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COMPLEX PREDUALS OF L; AND
SUBSPACES OF [ (C)

NIELS JORGEN NIELSEN and GUNNAR HANS OLSEN

Introduction.

In the present paper we investigate the structure of complex preduals of L,
and the problems concerning norm preserving extensions of compact
operators. Most of the results are known in the real case, but the complex case
does not follow from these in a straightforward manner; in fact, in many
respects the complex case is much more complicated and requires often
different proofs. Many of the proofs here give other methods to show the
corresponding real result.

We now wish to indicate in greater detail the arrangement and the results of
this paper.

In section 1 we start by investigating the structure of those finite dimensional
spaces, which embed isometrically into I7, for some n. This leads then up to the
main result of the section, which states that if X is a complex predual of L, and
E,c X, E,c X are finite dimensional spaces, so that E, embeds isometrically
into I’ for some n, then for every £¢>0 there is an F£X with E,cF, F
isometric to 7 for suitable m and d(x,F)<e for x € E,, |x||=1. The
corresponding real result was proved by Lazar and Lindenstrauss [16]. The
proof given here provides an alternative way of proving the real result. The
main brick in the proof is a complex version of the Lazar selection theorem,
recently proved in [26]. The result is then used to give a new and very short
proof of the Hirsberg—Lazar characterization of preduals of L,, whose unit ball
contains an extreme point.

Section 2 is devoted to the study of norm preserving extensions of compact
operators. We first prove that if E is a finite dimensional space, whose unit ball
is the absolutely convex hull of finitely many points, then every point in Bg can
be represented as a combination of extreme points so that the coordinate
functions are continuous. The real case is due to Kalman [12]. While his proof
is geometric, the proof here uses an argument on extension of operators, based
on the main theorem of section 1, but in the real case we do not need this
theorem.
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The previous results of the paper are then used to characterize those preduals
X of L, with the property that every compact operator with image in X can be
extended preserving the norm. The corresponding real result was proved by
Lazar and our proof follows his ideas. We end the section by proving that
every predual of /, is isomorphic to an % ,-space, a result due to W. B.
Johnson and the first named author.

0. Notations and preliminaries.

In this paper all Banach spaces are assumed to be complex spaces unless
otherwise stated, and throughout the paper we shall use the notation and
terminology commonly used in Banach space theory as it appears in [22], let
us just here recall that if X and Y are Banach spaces, then the Banach distance
d(X,Y) is defined by

d(X,Y) = inf{|IS| IS~ | S is isomorphism of X onto Y}

and if X and Y are not isomorphic we put d(X, Y)=o0c.

For every natural n we let {e; | 1<j<n} denote the unit vector basis of I
and {ef | 1<j<n} its biorthogonal system, ie. the unit vector basis of /7.
Further we let T be the unit circle in C, and if x and y are vectors in a Banach
space, then we say that x and y are T-equivalent, if there is a t € T so that x=ty.

If X is a Banach space we let By denote the unit ball of X, and for a convex
set K< X we let 6.K denote the extreme points. A compact absolutely convex
set K < X is called a complex polytope, if there exists a finite set A £0.K so that
0. K=T-A.

Let E and F be locally convex spaces and denote by c¢(F) the set of all non-
empty convex subsets of F. If K< E is convex and ¢: K — c(F), then ¢ is
called convex, provided:

Ap(x)+ (1= (xz) £ @(Ax, +(1—2)x;)

for all x,,x, € K and 4 € [0,1].

The map ¢ is said to be lower semicontinuous if {x € K | e(X)NU*} is
open for every open subset U of F. Finally when K is absolutely convex, we say
that ¢ is T-symmetric, if p(tx)=t¢(x)for all t € Tand x € K. By a selection for
¢ we mean a map f: K — F such that f(x) € ¢(x) for all x € K. Else our
general reference in convexity is Alfsen’s book [1].

1. Structure theorems for preduals of L,.

Before we prove the main theorems of this section mentioned in the
introduction, we need the following easy proposition on complex polytopes:
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1.1. ProposITION. Let E be a finite dimensional Banach space, then Bg is a
complex polytope, if and only if there is an n € N and an operator I — E taking
the unit ball of I onto the unit ball of E.

Proor. Assume first Bg is a complex polytope, and let x,,x,,...,x, be
extreme points of Bg, mutually non T-equivalent, and so that J.Bg
=T-{x;,Xz,- .., X,}. If we define S: I} — E by:

n n
S(Z tjej> = ) tx;;  tyty,...t,€C;
i=t i=1

then it is obvious that S has the required properties.
If S: If — E satisfies the conditions in the proposition we put

A = {e;| S(e) e d.Bg} .

