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ON THE RADIAL BOUNDARY VALUES OF
SUBHARMONIC FUNCTIONS

BJORN E. J. DAHLBERG

1. Introduction.
The maximum principle says that if u is subharmonic in the unit disc D and
if
limsupu(z) £ 0 forall weT,
zZ7w
where T={z : |z|]=1}, then u<0. In applications it is sometimes desirable to
relax this condition to the weaker assumption

(1.1) limsupu(rw) =0 forall weT

r—1

and still get the conclusion u<0. As the harmonic function v(re®)

=32 nr"sin nf shows, for which lim,_,, v(rw)=0 for all w e T, condition (1.1)

alone is not sufficient to give that u<0. The object of this paper is to discuss

the kind of restrictions of the growth which together with (1.1) imply that u <0.
We shall use the following notation. If u is subharmonic in D we put

u*(w) = limsupu(rw), u, (w) = liminfu(rw)
r—+1 r—1

and
M(r,u) = max{u(rw) : weT}.

We let
P(r,0) = 2n)"*+n~' Y r"cosnf
1

denote the Poisson kernel. If fe L'(T) we put

2

Pf(re") = f " (E)P(r,0—¢)do .

V]
We start by discussing the following special case of our main result.
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THEOREM 1. Let u be subharmonic in D and suppose that

(1.2) u*(w) < oo forall weT,
(1.3) there is a g € L' (T) such that u,<g ae.onT,
1.4 M(@r,u) = o[(1-r)" 2] asr— 1.

Then u* € L'(T) and u,=u* a.e. on T. In addition u< P(u*).

Considering the function u(re’®)=Y% nr"sinnf again, for which M(r,|n|)
=0[(1—r)" %] we see that condition (1.4) can not be weakened to O[(1 —r)"2].

Professor H. S. Shapiro has asked the following question: Let f be analytic
in D and assume lim,_,; f(rw)=g(w) exists for all w e T and g € L!(T). What
growth conditions should one impose on f in order to deduce that fe H!? In
this direction we have the following consequence of Theorem 1.

CoROLLARY 1. Let f be analytic in D. Suppose that limsup, _,, | f (rw)| < oo for
all we T and there exists a g € L'(T) such that lim,_, f(rw)=g(w) ae. If
logM(r,|f)=o[(1—7)"2] as r — 1 then fe H'.

Proor. Putting u=log|f| we have that u*(w)<oo for all we T and
u,(w)<log* |g| € L'(T). Since u is subharmonic in D and satisfies (1.4) it
follows from Theorem 1 that log|g| € L'(T) and u< P(log|g|). It follows from
Jensen’s inequality that |f|=expu<P|gl Hence fe H' which proves the
Corollary.

We remark that we cannot weaken the growth condition of the Corollary.
For the function

f(2) = exp (iz(1-2)7?)

satisfies limsup,_,,|f(rw)|=1 for all w € T, lim,,; f(rw)=g(w) exist a.e. on T
and g € L*(T). In addition log M(r,|f)=0[(1—-r)"%] as r —> 1 but f¢ H.

Diederich [3] has considered a variant of Theorem 1 where radial boundary
values are replaced by certain averages.

We shall use a growth condition, which is more general than (1.4). Let ¢>0,
w e T and put o(z,w)= (1 —|z|)lz—w|~'. Suppose u is subharmonic in D. We
say that u is of type G(w, ) if there are functions a and b, both non-increasing
and non-negative such that a(t)=o(1) as t — 0,

r log (b(t)+1)dt < oo
0

and
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(1.5) u(z) < a(lz—wl)b(a(z,w)lz—w|™°.
We have the following relation between conditions of the form (1.4) and
(1.5).

ProrosiTiON 1. Let u be subharmonic in D and suppose M (r,u)=o0[(1—r)"¢]
for some 9>0. Then u is of type G(w,@) for all we T.

