AN INEQUALITY FOR CONVEX CURVES IN THE PLANE

PER SJÖLIN

Let Γ denote a simple, closed, convex curve in \mathbb{R}^2 and let $l(\theta, a)$ denote the straight line $x \cos \theta + y \sin \theta = a$, where $0 \le \theta < 2\pi$ and $a \in \mathbb{R}$. We set

$$E(\theta) = \{a \in \mathbb{R} : l(\theta, a) \cap \Gamma \neq \emptyset \}$$
.

 $c(\theta) = \inf E(\theta)$ and let $k_{\kappa}(\theta)$ denote the arc length of the part of Γ which lies between the lines $l(\theta, c(\theta))$ and $l(\theta, c(\theta) + \kappa)$, $\kappa > 0$. We shall prove the following theorem

THEOREM 1. Let Γ and $k_*(\theta)$ be defined as above. Then

(1)
$$\liminf_{\kappa \to 0} \int_{0}^{2\pi} k_{\kappa}(\theta) d\theta \left(\kappa \log 1/\kappa \right)^{-1} > 0.$$

In the case when Γ is piecewise linear (1) follows from an elementary computation and in this case it is also easy to see that there is a constant C such that

$$\int_{0}^{2\pi} k_{\kappa}(\theta) d\theta \leq C \kappa \log 1/\kappa$$

for small values of κ . It therefore follows that the result in Theorem 1 is not true if $\kappa \log 1/\kappa$ is replaced by a function $\rho(\kappa)$ such that

$$\lim_{\kappa \to 0} \varrho(\kappa)^{-1} \kappa \log 1/\kappa = 0.$$

Theorem 1 is a direct consequence of the following lemma.

LEMMA. Let $I_0 = [a_0, b_0]$ be a closed interval. Assume that f is a continuous, convex and non-linear function on I_0 . For $f'_+(a_0) \le \alpha \le f'_-(b_0)$ let $a(\alpha)$ be the smallest value of a for which the straight line $y = \alpha x + a$ intersects the curve y = f(x) (f'_+ and f'_- denote the right- and left-hand derivatives of f). Let

Received October 20, 1976.

294 PER SJÖLIN

 $k_{\kappa}(\alpha)$ denote the arc length of the part of the curve y = f(x) which has distance less than κ to the line $y = \alpha x + a(\alpha)$. Then

$$\liminf_{\kappa \to 0} \int_{f'_{+}(a_{0})}^{f'_{-}(b_{0})} k_{\kappa}(\alpha) d\alpha (\kappa \log 1/\kappa)^{-1} \geq 1/5.$$

REMARK. It follows from the lemma that the number zero on the right hand side of (1) can be replaced by a positive number which does not depend on Γ . It also follows from a splitting of the curve Γ in Theorem 1 that if Γ is not piecewise linear then

$$\lim_{\kappa \to \infty} \int_{0}^{2\pi} k_{\kappa}(\theta) d\theta / (\kappa \log 1/\kappa)^{-1} = \infty.$$

We also remark that the proof of the lemma shows that $k_{\varkappa}(\theta)$ in (1) can be replaced by the length of the orthogonal projection of the part of Γ between the lines $l(\theta, c(\theta))$ and $l(\theta, c(\theta) + \varkappa)$ onto the line $l(\theta, c(\theta))$.

PROOF OF THE LEMMA. The lemma is easy to prove in the case when f is piecewise linear and from now on we assume that f is not piecewise linear. For $f'_{+}(a_0) < \alpha < f'_{-}(b_0)$ we set

$$\beta(\alpha) = \sup\{x \; ; \; f'(x) < \alpha\}$$
 and $\gamma(\alpha) = \inf\{x \; ; \; f'(x) > \alpha\}$.

Then $\beta(\alpha) = \gamma(\alpha)$ for almost every α . We choose $\psi \in C_0^{\infty}(\mathbb{R})$ such that $\int \psi \, dx = 1$, $\psi \ge 0$ and set $\psi_n(x) = n\psi(nx)$ for $n = 1, 2, 3, \ldots$. Also choose a and b, $a_0 < a < b < b_0$, such that f' exists and is continuous at a and b and such that $f'(a) - f'_+(a_0) > 0$ and $f'_-(b_0) - f'(b) > 0$. We set I = [a, b] and may also assume that a and b are chosen so that there exist disjoint closed intervals J_1 and $J_2 \subset (a, b)$ with