If x € 3.Bg, then S~ (x)N By is a compact face of Bp and hence it contains an
extreme point, thus there is an index j and t € T, so that S(te;)=x, but then
e;e A, and x € T-S(A4). Hence 0.B;=T-5(4).

1.2. CoroLLARY. Let E be a finite dimensional Banach space. Then E embeds
isometrically into I, for some n if and only if Bg« is a complex polytope.

We are now ready to state and prove the main theorem of this section.

1.3. THEOREM. Let X be a predual of L, and let F, and F, be finite
dimensional subspaces of X with F, isometric to a subspace of IYo for some k.
Then for every >0 there is a subspace E of X with F, S E, d(x, E)<¢ for every
x € Bp, and so that E is isometric to Iy, for suitable m.

Proor. It is enough to prove the theorem in the case dim F, =1, the general
case will then follow by induction. Hence let ¢>0, {y; i 1<i<n} be a unit
vector basis for F, and z a unit vector in F,. We define R: Bys - CxC" by

Rx* = (x*(@,X*()-- > x*());  x* € Bys;

and put W= RBy.. Denote by D, the disc in C with radius ¢ and center 0 and
let P: C x C" — C" be the canonical projection. Since by our assumptions and
corollary 1.2 P(W) is a complex polytope and J.W is totally bounded we can
find mutually non T-equivalent extreme points w;, w, ..., w,, of W, so that if
W'=conv (T-{wy,...,w,}), then P(W)=P(W’) and

(1 {zeC| v eW} c{zeC| (zv)e W}+D,.

Define S: I"*! — Cx C" by

Math. Scand. 40 - 18
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() Sle) =w; 1s5jsSm
S(em+1) = (50,...,0).
Let B be the unit ball of C® I1(C), then by (1)
S(B) =2 W.

Let ¢(It*") denote the set of all closed convex subsets of IT*! and define
U, ¥, ¥, Bys — (™) by:

©)] ¥, (x*) = S™Y(Rx¥)
o _ J{te} if Rx* =tw, teT, ksm
valxh) = {B else )

Y(x*) = ¢y (x¥) NP,y (x*).

It is easy to see that y is convex and T-symmetric. We wish to show that ¢ is
lower semicontinuous when By is equipped with the w*-topology. If U is an
open subset of I"*!, then the sets

Aj={teT| te;¢ U}, 1<jsm

are compact, and since IT'*! is finite dimensional, the set R™!(SU) is a w*-open
subset of Bys; therefore the set

{x*| y:x®NU+Z} = RTYSUN\U {tR™'(w) | te 4}
j=1
is w*-open in Bys. This proves that i is lower semicontinuous. By the complex
analogy of Lazar’s selection theorem [26, theorem 4.2] { admits an affine, T-

symmetric and w*-continuous selection ¢. For k=1,2,...,m+1 we define
x, € X by

4) x*(x) = ef(p(x*), x*e By '

Let a,,a,,...,a, € C. By the definition of ¥, we now get:

Y oax| = sup{x*(z oc,-x,-)

i=1 i=1

sup{ Y aer(e(x®)| | x* e Bx.}
i=1

sup{ ee B,r}

sup {lo;| | 1<ism}.

x* e th}

3 wer

I
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This gives that the linear span of {x,}p, is isometric to I7. By (4) and the
definition of y; we get for all x* € By«:

(5) Rx* = S(p(x*) = kzl X*(x W+ x* (X4 1), 0,...,0) .
If we put w,=(w))}2{, we get by looking on (5) coordinatewise
(6) Ve = i witlx, 1=<k=Zn
j=1
and
(7) - i wix,|| < &
i<

so the proof is complete.

As a corollary of the above theorem we can take out the next result, proved
in the real case by Lazar and Lindenstrauss [16]. This is a slightly stronger
version of the main result of Michael and Pelczynski in [23].

1.4. THEOREM. Let X be a separable predual of L, and let F< X be a finite
dimensional space which embeds isometrically into I¥, for some k. Then there
exists an increasing sequence (E,)5, of finite dimensional subspaces of X with
X=U, E,and so that FSE,,dimE,,, =1+dim E, and E, isometric to [4™mEx,

Proor. The result can be proved as in [16] by using our theorem 1.3 instead
of their theorem 3.1. The fact that the E,’s can be chosen to satisfy dimE, ;=
1+dim E, follows from [23].