Proor. There is no loss in generality by assuming M(r,u)=0 for 0=sr<1.
Put

a(t)=sup {sM(1—s,u) : O<s<t}.
Then a(t)=o0(1) as t > 0. If we T and z € D then
u(z) £ M(zl,u) = M(1—|z—wlo(z,w))
< (o(zw)"%lz—wl"%a(lz—w)) .
Choosing b(t)=t"¢ we see that condition (1.5) is satisfied. Since w was
arbitrary the proposition follows.

We can now formulate our “radial” maximum principle.

THEOREM 2. Let u be subharmonic in D and let EcT be countable. Suppose
(1.6) for all weTuis of type GWw,2),
(1.7) there is a g € L'(T) such that u,<g a.e.
(1.8) u*(w) < oo for we T—E,
1.9) ut(rw) = o[(1-1r)"1] for wekE.

Then u* € L'(T) and u,=u* a.e. In addition we have u< Pu,,.

It follows from the example given in [13, p. 640] that E can not be taken to
be an uncountable Borelset if the other assumptions are unchanged. But if we
make further restrictions of the growth we can allow larger exceptional sets E,
see Theorem 4.

The question when a harmonic function in D is determined by its radial
limits has been extensively studied. For the most general results we refer to

Wolf [16]. However, using Theorem 2 we get the following new result on this
question.

THEOREM 3. Let u be a realvalued harmonic function in D and let EcT be
countable. Suppose u satisfies (1.6) and (1.7). If in addition
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(1.10) —00 < u*(w) < oo for we E

(1.11) lu@erw)| = o[(1=1r)"'] for weT
then u* € L'(T), u,=u* a.e. and u=Pu,.

We would like to point out that Theorem 3 neither implies nor is implied by
the results of [16]. However, if we assume that M(r,u)=0[(1—r)"2] we get
overlap with the results in [16]. The special cases when M (r, jul)=o[ (1 ~7r) "]
and M (r,u)=0[(1—r)*>"%] have been treated by Shapiro [13, 14] with other
methods.

For the case when the exceptional set is no longer assumed to be countable
we have the following result.

THEOREM 4. Let u be subharmonic in D and let 0<a<1. Let EcT be the
countable union of closed sets of finite a-dimensional Hausdorff measure. Suppose

(1.12) M@ru) = o[Ql-r)"'*""Tasr—1,
(1.13) u*(w) < oo for weT—E,
(1.14) there is a g € L'(T) such that u,<g a.e..

Then u* € L' and u,=u* a.e. In addition u< Pu,,.

Theorem 3 is sharp for if EcT is a closed set of positive a-dimensional
Hausdorff measure then there exists by [2, p. 7] a probability measure p
concentrated on E such that u{{ : |{ —z|<r} < Cr* for all z. If v= Py, then an
integration by parts shows that M(r,v)=0[(1—r)"'**] as r —» 1 and hence
condition (1.10) can not be relaxed to O[(1-r)"1**] as r — 1.

As an application of Theorem 2 we have the following result on the
“pointwise” normal derivatives.

THEOREM S. Let u be harmonic in D and let EcT be countable. Suppose
(1.15) wu is of type G(w,1) for all we T,
(1.16) there is a realvalued function f on T such that

limsup |f(w)—u(rw))(1-r)"! < 00 for we T—E,
r—+1
(1.17) there is a g € L'(T) such that
lin} (fW)—u(w)(1—=r~' = g(w) ae.,

(1.18) u(rw) = o[logl—r)J asr— 1 for weE.
Then f € L\(T), u= Pf and r du/or= Pg.
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This theorem generalizes the pointwise saturation theorem of Berens [1] and
Hedberg [7]. Their result is about the case when f is assumed to be in L!(T)
and u=Pf. We observe that in this case M(r,|u))=0[(1 —r)"!] and hence we
have from proposition 1 that u satisfies condition (1.15). Notice that we don’t
assume [ to be integrable.

2. The refined maximum principle.

We start with the following estimate for the growth of subharmonic
functions.