(2)
$$f'(J_i) > 0, \quad i=1,2.$$

We set $f_n = f * \psi_n$ and it follows that $f_n \in C^{\infty}(I)$ if n is large enough and that each f_n is convex, i.e., $f_n'' \ge 0$. It also follows that f_n tends to f uniformly on every interval $[a_0 + \varrho, b_0 - \varrho]$, $\varrho > 0$, as n tends to infinity and that

$$\lim_{n\to\infty}f'_n(a)=f'(a),\quad \lim_{n\to\infty}f'_n(b)=f'(b).$$

Then define numbers $\delta_i = \delta_i(\alpha) = \delta_i(\alpha, \varkappa)$, i = 1, 2, for $f'(a) \le \alpha \le f'(b)$ and $\varkappa \le \varkappa_0$ by the equalities

$$f(\gamma + \delta_2) = f(\gamma) + \alpha \delta_2 + \kappa/\cos\theta$$

and

$$f(\beta - \delta_1) = f(\beta) - \alpha \delta_1 + \varkappa/\cos\theta,$$

where $\theta = \arctan \alpha$ and $\gamma = \gamma(\alpha)$, $\beta = \beta(\alpha)$. We assume that \varkappa_0 is so small that $\gamma + \delta_2$ and $\beta - \delta_1 \in I'$, where I' is an interval of the form $[a_0 + \varrho, b_0 - \varrho]$ for some fixed $\varrho > 0$. From the convexity of f it follows that δ_1 and δ_2 are uniquely determined. We set $\delta = \delta(\alpha) = \delta(\alpha, \varkappa) = \max(\delta_1, \delta_2)$ and observe that $k_\varkappa(\alpha)$ equals the arc length of the curve y = f(x), $\beta - \delta_1 \le x \le \gamma + \delta_2$. Hence $k_\varkappa(\alpha) \ge \delta(\alpha)$. Analogously define β_n , γ_n , $\delta_{1,n}$, $\delta_{2,n}$, δ_n and k_\varkappa , (with f replaced by f_n) for $f'_n(a) \le \alpha \le f'_n(b)$, $\varkappa \le \varkappa_0$ and $n \ge n_0$. We assume that \varkappa_0 and n_0 are chosen so that $\beta_n - \delta_{1,n}$ and $\gamma_n + \delta_{2,n} \in I'$ for all values of α and \varkappa . We shall prove that if \varkappa_0 is chosen small enough, then

(3)
$$\int_{f'_n(a)}^{f'_n(b)} \delta_n(\alpha) d\alpha \geq \frac{1}{5} \varkappa \log 1/\varkappa, \quad n \geq n_0, \ \varkappa \leq \varkappa_0,$$

and that

$$\delta_n(\alpha) \to \delta(\alpha), \quad n \to \infty ,$$

almost everywhere on (f'(a), f'(b)). It then follows from Lebesgue's theorem on dominated convergence that

$$\int_{f'(a)}^{f'(b)} \delta(\alpha) d\alpha \ge \frac{1}{5} \varkappa \log 1/\varkappa$$

for $\varkappa \le \varkappa_0$, which yields the lemma. We first prove (4). Fix α such that $\beta(\alpha) = \gamma(\alpha)$. It is then clear that $\gamma_n \to \gamma$ as $n \to \infty$. We have

(5)
$$f_n(\gamma_n + \delta_{2,n}) = f_n(\gamma_n) + \alpha \delta_{2,n} + \kappa/\cos\theta.$$

We assume that $\delta_{2,n} \to \delta_2$ and shall prove that this leads to a contradiction. Choosing a convergent subsequence we may assume that $\delta_{2,n} \to \delta^* + \delta_2$ as $n \to \infty$. It follows that

$$f_n(\gamma_n + \delta_{2,n}) \to f(\gamma + \delta^*)$$
 and $f_n(\gamma_n) \to f(\gamma)$

as $n \to \infty$. Hence (5) yields

$$f(\gamma + \delta^*) = f(\gamma) + \alpha \delta^* + \varkappa/\cos\theta$$
,

which shows that $\delta^* = \delta_2$. This is a contradiction and hence $\lim_{n \to \infty} \delta_{2,n} = \delta_2$. In the same way it can be proved that $\lim_{n \to \infty} \delta_{1,n} = \delta_1$ and therefore (4) is proved.