We pass now to give an alternative proof of a functional representation
theorem for complex preduals of L, whose unit ball has an extreme point, due
to Hirsberg and Lazar [10]. A simpler proof than the original one was given by
Lima [17].

1.5. THEOREM. Let X be a predual of L,, whose unit ball has an extreme point
e. Let
S = {x*e X*| x*(e)=1=|x*||}

be equipped with the w*-topology. If y: X — C(S) is the natural map defined by
Y(x)(x*)=x*(x), x* € S, then Y is an isometry, which maps X onto the space of
w*-continuous complex affine functions on S and Y(e)=1.
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Proor. Clearly y(e)=1 and ||y (x)|| < ||x| for all x € X. Let y € X with |y
=1. We wish to show that ||y(y)|| = 1. If £> 0 is arbitrary, then by theorem 1.3
we can find a finite dimensional space E< X so thate € E and d(y, E)<e and E
isometric to I, for some n. Let (x,)]- be a basis for E isometrically equivalent
to the unit vector basis of I, and let (x})j-, & X * be a sequence biorthogonal
to (x;)}=, with |x}¥||=1, 1<j<n. By the above there is an x € E with [x[|=1
and ||y —x|| =2e. Let j be chosen so that |x*(x)|=1, since e is an extreme point
of By |x}(e)l=1 and therefore x}(e)x}* € S, moreover:

IxFe)xFl 2 Ixf&=lxFlllx—yl =2 1-2¢,
hence ||¥/(y)| = 1. An argument of [26] gives that y is onto.

We want to thank A. Lazar for suggesting this proof.

1.6. CorROLLARY. Let X be a predual of L, and e € X with |e| =1. Put
S ={x*eX*| x*(e=1=|x*|}.
Then the following statements are equivalent:

(i) e is an extreme point of By.
(ii) S is an maximal face of Byx.
(iii) e considered as an element of Bys+ is an extreme point.

Proor. Assume (i) and that S is not a maximal face in By.. Then there exist
y* € Bys such that y* ¢ conv[tS l t € T}. By Hahn-Banach there exist a w*-
continuous functional x, that is x € X, such that

y*(x) = 1 > sup{Rex(x*) I x* € conv {tS | teT}}
2 sup{lx*(x)| | x* e S}

which contradicts the fact that the map y in the preceeding theorem is an
isometry.

(ii) = (iii). Assume S is a maximal face in By.. We may identify X* with
L,(Q, #,m) for some positive measure space (Q, &, m). First we observe that for
any B € # there is f € § with | f* x| >0. If not the norm would be additive on
the set conv (SU {m(B)™'xg}) so by [2, lemma 2.1] we get a contradiction to
the maximality of S. Assume there is B € # with m(B)>0 and |e(g)| <1 a.e. on
B. By the above observation there is f € S with || f: xpll >0. Since S is a face

If-xgl~*f xp € S. But
le(lf xgll =" fxp)l < 1

contradicting the definition of S.
(iii) = (i). Trivial.
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RemaRrks. Functional representations of the type in theorem 1.5 were
investigated and studied by Kadison (see [1, p. 78]) who represented the self
adjoint part of a C*-algebra of isometrically as the real affine w*-continuous
functions on the state space. In this situation one can no longer represent .o/
isometrically as complex affine functions on the state space unless .o/ is
commutative. This is probably well known, but since we are unable to give a
reference to this fact, we shall give a proof which was shown to us by Christian
Skau.

Let a € o/. By assumption there is a pure state p such that |a|| =|p(a)|. Let &,
be the corresponding representation with cyclic vector & Then we have

lall = Ip(a@) = Kn,(@)é, & = ln, (@)l 1] = lal .
By Schwartz’s equality n,(a)¢ =p(a)¢. If b € o, then

p(ba) = (m,(ba)¢, &) = <m,(b)m,(a)s, &> = p(a){n,(b){, &) = pla)p(d).

Similarly we get p(ab)=p(a)p(b). It follows that the spectral radius coincides
with the norm on &/, so [4, theorem 4.7] gives that o/ is commutative. (The
above result is incorrect for Banach algebras, consider the bounded operators
on a predual of L, [4, p. 87]).