LeMMA 1. Let B(e)={z : |z—1|<¢, Imz>0} and let u be subharmonic in Q
=D U B(¢). Suppose u is of type G(1,¢) for some ¢>0 and u* (z)Su* (z*) for
z € Q—D, where z*=z|z| 2. Then

(21) sup{u*(2): ze R Imz>0,|z—1|=r} = 0(r™®) asr—0.

ProoOF. Let o(z)=(1—|z])z—1]"! and put
D, = {z: Imz>0,2"'r<|z—1|<2r, |o(2)| <3} .
It is easily seen there is a constant C>1 such that if 0<|z—1| <% then
2.2) z—1] € Cjz*—=1| and |o(2) £ Clo(z*) .
From (1.5) and (2.2) we now have if ze Q—D and |z—1|<}
u'(z) £ u”(2¥) £ a(z*—1)b(a(z¥)z*—1]7¢
< Ca(C Yz—1)b(C Ya(2))z—1|"".

Putting a, ()= C%(C~'t) and b,(t)=b(C~'t) we therefore have
2.3) ut(2) < a,(z—=1)b,(o6(z)) for z e QN BQ).

Let d(r)=sup {a,(z) : ir <t<2r} and put v,(z2)=(d(r))'u* (z) for z € D,. If

F.(z)=a(z)+i2r Yz—1|
then F, is a diffeomorphism of D, onto
R = {x+iy: |x|<3 and 1<y<4}.

Letting u,=v,oF,! we claim there is a number C independent of r such that

(24) u,(z) < Cs“"j u(&,n)dédn, zeR,

B(z,s)

whenever B(z,s)={( : |{—z|<s} is contained in R. To prove (2.4) we first
observe

Math. Scand. 40 - 20
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2.5) lgrad F,(z)) £ Cr~! for zeD,,
and if J,(z) denotes the Jacobian of the mapping F, then
V@ =rtz—=1"%z""y, zeD,.

If z=x+iy € D, then |6(z)| <3 and multiplying both sides of this inequality
with |z—1| we have

R(A=x)z—1""=lz—1]] < 3(zl+1).

Hence if r is small enough |x—1|<c|z— 1] where c< 1. Consequently |J,(z)]
>cr~ 2 for z € D, and some number c independent of r. To prove (2.4) pick
z' € D, such that F,(z)=z, and if ¢ is small enough we have from (2.5) that
F,(B(Z',crs)< B(z,s). This gives

v

f u(&,mdEdn j v, (&M (E+in) dEdn
B(z,s) B(z’, crs)

zor? J v,(&m)dedn .
B(z’, crs)

Since v, is subharmonic we therefore have u,(z) 2 cs?v,(2') = cs?u,(z). It follows

from (2.3) that u,(£,n) < b, (/¢]) and from [4, Theorem 3] we have u,(,2)< C for
|€|<% with C independent of r. This means

sup{u*(2) : |lz—1|=r, Imz>0}
< Cd)+sup{u*(2) : |z—1=r,Imz>0, 1>|6(z)| 23} .

Since the both last terms are o(r~9 as r — 0 the conclusion of the lemma
follows.

ProoF oF THEOREM 2. Let u fulfil the assumptions of Theorem 2. If we put
f=(u"), then from (1.7) fe L*(T). Let v=u™ — Pf and define

zZUw

Q= {weT : limsupv(z)éO}.

We first note that Q is open in T. To this end we use the following fact: If a
function u is subharmonic in D and bounded from above in

S = {rw: O<r<l,wel},
where I<T is an open arc, then the condition u,(w)<0 a.e. in I implies

(2.6) limsupu(z) <0 forall weT

zow
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Let h be the harmonic function in S(I) with boundary values zero on I and
boundary values u* (z) for z € 6S(I)—I. Define v(z)= (u(z)— h(z)) for z € S(I)
and zero otherwise. Then v is bounded and subharmonic in D. For some
F e L*(T) PF is the least harmonic majorant of v in D. Littlewoods theorem
[15, p. 172] gives F<0 a.e. in I. Therefore lim,_,,, v(z)=0 for all w € I, which
gives (2.6).

