MATH. SCAND. 40 (1977), 293-300

AN INEQUALITY FOR CONVEX CURVES
IN THE PLANE

PER SJOLIN

Let I' denote a simple, closed, convex curve in R? and let [(f,a) denote the
straight line xcosf+ ysinf=aq, where 0<60<2n and a € R. We set

E@B) = {aeR; (0, NT+T},

c(0)=inf E(6) and let k,(6) denote the arc length of the part of I' which lies
between the lines (6, c(6)) and 1(6, c(6) + x), x> 0. We shall prove the following
theorem.

THEOREM 1. Let I' and k,(0) be defined as above. Then

1 lim inf Jmt k,(0)d0 (xlogl/x)™ > 0.

x—0 0

In the case when I' is piecewise linear (1) follows from an elementary
computation and in this case it is also easy to see that there is a constant C
such that

2n
j k.(0)d0 < Cxlogl/x
0
for small values of x. It therefore follows that the result in Theorem 1 is not
true if xlog1/x is replaced by a function g(x) such that

limg(x) ! xlogl/x = 0.

x—=0

Theorem 1 is a direct consequence of the following lemma.
LemMA. Let 1o=[ag, byl be a closed interval. Assume that f is a continuous,
convex and non-linear function on I,. For f',(ag)Sa<f" (bo) let a(a) be the

smallest value of a for which the straight line y=ax+a intersects the curve
y=f(x) (fy and f'_ denote the right- and left-hand derivatives of f). Let
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k. () denote the arc length of the part of the curve y=f(x) which has distance
less than % to the line y=ax+a(x). Then

"~ (bo)
lim infj k. (a)da (xlog1/x)~* = 1/5.

x>0 J f'(a)

REMARK. It follows from the lemma that the number zero on the right hand
side of (1) can be replaced by a positive number which does not depend on I'. It
also follows from a splitting of the curve I' in Theorem 1 that if I is not
piecewise linear then

27
lim J k,(0)d0/(xlogl/x)™! = oo .
x=00 |0

We also remark that the proof of the lemma shows that k() in (1) can be
replaced by the length of the orthogonal projection of the part of I' between
the lines 1(0,c(6)) and (6, c(6) + %) onto the line I(6, c(6)).

ProoF oF THE LEMMA. The lemma is easy to prove in the case when f is
piecewise linear and from now on we assume that f'is not piecewise linear. For
Sli(ag)<a<f"_(by) we set

B@) = sup{x; f'(x)<a} and y(®) = inf{x; f'(x)>a}.

Then () =7 (a) for almost every a. We choose € C3(R) such that [y dx=1,
Y =0 and set ¥,(x)=ny (nx) for n=1,2,3,.... Also choose a and b, ay<a<b
<b,, such that f’ exists and is continuous at a and b and such that f'(a)
—f'+(ag)>0and f"_(by)—f'(b)>0. We set I =[a, b] and may also assume that
a and b are chosen so that there exist disjoint closed intervals J, and J, < (a,b)
with

(0 f'J)>0 i=12.
We set f,=f*y, and it follows that f, € C*(I) if n is large enough and that

each f, is convex, ie., f, 20. It also follows that f, tends to f uniformly on
every interval [ao+0,bo—0], >0, as n tends to infinity and that

lim fi(a) = f'(a),  lim £,(b) = f'(b).

Then define numbers 6;=J;(0)=6;(a, %), i=1,2, for f'(@)Sa<f'(b) and xS x,
by the equalities

f(y+6,) = f(y)+ad,+x/cosf
and

S(B—0,) = f(B)—ad, +x/cosb,



AN INEQUALITY FOR CONVEX CURVES IN THE PLANE 295

where O =arctana and y=7y(x), f=B(x). We assume that x, is so small that
y+8, and B—&, € I, where I is an interval of the form [a, + ¢, by — @] for some
fixed ¢>0. From the convexity of f it follows that 4, and d, are uniquely
determined. We set 6 =0(x)=0(x, %)=max (d,,6,) and observe that k, ()
equals the arc length of the curve y=f(x), f—9,=x=y+9d,. Hence k, ()
2 6(x). Analogously define ,, v,, 6 ,, 3, ,, 6, and k, , (with f replaced by f)
for f1(a)Sa L f.(b), *<x, and n=n,. We assume that x, and n, are chosen so
that g, —6, , and y,+9, , € I' for all values of a and x. We shall prove that if
%, is chosen small enough, then