On the other hand functional representations of Banach algebras will always
be isomorphisms due to the Bohnenblust-Karlin theorem [4], and for C*-
algebras the onto argument is still valid, in fact this gives a characterization of
the C*-algebras among the Banach algebras. This is just a restatement of the
Azimov-Ellis geometric interpretation of the Vidav—Palmer theorem [3].

Let o be a Banach algebra with unit and assume &/ is complex predual of
L,. Then the map y of theorem 1.5 is onto, so & is a C*-algebra. Since y is an
isometry, &/ is commutative, so .« is isometric to C(S) for some compact
Hausdorff space S. This result was proved by Hirsberg and Lazar for function
algebras [10] and in general by Ellis [8].

2. Norm preserving compact extensions.

In the real theory of norm preserving extensions of compact operators the
subspaces of the spaces I play a central role. The same is the case in the
complex theory, as our results in section 1 indicate; however, there is one
major difference. In the real theory the subspaces of the I%’s are exactly the
spaces, whose unit ball is a polytope (this follows for example from corollary
1.2 and the fact that the unit ball of a real Banach space is a polytope if and
only if the unit ball of the dual space is a polytope [13]); this is not so in the
complex case as the example I% shows.
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We recall that a function f on a circled subset K of a Banach space is called
T-homogeneous if f(tx)=tf(x) for all xe K, t e T.
Before we can prove our main results we need the following:

2.1. PropPoOSITION. Let K be a compact metric space, xg,Xi,...,Xx, € K;
Ay Az ..y Ay € C5s0 that 35 |4 £ 1. Then the subspace X of C(K) consisting
of those f € C(K) for which f(x,)=31-, 4;f(x;) is a predual of L,.

Proor. We shall assume |1, <1 for all j, since else X is a G-space and hence
is a predual of L, [25]. It is immediate that

0eBx» = {16, | x € K, x#xo, teT}.

Let o: TxK— 6eBX*w be the onto map defined by ¢(t,x)=1t0,, teT, xeK;
and let 4 and v be two boundary measures on By« with the same barycenter.
According to a theorem of Effros [7], it is enough to show u(f)=v(f)for all T-
homogeneous f e C(Bys). By the Hahn—Banach theorem there exist Radon
probabilities y; and v, on Tx K so that ¢(u,)=u, @(v,)=v. By maximality
u(T{0,,})=v(T{d,,})=0, hence u; and v, are concentrated on T x (K\{x,}).
Let f € C(By+) be T-homogeneous, and let ¢>0. By regularity we can find a
compact subset K, = K\{x,} containing x,. . .,X,, so that

[y —vil(TxKy) 2 [lpg—vill—¢.

By Tietze’s extension theorem we can find fe C(K) so that f(x)=f(5,),
x e Ky, IFI=11, and J(xo)=27-1 2;f (8,); clearly e X and hence:

u(f)—v(N) = L Kf(téx)—tf(X)d(ux-Vl)(t,X)

IIA

J If (G =T ()l dluy —vil(t, %) = 2f e
Tx (K\Ky)

Since ¢ was arbitrary u(f)=v(f).

We are now able to prove the following theorem on complex polytopes.

2.2. THEOREM. Let E be a finite dimensional Banach space whose unit ball is a
complex polytope, and let x,,x,,...,x, be the extreme points modulo T. If
Xo € By with xo=Y7_,A9x;, Y}-,IA}|S1, then there exist functions
A1s42. . ., 4y € C(Bg)so that 3} |A;(x)| 1, x=2]}-, A;(x)x; for all x € Bg, and
Aj(xo)= /1?, 15jsn.

Proor. Let X be the subspace of C(Bg) consisting of those f for which f(x,)
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=37-149f(x; and let S:I] - E be the operator from Proposition 1.1.
Further let I: E* — C(Bg) be the canonical embedding; clearly I(E*)= X.
Since E* is isometric to a subspace of I (via $*) it follows from theorem 1.3
and proposition 2.1 that there is an m and a subspace F of X isometric to I
with I(E*)< F. Since F is a 2,-space there is a norm one operator I: I, — F
so that I=IS*. Put lj=7e}", 1<j<n. If x € Bg, then

n

Y ex(I*5,)e;

j=1

= [I* )y < 1.