From (2.6) follows now that Q is open since v, <0 a.e. in T. Define R=T—Q.
We want to show R=J. We assume now R+ J. Let E={e;} and let

Fi={weT: v(rw)Zj for O<r<l1}.
We claim F; is closed for all j. Let w, be a limit point of F; and let
S={rw, : O<r<l1}.

We notice that it follows from the Wiener criterion [8, p. 220] that F; is not
thin [8, p. 209] at any point of S. Hence v(z)<j for z € S and therefore F; is
closed. It follows from (1.8) and (1.9) that T=[U}";1 F;JUE. From the Baire
category theorem follows the existence of an open arc I and an integer j such
that INR+J and INR<{e;} or INR<F;. We will now show that in each
case there is a contradiction.

Let INRc{e;}. Pick an open arc J such that e;cJcJ<l and let the
endpoints of J be b;,b,. Let

Pi(z) = ¢Re[(e;+2)(e;—2)7']

where £>0. Then there is a number M >0 such that v(re) < P;(re)+ M anq
v(rb)=M for k=1,2, and 0<r<1. If we define h(z) as (v(z)— M —P;(z))" in
S(J) and zero otherwise then h is subharmonic in D. From Lemma 1 and (1.6)
follows

sup{h*(2) : |z—ej=r}=0(r"%) asr—0.

Pick a point e+e¢;in T and let J, and J, be the two arcs in T with endpoints ¢
and e;. Mapping S(J,) and S(J,) respectively on the upper halfspace such that
e; corresponds to oo then we find from the Phragmén-Lindelof Theorem [, p.
104] that h<0. Put

m(r) = max{v*(2) : |z—ej=r, z€ D}.

Then limsup,_,rm(r)< Ce. Since ¢ was arbitrary this gives m(r)=o(r"!) as
r — 0 and a Phragmén-Lindeldf argument now gives limsup, ., v(z) <0 that
is, e; € Q which is a contradiction.

Let INR<F;and INR=1. This means v is bounded from above in S(I) and
from (2.6) we have that this is a contradiction.
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Let INRcF; and INR=+1. Without loss of generality we may assume the
endpoints of I are in Q — otherwise we shrink 1. We can write ] —INR as a
union of at most countably many pairwise disjoint open arcs I,. Our
assumptions now imply the existence of a number M 2 j such that u(rw)s M
whenever 0<r<1 and w € F; or w is an endpoint of some I,. From Lemma 1
follows

sup{u*(2): |z—a,|=r or |z=b,|=r} = 0(r"?) asr—0.

A Phragmén-Lindeldf argument gives now u <M in S(I,). Hence u<M in S(I)
which in view of (2.6) is a contradiction.

We have now proved Q=T, that is, u* < Pf. Hence there is a measure with
nonpositive singular part such that Py is the least harmonic majorant of u in D.
The Littlewood theorem gives now u,=u* ae. in T and du=u_dw+ u; and
consequently u < Pu,. Theorem 2 is proved.

We shall now prove Theorem 3.

Proor oF THEOREM 3. From the proof of Theorem 2 we know u=Pu,— P4
where 4 is a nonnegative singular measure. It is sufficient to show A=0. Let
I(w,r) be the open arc on T with center w and length 2r. Putting dm=
(Ju,l+1)dw one finds in the same way as [10, p. 159] that

lin; AI(w,))/m(I(w,r)) = co ae. [A].

From [10, p. 226] follows
liminf (—u(w)) = liminf (2r) "' [A(I(w,7)—m(I (w,1))]
r—0

r—1

and consequently u*(w)= —oo a.e. [A]. Now (2.7) gives that A is concentrated
on the countable set E and (2.8) gives A=0. The Theorem is proved.