o O 5 (@)da 2 dxloglfx, nzng, xSk, .,
Sula)

and that

@) Ou(@) = 9(@), n— o0,

almost everywhere Qn (f”(a), f'(b)). It then follows from Lebesgue’s theorem
on dominated convergence that

f'(b)
J S(a)da = Lxlogl/x
e

for % =<x,, which yields the lemma. We first prove (4). Fix a such that f(a)
=v(®). It is then clear that y, — y as n —» co. We have
©) JaOnt02,,) = fu(yn)+ab; n+x/cos 6 .

We assume that J, , - &, and shall prove that this leads to a contradiction.
Choosing a convergent subsequence we may assume that J, , — 6*+J, as
n — oo. It follows that

JaOa+02,) = f(y+6%)  and  f,(v,) = f()

as n — oo. Hence (5) yields
fy+06*) = f(y)+ad*+x/cosb,

which shows that 6*=4,. This is a contradiction and hence lim, ., d, ,=9,.
In the same way it can be proved that lim,_ 4, ,=3J, and therefore (4) is
proved.

It remains to prove (3). We fix n and » and write §; and y instead of §; , and
Y.- We observe that

©) fub)—fo@ 2 m >0

for some constant m. If f),(a)Sa<f,(b) and y=7y(®) it is clear that f,(y)=a.
From the formula defining J, it therefore follows that
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ijz (Jx ;,’(t)dt)dx = x/cos

y+d;
52j fa®dt =z x.

b4

and hence

Defining &, =¢,(x) by the equality

fy+e,
£, n(x)dx = %
vy

we conclude that ¢, <4,. We also define ¢, by

r»

& "(x)dx = %
JB-a

and set e=¢(a)=max (g,,¢,). It follows that ¢; <5, and ¢<6. Let (1) denote
the component intervals of the set {xel; f/(x)>0}. Since
Lfu(@), f,(B)I\US f2(I,) has Lebesgue measure zero we obtain

fu(b) (1 (b) )
) j d(a)da = j e(wyda = Y (o) do .
fa@ [y 1 Jfd)

From a change of variable a= f7,(x) it follows that the last integral equals

@ j Y rs

For x € I we define ¢,(x), €,(x) and ¢(x) by setting

X x +£5(x)
sx(x)J n(t)dt = 8z(x)J n()dt = x
x—g1(x) x

and &(x)=max (g, (x),&,(x)). It follows that the integral (8) equals

j &(x) [ (x)dx
I

and hence (7) yields

"/ a(b)

] -[ é(0da 2 J &(x) fn(x)dx .
Sula) 1

We now write ¢ instead of f and then have ¢ € C*(I'), 920 and [; pdx2m.

Since ¢ is continuous ¢ is continuous on I. We choose p, € I such that &(p,)

=max, . &(x) and let u be a number satisfying 0 <pu<1. If py+b succesively
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choose points (p;)Y and intervals (w;)} ! such that p,<p, <p,<...<py=Db,
@;=[p;, pi 411,

8(1%)[ pdx = px, i=0,1,...,N—2,
and
e(Pn-1) J @edx < ux.
WN -1

If po+a we also choose points (p)¥ and intervals (w)¥ ~! such that a=pj,
<PM-1<-..<Py<Po=Ppo, ¥;=[Pi+1,P],

s(pE)J pdx = ux, i=0,1,...,.M-2,
and

e(Pm-1) pdx < px .

wyM-1

Since ¢(x)< C it follows that the equality &(p;) [, @ dx=px implies

f pdx 2 ux/C,

which ensures that in the above construction we reach the points b and a in a
finite number of steps. Set

/ U /
F = {W0s D1y« -y O - 2, W, Wy . ., Wpg—3}

and for w € & set ¢(w)=¢(p;) if w=w,; and e(w)=¢(p) if w=w;. Hence

(10) s(a))J edx = ux, weF .