It remains to prove (3). We fix n and κ and write δ_i and γ instead of $\delta_{i,n}$ and γ_n . We observe that

$$f'_n(b) - f'_n(a) \ge m > 0$$

for some constant m. If $f'_n(a) \le \alpha \le f'_n(b)$ and $\gamma = \gamma(\alpha)$ it is clear that $f'_n(\gamma) = \alpha$. From the formula defining δ_2 it therefore follows that

$$\int_{\gamma}^{\gamma+\delta_2} \left(\int_{\gamma}^{x} f_n''(t) dt \right) dx = \varkappa/\cos\theta$$

and hence

$$\delta_2 \int_{\gamma}^{\gamma+\delta_2} f_n''(t) dt \ge \varkappa.$$

Defining $\varepsilon_2 = \varepsilon_2(\alpha)$ by the equality

$$\varepsilon_2 \int_{\gamma}^{\gamma + \varepsilon_2} f_n''(x) \, dx = \varkappa$$

we conclude that $\varepsilon_2 \leq \delta_2$. We also define ε_1 by

$$\varepsilon_1 \int_{\beta - \varepsilon_1}^{\beta} f_n''(x) dx = \varkappa$$

and set $\varepsilon = \varepsilon(\alpha) = \max (\varepsilon_1, \varepsilon_2)$. It follows that $\varepsilon_1 \leq \delta_1$ and $\varepsilon \leq \delta$. Let $(I_k)_1^{\infty}$ denote the component intervals of the set $\{x \in I : f_n''(x) > 0\}$. Since $[f_n'(a), f_n'(b)] \setminus \bigcup_{i=1}^{\infty} f_n'(I_k)$ has Lebesgue measure zero we obtain

(7)
$$\int_{f'_{\alpha}(a)}^{f'_{\alpha}(b)} \delta(\alpha) d\alpha \ge \int_{f'_{\alpha}(a)}^{f'_{\alpha}(b)} \varepsilon(\alpha) d\alpha = \sum_{1}^{\infty} \int_{f'_{\alpha}(I_{\alpha})} \varepsilon(\alpha) d\alpha.$$

From a change of variable $\alpha = f'_n(x)$ it follows that the last integral equals

(8)
$$\int_{I_{\bullet}} \varepsilon(f'_{n}(x)) f''_{n}(x) dx.$$

For $x \in I$ we define $\varepsilon_1(x)$, $\varepsilon_2(x)$ and $\varepsilon(x)$ by setting

$$\varepsilon_1(x) \int_{x-\varepsilon_1(x)}^x f_n''(t) dt = \varepsilon_2(x) \int_x^{x+\varepsilon_2(x)} f_n''(t) dt = \varkappa$$

and $\varepsilon(x) = \max(\varepsilon_1(x), \varepsilon_2(x))$. It follows that the integral (8) equals

$$\int_{I_{\bullet}} \varepsilon(x) \, f_{n}^{"}(x) \, dx$$

and hence (7) yields

(9)
$$\int_{f_n'(a)}^{f_n'(b)} \delta(\alpha) d\alpha \ge \int_I \varepsilon(x) f_n''(x) dx.$$

We now write φ instead of f_n'' and then have $\varphi \in C^\infty(I')$, $\varphi \ge 0$ and $\int_I \varphi \, dx \ge m$. Since φ is continuous ε is continuous on I. We choose $p_0 \in I$ such that $\varepsilon(p_0) = \max_{x \in I} \varepsilon(x)$ and let μ be a number satisfying $0 < \mu < 1$. If $p_0 \ne b$ successively choose points $(p_i)_1^N$ and intervals $(\omega_i)_0^{N-1}$ such that $p_0 < p_1 < p_2 < \ldots < p_N = b$, $\omega_i = [p_i, p_{i+1}]$,

$$\varepsilon(p_i) \int_{\omega_i} \varphi \, dx = \mu \varkappa, \quad i=0,1,\ldots,N-2,$$

and

$$\varepsilon(p_{N-1})\int_{\omega_{N-1}}\varphi\,dx\leq\mu\varkappa.$$

If $p_0 \neq a$ we also choose points $(p_i')_1^M$ and intervals $(\omega_i')_0^{M-1}$ such that $a = p_M'$ $< p_{M-1}' < \ldots < p_1' < p_0' = p_0, \ \omega_i' = [p_{i+1}', p_i'],$

$$\varepsilon(p_i')\int_{\omega_i'} \varphi \, dx = \mu \varkappa, \quad i=0,1,\ldots,M-2,$$

and

$$\varepsilon(p'_{M-1})\int_{\omega'_{M-1}}\varphi\,dx\,\leq\,\mu\varkappa\;.$$

Since $\varepsilon(x) \leq C$ it follows that the equality $\varepsilon(p_i) \int_{\omega_i} \varphi \, dx = \mu \varkappa$ implies

$$\int_{\omega_i} \varphi \, dx \, \geqq \, \mu \varkappa / C \, ,$$

which ensures that in the above construction we reach the points b and a in a finite number of steps. Set

$$\mathcal{F} = \{\omega_0, \omega_1, \ldots, \omega_{N-2}, \omega'_0, \omega'_1, \ldots, \omega'_{M-2}\}$$

and for $\omega \in \mathscr{F}$ set $\varepsilon(\omega) = \varepsilon(p_i)$ if $\omega = \omega_i$ and $\varepsilon(\omega) = \varepsilon(p_i')$ if $\omega = \omega_i'$. Hence