3. Exceptional sets.
Theorem 4 will be a consequence of the following lemma.

LEMMA 2. Suppose u is subharmonic in D, 0<a<1 and E<T is a closed set of
finite a-dimensional Hausdorff measure. If limsup,_,,,u(z)<0 for w e T—E and
M(r,u) = o[(1-1*"'] as r—1

then u<0.
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ProoF. Let L be the class nonnegative subharmonic functions in D vanishing
in a neighbourhood of the origin. For v € L we define

r

H,v(rw) =J t"lo(rw)dt, O0sr<l, weT,

0

and Hv=H,(H,v). If v € L and v € C*(D) then

AHv(rw) = r™2 Jr t"‘(f sAv(sw)ds)dt.
0 0

If ¢ € C*(T) we therefore have
" 2 a a
Ho(rw) " (w)dw = r AHv(rw) o(w)dw — | r—|r—Huv(rw) |p(w)dw
T T T or\ or

= J” Av(C)fP(CICI'‘)log(rICI")dfdfl—JT v(rw) @(w)dw ,
G

where {=¢+in. If v € L and is not assumed to be in C%(D) we can by [8, p.
114] find a sequence {v,} of twice continuously differentiable subharmonic
functions such that v,|v and 4v,dxdy tends weakly to the Riesz measure u
associated to v. Hence we have

3.1)

L Ho(rw) ¢" (w)dw = f log (rIC!“)fp(CICI"‘)du(C)—L v(rw)e(w)dw ,

iKl<r

where u is the Riesz measure associated to v.
Let

L,={veL: M(r,v)=o[(l-r)"'*"*] as r— 1},
where O<a< 1. Since H,v € L*(D) if v € L, it follows
li_{rll Hy(rw) = Kv(w)
exists for all we T and '

3.2 sup |Kv(w)— Ho(rw)] = O(1—r) asr— 1.
weT
Hence Kv is upper semicontinuous if v € L,.

Let u fulfil the assumptions of Lemma 2. Since E+T there is a point w, €
T—E. Therefore there is an open arc I and a number M such that w, € 1
and u(rw)SM if O<r<1 and w € I and u(z) £ M if |z| <. Define v=(u—M)*.
Then v e L, and

(3.3) Kv(w) =0 for wel.
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If ¢ € C*(T), ¢ 20 and the support of ¢ lies in T—E then we get from (3.1)
and (3.2):

r-1

f Kv(w) @” (w)dw limj Ko(rw) " (w)dw
T T

(|

limsup—j v(irw)e(w)dw = 0
T

r-1

and therefore Kv is convex in T—E. We will show that Kv is convex in T.

There is a constant C such that for all ¢>0 there are finitely many open arcs
I,cT, j=1,...,N with length ¢;<¢, UY. | I,oE and 3)_, e2<C. By [6, p. 43]
there are ¢; € C*(T), ;20 and the support of ¢; is in I}, where I} is the open
arc with the same center as I; and the length of I} is 2¢;, and

N
0=s¢;=1, Z‘Pj=1 on E,
i=1

sup (W) = Cie;*.

Let ¢ € C*(T) and ¢ =0. Since Kv is convex in T—E we have

J Kvp"dw = g j Kvg} dw
T =1 J7T
where g;=¢;p. We notice
sup {|gPw)| : we T} £ Ce;%, 0Zk=2,
where C only depends on ¢. Since v € L, an integration by parts shows

sup |[Kv(w)—2Hv(rw)+ Hv(2r—)w)| = A(1-r)(1—r)***

weT

where A(t) is an increasing function with lim,_, A(t)=0. Hence

J Kugj dw =f (2Ho(rw)— H((2r;— 1)w)) g; dw + R,
T T

where |Rj| < CA(e)e]. Let §; denote the integral on the right hand side. From
(3.1) we find

S; 2 —ZJ v(r;w)gi(wydw =2 —CM(1—¢;v)e; .
T

Since E has finite a-dimensional Hausdorff-measure it now follows | Kvp” dw
20(1) as ¢ > 0 and therefore Kv is convex and hence constant. From (3.3)
follows Kv=0 and hence v=0, that is, u < M. Using (2.6) we have u <0 and the
lemma is proved.
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Proor oF THEOREM 4. Let u fulfil the assumptions of Theorem 4 and let
Q= {w €T : limsup (u(z)—Pg*(z))§O} .