From (2) and the definition of & it is easy to see that there exist constants
my and m, (independent of n) such that

(11) Y ol 2 my >0
weF
and
(12) Y f @dx 2 m > 0.
weF YO

We shall now prove that

(13) to) = o, weF.
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Assume w=w; for some i (the proof is similar if w=w! for some i). Then

é(w) = e(p) and a(p.-)f pdx = px .

Assume &(p;)<|wl|. Then ¢,(p;) <|w| and hence p;+¢,(p;,) € w. It follows that

p; +&,(p)
® = Ez(Pi)J pdx < 8(p,-)J @dx = ux,

pi ®

which gives a contradiction and proves (13).
We now prove that if x € w € #, then

(14) e(x) 2 e(w)/3.

We may assume that w = w; for some i. Assume (14) is not true, i.e. there exists
x € w such that e(x) <e(p;)/3 and hence ¢;(x) <e(p;)/3, j=1,2. We consider two
cases.

Case 1. One of the points x+¢(p;)/3 € w.
Assume for instance that x-+e&(p)/3 € w (the proof is similar if
x—e(p)/3 € w). It follows that x+¢,(x) € w and hence we have

x +£5(x)

x = &(x) pdt = 3"‘6(17;)[ @dt = px/3,

X (1)

which gives a contradiction.

Cast 2. x+¢(p)/3 ¢ w.
It follows that ¢(p;)/3>|w|/2 and hence

(15) e(p) > 3lwl/2.

We first treat the case e(p)=e,(p). (15) implies that [x,x+&(p)/3]<[p,
pi+e(p)] and it follows that

x +e(p;)/3 p; +&(p)
@dt < f @dt .

x pi

We conclude that

x+&(p)/3 p; +e(p;)
%E(Pi)f @dt £ %E(P;).[ edt = »/3.
x pi

Since ¢&,(x) <&(p;)/3 it follows from the definition of ¢, that the left hand side
above is larger than », which leads to a contradiction. We then treat the case
e(p)=¢,(p). It is clear that p,—e(p)<x—&(p)/3 <p;<x and we obtain
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(16) x = e(p) f Y gdt 2 elp) f et

pi—&(pi) x—e(pi)/3

e(p) j @ dt—e(p) J Qdt .
pi

x—¢&(pi)/3

From the inequality &, (x)<e(p;)/3 it follows that

%G(Pi)j‘ edt > x

x—&(pi)/3

and we also have

s(pi)j pdt < s(pi)J pdt = px.

pi «

Inserting these estimates in (16) we obtain
X2 3x—ux = 2%,

which is a contradiction and completes the proof of (14).

We need some more notation. Let d denote the number of elements in #, d;
the number of intervals w € & such that 27/ "1 <g(w)<27,j € Z. Let j, be the
smallest and j, the largest value of j for which d;= 1. Hence

Jo
d = z dj'
j=ix
It follows from (14) that
e(pi+1) 2 e(p)/3  and  e(piyy) 2 €(p))/3 .

Since &(po) =max,; &(x) it therefore follows from the construction of the set #
that the number of values of j for which d;= 1 is not less than (j, —j,)/2 (in fact,

if279"1<e(p)<2fand 27* 1 <e(p;y,) <27 then 27%>37127771 and hence
k<j+2). We therefore have

17) jo—j1 S 2d.

It follows from (14) and the definition of &(w) that

(18) jtxpdx 2 Y J ep dx
1 [}

weF

2 S i [ otx =4 Tu

(2] w

= uxd .
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Using (11) and (13) we also get
(19) my< Y lol <Y el@) s d27h.

weF [

For w € # we have [, pdx = px/e(w) and hence, using (12), we obtain

(20) m s Y | edx= Y we)

weF YO
< pnd2io*t = 2uxddio
(19) and (20) yield
mom; < 2uxd*2io i
and invoking (17) we get mom, <2uxd?2%. It follows that

C,+logl/x < 2logd+2dlog2

for some constant C,. Since 2log2 <3 it follows that log 1/x <3d if x <, and
%o is small enough. The lemma now follows from a combination of this

estimate and (18) if we choose u close to 1.
The proof of Theorem 1 is complete.
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