(1) ¥ 1l -

A

For all y* € E* we obtain:
y*<‘Z /lj(x)x,-> = (S*y*)(I*s,)
j=1

= (IS*y*)(x) = y*(x)

and hence
@ x =Yy Ax;.
i=1

Since tx; is an extreme point for every t € T, we have 4;(tx;)=t and

Aj(xo) = Z A%j(xk) = /1?, 1<j=<n.

k=1

2.3. CoroLLARY. Under the same conditions as in 2.2 there exist T-
homogeneous  functions fi,..., f,€ C(Bg) so that x=37_, fj(x)x; and
i=11fj(¥)I=1 for all x € Bg.

Proor. Let 4;, 1<j=n be as in theorem 2.2. Define for each j, 1<j<n,

fix) = J‘ t~'2;(tx)dt, x e Bg,
T

where dt is the normalized Haar measure on T. It is easily checked that the f}s
satisfy the requirements.

REMARK. A'slightly weaker form of corollary 2.3 was proved in the real case
by Kalman [12] using geometric arguments. The real version of theorem 2.2
was proved Hy Lazar [15] by modification of Kalmans proof. Note that our
proof of 2.2 and 2.3 with obvious changes gives an alternative proof in the real
case, without using theorem 1.3, in fact it is easy to see that a C(K)-space has

the finite binary intersection property, then argue as in [20, proof of theorem
5.5]. '



280 NIELS JORGEN NIELSEN AND GUNNAR HANS OLSEN

Recall that a linear subspace N of a Banach space W is called an L-ideal if
there exist a subspace N’ and W such that W=N@®N’ and |w| = ||x| + || y| for
all w=(x,y) e N®N'. The reader is refered to [2], [9, theorem 1.2] and [17]
for results on L-ideals.

The proof of the next proposition was suggested to us by A. Lima.

2.4. PROPOSITION. Let (2, #, u) be a measure space and let F be a closed face of
By, and put E=span (F). Then:

(i) E is an L-ideal
(i) ENB,, y=conv (T F)
(iii) If L,(n) is a dual space and F is w*-closed, then E is w*-closed.

Proor. Since F is contained in a maximal proper face whose cone defines an
order in L, (1) which makes it an abstract L-space, it is no loss of generality to
assume that F is contained in the positive cone of L, (u).

If we let C denote the cone generated by F, then it is readily verified that
E=(C—-C)+i(C—-C), and since C is heriditary [2, lemma 2.7] it follows that
if fe E then =0 if and only if f € C. Since a face cone in an L-space is a lat-
tice cone we get by the above

1) E={feLiw]| IfleC}.

Since C is closed and the lattice operations are continuous, E is closed by (1).
This relation also gives that E is an L,-space under the induced order. To
prove (i) we first observe that by (1) E is a solid subspace of L, (¢) in the sense
that fe E, |g|<|f| implies g € E. Since E is an L,-space under the induced
order, monotone, norm bounded nets in E converge [24], [27], and hence E is
a band in L, (p). It follows that E is an L-ideal.

(i) will follow from

) BiywNE = {f] |f] € conv (F,{0})} = conv (T F).

The first equality in (2) is obvious by (1). If f € L, (u) with |f| € conv (F U {0})
and >0, then we can find a simple function g with |g|=|f| and ||g—f] <e.
Hence g€ E. If g=3T o;x4, With A;NA4;=0F, i+j, then [yl "x4, € F,
1 <j=n. Furthermore

12 gl = Y lagl flxal
j=1

and thus g € conv (T* F). The inclusion conv (T-F)g B, (,,NE is trivial.
Finally assume that L, (u) is a dual space and F is w*-closed. According to
the Banach-Dieudonné theorem it is enough to prove that EN By, is w*-



COMPLEX PREDUALS OF L; AND SUBSPACES OF I (C) 281

closed. It follows immediately that C N By, is w*-compact. If (f)cENBy,,
is a w*-convergent net with limit £, then by a compactness argument we may
assume that the nets ((Ref)*), ((Ref)”), (Imf)*) and ((Imf)~) all
converges to elements in CN By, Thus f€ E and trivially |f|| 1.

The next lemma is actually one of the implications in our main theorem, but
we have taken it out separately of technical reasons.

2.5. LEMMA. Let X be a predual of L,. If By« has an infinite dimensional w*-
closed face, then X contains a subspace isometric to c.