(10)
$$\varepsilon(\omega) \int_{\Omega} \varphi \, dx = \mu \varkappa, \quad \omega \in \mathscr{F}.$$

From (2) and the definition of \mathcal{F} it is easy to see that there exist constants m_0 and m_1 (independent of n) such that

and

(12)
$$\sum_{\omega \in \mathscr{F}} \int_{\omega} \varphi \, dx \ge m_1 > 0.$$

We shall now prove that

(13)
$$\varepsilon(\omega) \ge |\omega|, \quad \omega \in \mathscr{F}.$$

298 PER SIÖLIN

Assume $\omega = \omega_i$ for some i (the proof is similar if $\omega = \omega_i$ for some i). Then

$$\varepsilon(\omega) = \varepsilon(p_i)$$
 and $\varepsilon(p_i) \int_{\omega} \varphi \, dx = \mu \varkappa$.

Assume $\varepsilon(p_i) < |\omega|$. Then $\varepsilon_2(p_i) < |\omega|$ and hence $p_i + \varepsilon_2(p_i) \in \omega$. It follows that

$$\varkappa = \varepsilon_2(p_i) \int_{p_i}^{p_i + \varepsilon_2(p_i)} \varphi \, dx \leq \varepsilon(p_i) \int_{\omega} \varphi \, dx = \mu \varkappa \,,$$

which gives a contradiction and proves (13).

We now prove that if $x \in \omega \in \mathcal{F}$, then

$$\varepsilon(x) \geq \varepsilon(\omega)/3.$$

We may assume that $\omega = \omega_i$ for some *i*. Assume (14) is not true, i.e. there exists $x \in \omega$ such that $\varepsilon(x) < \varepsilon(p_i)/3$ and hence $\varepsilon_j(x) < \varepsilon(p_i)/3$, j = 1, 2. We consider two cases.

Case 1. One of the points $x \pm \varepsilon(p_i)/3 \in \omega$.

Assume for instance that $x + \varepsilon(p_i)/3 \in \omega$ (the proof is similar if $x - \varepsilon(p_i)/3 \in \omega$). It follows that $x + \varepsilon_2(x) \in \omega$ and hence we have

$$\varkappa = \varepsilon_2(x) \int_{x}^{x+\varepsilon_2(x)} \varphi \, dt \leq 3^{-1} \varepsilon(p_i) \int_{\infty} \varphi \, dt = \mu \varkappa/3 ,$$

which gives a contradiction.

Case 2. $x \pm \varepsilon(p_i)/3 \notin \omega$.

It follows that $\varepsilon(p_i)/3 > |\omega|/2$ and hence

$$\varepsilon(p_i) > 3|\omega|/2.$$

We first treat the case $\varepsilon(p_i) = \varepsilon_2(p_i)$. (15) implies that $[x, x + \varepsilon(p_i)/3] \subset [p_i, p_i + \varepsilon(p_i)]$ and it follows that

$$\int_{x}^{x+\varepsilon(p_{i})/3} \varphi \, dt \leq \int_{p_{i}}^{p_{i}+\varepsilon(p_{i})} \varphi \, dt .$$

We conclude that

$$\tfrac{1}{3}\varepsilon(p_i)\int_x^{x+\varepsilon(p_i)/3}\varphi\,dt\,\leqq\,\tfrac{1}{3}\varepsilon(p_i)\int_{p_i}^{p_i+\varepsilon(p_i)}\varphi\,dt\,=\,\varkappa/3\;.$$

Since $\varepsilon_2(x) < \varepsilon(p_i)/3$ it follows from the definition of ε_2 that the left hand side above is larger than κ , which leads to a contradiction. We then treat the case $\varepsilon(p_i) = \varepsilon_1(p_i)$. It is clear that $p_i - \varepsilon(p_i) < x - \varepsilon(p_i)/3 < p_i < x$ and we obtain