Put R=T—Q, and assume R # (J. Assume E=U ; Ej, where E; is a closed set of

finite a-dimensional Hausdorff measure. Arguing as in the proof of Theorem 2
there is an open arc I<T and an integer j such that INR+ @ and INR<E;
We may assume the endpoints of I are in @, otherwise we shrink I. Therefore
there is a number M such that u(z)—Pg* (z)<M when z € 6S(I)—1I. Let v(z)
=(u(z)—Pg*(z2)—M)* when ze S() and zero otherwise. Then v is
subharmonic in D and lim,,,v(z)=0 for ze€ T—E; Lemma 2 gives v=0,
hence u— Pg™ is bounded from above in S(I). From (2.6) follows I = Q, which
is a contradiction. Therefore Q=T and the conclusion follows now from
Littlewood’s Theorem.

4. Pointwise normal derivatives.
We will deduce Theorem 5 from the following lemma.

LeMMA 3. Suppose u is harmonic in D and I, <T is an open arc and Ecl is
countable. If
4.1) |u| is of type G(w,1) for all w € I,
(4.2)  there is a function f: T — R such that

limsup (1—7r)" Y f(W)—u(rw)] < oo for all we I,—E,
r—-1

(4.3)  thereisa g € L'(T) such that lim,_,; (1—7)"'(f (W) —u(rw))=g(w) in I,,
44)  |u(rw)|=o(log(1—r)) as r > 1 for we E,

then fis locally integrable in I, and for all ¢ € C*(T) with support in I, we have

lim ~[(p(w)gg(rw)dw = f e(w)g(w)ydw .
r->1 r T

For the proof we will study a certain type of kernels. Let I =T be an open,
nonempty arc. Put

D) = {rw: i<r<l,wel}, D*(I)= {rw: }<r<2, wel}

and let g(z,{;I) be the Green function of D*(I), normalized by
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g(z,¢; D+ (2m)~'loglz—{| is harmonic in D*(I) as a function of z. For
z%0 let z*=2|z|~2 and define for z,{ € D(I):

K(z( 1) = gz,(; D+g* (1)

Let I'(I)=0D(I)—1, f e L'(I'(I),ds) where ds is the element of arc length, and
let 1 be a measure supported on I. Then we put

N(fu; 1) ='[

ram

oK
o &6 I)f(C)dS+I K(z, ¢ D),
n, 1
where 0/0n, denotes differentiation with respect to the unit inward normal of

r.
We now have for all ¢ € C*(T) with support in I:

4.5) lm L O NG oW pOw)dw = J odu.

To see this put u=N(f,0; I) and v=N(0,u; I). Noticing u has a harmonic
extension to D*(I) such that u(z)=u(z*) we have

(4.6) %—:(W) =0 forwel.
Let w e I and put
0
gw(2) = 2m)~* j log|z—{lo~gw,{; Dds .
oD*(I) n

Then g, is harmonic in D*(I). If we put h,(z)=g,(2)+g,(z*) then
K(z,w; I) = b,(2)— (2r) " 'log|z —w||z*~w] .
If V is an open set and ¥V < D*(I) then
sup{lh,(2) : wel, zev}=c,<00.

Since h,, is harmonic and h,(z)=h,,(z*) we find
4.7 r;%K (re’,e") = P(r,0—1)+S(r,0,1t)

where
sup{|S(r,0,1)| : e?€eK, e'el} = o(l-r) as r—1
for all compact sets K <I. The relation (4.5) follows from (4.6) and (4.7).