Proor. Let F be an infinite dimensional w*-closed face of By« and put
N =span (F). By proposition 2.4, N is a w*-closed L-ideal of X* with F as
a maximal proper face of By. If Z= X/N° then Z*=N, and since F is split in
conv (FU —iF) every fe A(F) (here A(F) denotes the complex, affine, w*-
continuous functions on F) can be extended to an element in Z [25]; hence the
map : Z — A(F) defined by (yz)(x*)=x*(z) is an isometry onto. By Zippin’s
result [28] there is an isometric embedding U: Rec — Re A(F). If W:
¢ — A(F) is defined by W(x+iy)=Ux+iUy x,y € Rec then W is an iso-
metric embedding. In fact let s € F with

IWx+ipl = [W(x+iy)(s)
and choose t € T, t=u+iv, u,v € R so that
IWx+ipl = t((Ux)(s5)+i(Uy)(s)) = u(Ux)(s)—v(Uy)(s)
= U(Ret(x+iy)(s) = [URet(x+iy)l = Ix+iyll .

In a similar manner we get |W(x+iy)| = ||x+iy|. (The last argument was
shown to us by A. Lima.) Hence we have shown that Z contains a subspace Y
isometric to c.

If (x,) £ Y is a dense sequence, then we can define a metric on Y* with the aid
of this sequence, so that it generates the w*-topology on Bys. Let us denote
Y*s completion in this metric by Y*, clearly By. can be considered
topologically as a subset of Y*.

Let ¢: By — By« be defined by:

(@x*)(y) = x*(y), yeY, x*eN.

From [26, theorem 4.2] there is an affine, T-symmetric w*-continuous map
®:Bx+ — Bys, so that @|By=¢. Define S:Y— X by

x*(Sy) = (Px*)(y), yeY, x*€Bys.

Clearly S is an isometry and hence ¢ embeds isometrically into X.
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We recall that a Banach space X is called an & ;-space, if for every finite
dimensional subspace E < X there is a finite dimensional subspace F £ X with
ESF and d(F, $™F) < ). It is well-known that a Banach space X is a predual of
L, if and only if it is an &, , . -space for all >0 [22]. The Banach space c, is
an %, ,-space, while c is not, as it is seen from:

2.6. LEMMA. There is a two dimensional subspace E of c, which does not embed
isometrically into I% for any n.
Proor. Let

x! = (cosk™ 1, x*= (sink™ Y2,

and put E=span (x,,x,). For the element x,=cosk™'x!+sink™'x%, keN,
we get

x(n) =cos(n1—k7Y), nmkeN;

and hence x,(k)=1, |x,(n)} <1 when n=k. This shows that 6, € E* defined by
d,(x)=x(n) for all x e E, ne N is an extreme point. Corollary 1.2 now
completes the proof.

In [15] Lazar characterized those real Banach spaces X which have the
property that every compact operator with image in X can be extended
preserving the norm. A similar result is true in the complex case; the proof of it
goes along the lines of [15, proof of theorem 3].

2.7. THEOREM. Let X be a predual of L,. The following statements are
equivalent: :

(i) X is a &L, -space.
(ii) No subspace of X is isometric to c.
(iii) Bys has no infinite dimensional w*-closed faces.
(iv) For all Banach spaces Y and Z with YS Z and every compact operator
S:Y— X, there is a compact extension §: Z — X with |§|| =|S|.
(v) For all Banach spaces Y and Z with YS Z and every operator S: Y — X
with dim S(Y) <2, there is a compact extension S: Z — X with ||S|| =S|\

Proor. (i) = (ii): follows from lemma 2.6.

(ii) = (iii): is lemma 2.5.

(iii) = (iv): Assume that (iii) holds and let S: Y— X be compact with ||S]||
=1. It follows that S* is continuous from By« to By, when the first ball is
equipped with the w*-topology and the latter with the norm topology. We
wish to construct an affine, T-symmetric map @: By« — Bys, continuous
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when the sets are equipped with the w*-topology, respectively the norm
topology, so that

ox*|Y = S*x* for all x* € Byx .

Put K=S*By.. Arguing as Lazar [15, p. 360] we get that there are finitely
many non T-equivalent extreme points u¥,uf,...,u* of K such that

0K N{y*eY*| ly*I=1} = T-{uf,...,u¥}.

We also get that there is a f 0<f <1, so that if y* € K with |y*|| > f, then
ly*I=1. Put

M Ky = {y* K| Iy*I<h}.

The Krein—Milman theorem gives that

2) K = conv (Kz U T-{uf,...,ur))

and

3) KN{y*eY*| |y*I=1} < conv(T-{uf,...,u}}) = K, .