(16)
$$\varkappa = \varepsilon(p_i) \int_{p_i - \varepsilon(p_i)}^{p_i} \varphi \, dt \ge \varepsilon(p_i) \int_{x - \varepsilon(p_i)/3}^{p_i} \varphi \, dt$$

$$= \varepsilon(p_i) \int_{x - \varepsilon(p_i)/3}^{x} \varphi \, dt - \varepsilon(p_i) \int_{p_i}^{x} \varphi \, dt .$$

From the inequality $\varepsilon_1(x) < \varepsilon(p_i)/3$ it follows that

$$\frac{1}{3}\varepsilon(p_i)\int_{x-\varepsilon(p_i)/3}^x \varphi\,dt > \varkappa$$

and we also have

$$\varepsilon(p_i) \int_{p_i}^x \varphi \, dt \le \varepsilon(p_i) \int_{\omega} \varphi \, dt = \mu \varkappa.$$

Inserting these estimates in (16) we obtain

$$\kappa \geq 3\kappa - \mu\kappa \geq 2\kappa$$
,

which is a contradiction and completes the proof of (14).

We need some more notation. Let d denote the number of elements in \mathscr{F} , d_j the number of intervals $\omega \in \mathscr{F}$ such that $2^{-j-1} \leq \varepsilon(\omega) < 2^{-j}, j \in \mathbb{Z}$. Let j_1 be the smallest and j_0 the largest value of j for which $d_i \geq 1$. Hence

$$d = \sum_{j=i}^{j_0} d_j.$$

It follows from (14) that

$$\varepsilon(p_{i+1}) \ge \varepsilon(p_i)/3$$
 and $\varepsilon(p'_{i+1}) \ge \varepsilon(p'_i)/3$.

Since $\varepsilon(p_0) = \max_{x \in I} \varepsilon(x)$ it therefore follows from the construction of the set \mathscr{F} that the number of values of j for which $d_j \ge 1$ is not less than $(j_0 - j_1)/2$ (in fact, if $2^{-j-1} \le \varepsilon(p_i) < 2^{-j}$ and $2^{-k-1} \le \varepsilon(p_{i+1}) < 2^{-k}$, then $2^{-k} > 3^{-1}2^{-j-1}$ and hence $k \le j+2$). We therefore have

$$(17) j_0 - j_1 \leq 2d.$$

It follows from (14) and the definition of $\varepsilon(\omega)$ that

(18)
$$\int_{I} \varepsilon \varphi \, dx \ge \sum_{\omega \in \mathscr{F}} \int_{\omega} \varepsilon \varphi \, dx$$
$$\ge \sum_{\omega} \frac{1}{3} \varepsilon(\omega) \int_{\omega} \varphi \, dx = \frac{1}{3} \sum_{\omega} \mu \varkappa$$
$$= \frac{1}{3} \mu \varkappa d.$$

300 PER SJÖLIN

Using (11) and (13) we also get

(19)
$$m_0 \leq \sum_{\omega \in \mathscr{F}} |\omega| \leq \sum_{\omega} \varepsilon(\omega) \leq d2^{-j_1}.$$

For $\omega \in \mathcal{F}$ we have $\int_{\omega} \varphi dx = \mu \varkappa / \varepsilon(\omega)$ and hence, using (12), we obtain

(20)
$$m_1 \leq \sum_{\omega \in \mathscr{F}} \int_{\omega} \varphi \, dx = \sum_{\omega} \mu \varkappa \varepsilon(\omega)^{-1}$$
$$\leq \mu \varkappa d2^{j_0+1} = 2\mu \varkappa d2^{j_0} .$$

(19) and (20) yield

$$m_0 m_1 \leq 2 \mu \kappa d^2 2^{j_0 - j_1}$$

and invoking (17) we get $m_0 m_1 \le 2\mu \varkappa d^2 2^{2d}$. It follows that

$$C_1 + \log 1/\varkappa \le 2\log d + 2d\log 2$$

for some constant C_1 . Since $2 \log 2 < \frac{3}{2}$ it follows that $\log 1/\varkappa \le \frac{3}{2}d$ if $\varkappa \le \varkappa_0$ and \varkappa_0 is small enough. The lemma now follows from a combination of this estimate and (18) if we choose μ close to 1.

The proof of Theorem 1 is complete.

ACKNOWLEDGEMENT. I wish to express my gratitude to Yngve Domar for drawing my attention to the problem studied in this paper and for valuable conversations.

DEPARTMENT OF MATHEMATICS STOCKHOLM UNIVERSITY SWEDEN