Let h € L'(T) and let h be lower semicontinuous. Since h is bounded from
below by a constant we have from (4.7) that
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Hm N (0, h; I)(rw) = h*(w)

exists for all w e I and the monotone convergence theorem gives

h*(w) = j KW, DhQdl; wel.
1

Moreover, since K (w, {; I)=0, this expression for h* shows that h* has a lower
semicontinuous extension to I. Since h is lower semicontinuous we have

r-1

lim inf jP(r,()——t)h(e")dt 2 h(e").

Therefore we have from (4.7)

4.8) liminf (h*(W)~N(0,h; D(rw))(L—=r)~' = h(w).

Proor oF LEMMA 3. Let
Q = {wel, : there is an open arc I, wo € IcI, and u=N(u,g; I) in D(I)}

and put F=1,— Q. Then F is relatively closed in I, and it is sufficient to prove
F=. We therefore assume F + (. Let

Fi={wely: lu(rw)—u(sw)|£j(2—r—s) for 0<r,s<1}

and let E={e;}. Since F, is closed in I, for all i, the Baire category theorem
implies the existence of an open arc I and integer j such that INF<+ ¥ and
INFc{e;} or INFcF;. We will show that each case leads to a contradiction.

Let INF = {e;}. We may without loss of generality assume the endpoints of
are in Q, otherwise we make I smaller. Put v=u— N(u, g; I). It follows from

(4.5) and the reasoning in [11] that we can extend v to a function harmonic in
the set

S={rw: wel, O<r<oo}—{e;}

such that v(z)=v(z*) in S. It is easy to see that |v] is of type G(w,1) for w € I.
Putting

m(r,v) = sup{v*(2) : lz—ej|=r}

it follows from Lemma 1 that m(r,v)=o(r"') as r— 1. Since v(ra)=
o[log (r—1)] as r — 1 a Phragmén-Lindeldf argument gives

4.9) m(r,v) = o(logr) asr—0.

The assumptions are symmetrical with respect to v and —v. This gives m(r, |v])
=o(logr) as r — 0 and consequently the singularity at e; is removable. We
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have v(z)=0 for z € dD*(I)—1I. It now follows from Lemma 1, (4.1) and the
Phragmén-Lindelof theorem that v=0 in D*(I). Hence e; € Q which is a
contradiction.

ReMARK 1. Notice that in the proof of (4.9) we only used that u was of type
G(w,1) for we I,

Let INF < F;. There is by (4.2), (4.3) and [12, p. 73] a lower semicontinuous
function h in L'(T) such that

4.10) limslup (1=~ (fwW)~u(rw)) £ h(w)

for all w € I,,. In addition we can make [t |h—g|dw as small as we want. Let J
be an open nonempty open arc such that J<1I. Let v=u~— N(u, h; J). It follows
from the choice of h and the definition of F; that lim,_,, v(rw)= H (w) exists for
all w e J. Notice also that v has a subharmonic extension across I—INF.
Therefore the restriction of H to J—JNF is upper semicontinuous. It follows
from the definition of F; that the restriction of H to JNF is upper
semicontinuous. We now claim H is upper semicontinuous in J. To show this it
is sufficient to show that if e JNF, {w,}cJ~JNF and w, — n then
limsup,.,, Hw)<H(n). Let I, be the maximal open arc in J—JNF
containing w,. Pick ¢>0. Then there is a 4 >0 and a neighbourhood Vofin T
such that v(rw)<H(n)+eif 1—-d<r<l and we JNFNV. Let

Sy ={rw: (1-9)<r<(1-98)7, wel,},

and y, ;={ra, ;: 1-d<r<(1-0)"'}, where g, ;, j=1,2, are the endpoints of
I, and 7, 3 =08~ (y4,1 U7, 2)- Let o, ; be the harmonic measure of y, ; with
respect to S,. Since v is lower semicontinuous it follows that

sup{v(z) : zey,;} = A,; < oo forallk,j.