Let for j=1,2,...,n; z} € Z* be Hahn-Banach extensions of u}. We define
a map ¥ of K into the closed convex subsets of Bz« by

@  YyO® = {z*eBz: | z*|Y=y*} for y*eK and |y*|| <1

= 5, § w1
j=1 j=1

& v = {Z 22}
Jj=1

for y* e K, [ly*|=1.

Clearly y(y*)#+ & for all y* € K and it is readily verified that y is convex and
T-symmetric. We shall prove ¢ is lower semicontinuous, when K and By« are
equipped with the norm topologies. Hence let U be an open subset of Z*
and let

yee{y*eK| yoNU+Z} = K, .

If |y&|l <1, then we argue like Lazar [15] to get that y# is an interior point of
K,. Next suppose that ||y§|l=1 and let z, € Y (y3)NU with zo=37_, A9z},
where y§=31%_; Au} and Y., |4)|=1. By theorem 2.2 there are functions
Ay Az A € C(Ky) so that y*=37_, A;,(y*u}, Y-, 14;(y¥IS1 for all
y* € K, and 4;(y)=49, 1 £j<n. Let £>0 be given so that the ball with center
z¢ and radius ¢ is contained in U, and let W, be a neighborhood of y& so
that

(6) <37% for y*eW,NK,.

Z /1,'()’*)7-}* -z§
i=1




284 NIELS JORGEN NIELSEN AND GUNNAR HANS OLSEN

It is easy to see that there is a neighborhood Wof y# so that if y* e WNK and
y* =yt +(1-a)ys,
where y¥ € Kz, y¥ € K;, and a€[0,1], then a<37'¢ and y} € W,. Let
yeW
y* = ayf+ (1 —a)yy with yf e K, yf e K,
and let z* € Y (yf). Put
@) v* = az*¥+(1—a) i Ay zr .
j=1

By the convexity of Y, v* € Y (y*) and furthermore

@ llzg—v*ll = aflzg—z*|+(1—-a) Sltie=c¢

J

Aj(y;)zf — 2
=1

so v* € Y(y*)N U, which gives that y& is an interior point of K,, and thus we
have proved that y is lower semicontinuous.

The map Yo S* is w*-lower semicontinuous and T-symmetric and therefore
by [26] it has a w*-continuous affine selection ¢. Define §:Z — X by

© x*(8z) = p(x*)(2), z€Z, x* €Bys.

By the properties of ¢, § is compact and it is an extension of § with ||| =1.

(iv) = (i). The proof of this implication is essentially the same as the proof of
theorem 7.9 in [20], but let us give it for the sake of completeness. Assume (iv)
and let E < X be finite dimensional. By assumption there is a compact operator
S in X, so that Sx=x for x € E and ||S||=1. Put for every n e N

S, = n"(z S").
k=0

By the ergodic theorem on compact operators [6, p. 711] S, converges to a
finite dimensional projection P with ||P||=1 and with image

(10) F={xeX| Sx=x}.

Since X** is a 2;-space and P**(X**)=F, it follows that F is a #,-space and
hence F is isometric to [™F, Clearly ESF.

(iv) = (v): is trivial.

(v) = (ii): Assume (v). Then the proof of the implication (iv) = (i) shows
that every two dimensional subspace of X embeds isometrically into I, for
suitable n, and hence according to lemma 2.6 X does not contain ¢
isometrically.
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ReEMARK. We do not know whether the condition (v) implies that X is a
predual of L,. Lima [17, theorem 4.10] proved that the answer is positive for
real spaces, and in [18, theorem 4.1] he proved that the answer is positive in
the complex case if we in (v) require dim S(Y)<3 instead of dimS(Y)=<2.

As a corollary to theorem 2.7 we get as in the real case:
2.8. THEOREM. If X is an ¥, y-space, then X*=1,(I") for some T

Proor. Assume first that X is separable. If §.By+« is uncountable modulo T,
then 0By« has an infinite compact subset E (one may even choose E to be the
Cantor set) with ENtE = for all t € T\{1}. By [25, lemma 22] F =conv (E) is
a w*-closed face of By« which contradicts theorem 2.7. Hence 0,Byx is
countable modulo T and thus X*=1,.

The general case follows from this together with [14, theorem 6, p. 227] (the
implication we need is also proved for the complex case, although this is not
stated explicitly; it is also likely, using the result of [26], that this theorem
carries over to the complex case).

The final result of this section due to W. B. Johnson and the first named
author shows that every predual of [, is isomorphic to an .#Z_ ;-space.

2.9. THEOREM. Let X be a real or complex Banach space with X* =1,. Then
there exists an &, \-space Y which is isomorphic to X.

