all the lattices in McKenzie’s list, but they
still do not characterize .# *. To see this, observe that all four identities hold in
the lattices in Figs. 1 and 2, but of course these lattices do not belong to .# ™.
In fact, (III) fails in both lattices with the indicated assignment of values to
the variables. This yields the four-variable identities

p=t X

q=x

y=p

y=4q
r
r
Fig. 1 Fig. 2 Fig. 3

(10) (t+b)c £ (ct+b)c+a,
(11) ((p+x)g+pr) £ (c+x)g+pr,

which exclude these two lattices. On the other hand, the lattice in Fig. 3 fails to
satisfy (9). We conjecture that any variety of lattices that properly contains
#* has as a member one of the following twenty lattices: the fifteen lattices in
McKenzie’s list, the lattices in Figs. 1, 2 and 3, and the duals of the lattices in
Figs. 1 and 2. If this is correct, then it follows that the identities (8)-(11) and
their duals form an equational basis for # *, and hence that the eight identities
in Theorem 12 can be replaced by four, (I) and (III) and their duals. Another
consequence would be that .#* has exactly twenty covers in the lattice of all
varieties of lattices.
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