Put M=sup{v(z):|z|=1—-6}. Then (4.1), Lemma 1 and the Phragmén-
Lindelof theorem gives:

4.11) 0(z) £ Ay, 104,1(2)+ 4,04 ,(2)+ Moy 3(z), z€8S,.
There are now two cases to consider. If I, =1, for all k2k, then n=gq,, ; for
some j. In this case (4.11) gives

limsup H(wy) £ A, ;SH(n)+¢.

k=00
Otherwise lim, ., , diam (I;)=0 and I, =V for k=k,. From (4.11) follows now

H(wy) £ Hin)+e+ Moy 3(wy),  k2k, .
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Since it is straight forward to show
lim (sup {0, s(w): wel}) =0
k— oo

it follows that H is upper semicontinuous. In the same way it follows that
limsup,,_,,, H(w) <0 whenever w, is an endpoint of J. We claim v<0. To show
this put p(z)=v" (z) for z € S(J) and zero otherwise. Then p is subharmonic in
D and p is of type G(w, 1) for all w € T. Theorem 2 gives p< PH,, where H,(w)
=0 when w ¢ J and S=H ™ (w) when w € J. Since H, is upper semicontinuous
there is a point w, € I such that max,.pp(z)=H,(w,). Suppose H,(wq)>0.
Then it follows from [9, p. 67] that

u(rwg) —N(u, h; J)rw)E —c(1—r)+ H(w,) for some ¢>0.

But this contradicts (4.8) and (4.10). Hence v<0. Letting h — g in L'-norm
we find

4.12) u=< N(@ug;J).

Since the argument can be carried out with —u as well it follows u= N (u, g; J).
This contradiction shows Q=1, and the lemma is proved.

ReMARK 2. In the proof of (4.12) we only used that u was of type G(w, 1) for
wel,.

LemMa 4. Suppose u fulfils the assumptions of Theorem 5. If for some open arc
IcT, I+, we have f* € L' (I), then f € L}, .(I) and |u| us of type G(w, 1) for all
wel

Proor. Let h be the harmonic function in S(I) with boundary values equal to
u*(z) when z € dS(I)—T and zero elsewhere. Put v=(u* —h)*. Then v is
subharmonic in D and of type G(w, 1) for all w € T. From Theorem 2 we now
have v < PF for some F € L'(T). This means u|S(J) is equal to the difference of
two positive harmonic functions. Let @ be a conformal map of D onto S(I).
From Fatou’s theorem follows that u-® has a nontangential limit G(w) a.e. in
T and G e L'(T). From Poisson’s representation formula follows

M(r,lu-®) = O[(1-n"'] asr—1.

Going back to u this means fe L}, (I) and |u| is of type G(w,2) for all w € I. Let
be an open arc such that J+ @ and Jcl. Then fe L'(J). Let h; be the
harmonic function in S(J) with boundary values equal to |u| on S(J)—J and
zero elsewhere. Arguing as in the beginning of the proof, it follows
(lul —h,)* SPF for some F e L'(T) and hence |u| is of type G(w,1) for all
w e J. Since J was arbitrary the Lemma follows.
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Proor OFTHEOREM 5. Let u fulfil the assumptions of Theorem 5. Let
Fi={weT: [uw—u(sw) £ j2-r—s) for O<r,s<1},
E={e;}j2,
and

Q = {weT: for some open arc I, w e I}

and let u=N(u,g; I). Then as above R is closed and the Baire category
theorem implies the existence of an open arc I and an integer j such that
INR+F and INRc{e;} or INRcF;. If INRc{e;} it follows from (4.9) and
Remark 1 that f* e LL (I). If INR<F; it follows from (4.12) and Remark 2
that f* e LL.(I). Hence we have from Lemma 4 that in both cases u fulfils the
assumptions of Lemma 3 on I and consequently I Q. This contradiction
shows Q=T which yields Theorem 5.
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