Proor. Let (x¥)< X* be a basis isometrically equivalent to the unit vector
basis of /,. Put for every natural number n E,=span {x},...,x¥} and define a
new norm on X* by:

) lxe*|ll = Ix*[+ Y 27"d(x*E,), x*eX*.

n=1

(This renorming technique was used in [5].) Since the E/s are finite
dimensional the unit ball determined by |||- ||| is w*-closed and hence ||| ||| is the
dual norm of a norm |||*||| on X which is readily seen to be equivalent to || - ||.
Put Y= (X,]||-||l). We shall show that Yis a &% ,-space. Put for every natural
number n y*=|||x*||| " 'x* and let k be a natural number and ¢,,t,,.. .,
scalars. Then

@

Y tallleHll T X
n=1

k
2tk
n=1
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k
=Y 27 M,Ja-2""!
n=1

k—1 k
Ly z-n( ) 2"1|t,-|(1—2‘f)“1>
n=1

Jj=n+1

M~

=271
i

k
= Z (¢4
j=1

which show Y*=1,.

If we show that every w*-limit point of the sequence (y¥) has norm strictly
less than 1, then it will follow from theorem 2.7 for the complex case and Lazar
[15, theorem 3] for the real case that Y is an % ,-space. Hence let x* € X*
and let (yx) be a sequence with y} —*%, x*. Since XXl — 2 we get that
Ix*| <27 and therefore for n sufficiently large d(x* E,)<2~!. This gives

ji—1
Z 27l(1—-279)!
n=0

1

1

lx*l < 27'+2°' ¥ 27" < 1.

n=1

REFERENCES

1. E. M. Alfsen, Compact convex sets and boundary integrals (Ergebnisse der Math. und ihrer
Grenzengebiete 57), Springer-Verlag, Berlin - Heidelberg - New York, 1971.
2. E. M. Alfsen and E. G. Effros, Structure in real Banach spaces 1 & 11, Ann. of Math. 96 (1972),
98-173.
3. L. A. Azimov and A. J. Ellis, On hermitian functionals on unital Banach algebras, Bull. London.
Math. Soc. 4 (1973), 333-336.
4. F. F. Bonsall and J. Duncan, Numerical ranges of operators on normed spaces and of elements of
normed algebras, Lecture Notes 2, London Math. Soc., Cambridge, 1971.
5. W.J. Davis and W. B. Johnson, A renorming of non-reflexive Banach spaces, to appear.
6. N. Dunford and J. Schwartz, Linear operators part 1 (Pure and Applied Mathematics 7),
Interscience, New York, 1958.
7. E. G. Effros, On a class of complex Banach spaces, lllinois J. Math. 18 (1974), 48-59.
8. A. Ellis, Some applications of convexity theory on Banach algebras, Math. Scand. 33 (1973), 23—
30.
9. B. Hirsberg, M-ideals in complex function spaces and algebras, Israel J. Math. 12 (1972), 133-
146.
10. B. Hirsberg and A. Lazar, Complex Lindenstrauss spaces with extreme points, Trans. Amer.
Math. Soc. 186 (1973), 141-150.
11. O. Hustad, Intersection properties of balls in complex Banach spaces whose duals are L,-spaces,
Acta Math, 132 (1974), 283-313.



COMPLEX PREDUALS OF L, AND SUBSPACES OF [ (C) 287

. J. A. Kalman, Continuity and convexity of projections and barycentric coordinates in convex
polyhedra, Pacific J. Math. 11 (1961), 1017-1022.

13. V. Klee, Polyhedral sections of convex bodies, Acta Math. 103 (1960), 243-267.

H. E. Lacey, The isometric theory of classical Banach spaces (Die Grundlehren der Math.
Wissenschaften 208), Springer-Verlag, Berlin - Heidelberg - New York, 1974.

15. A. Lazar, Polyhedral Banach spaces and extensions of compact operators, Israel J. Math. 7

(1969), 357-364.

16. A. Lazar and J. Lindenstrauss, Banach spaces whose duals are L,-spaces and their representing

17

18.
19.
20.
21.
22.
23.
24.
25.
26.
27.

28.

matrices, Acta Math. 126 (1971), 165-193.

. A. Lima, Intersection properties of balls and subspaces in Banach spaces, to appear.

A.Lima, Complex Banach spaces whose duals are L,-spaces, to appear in Israel J. Math.

A. Lima, An application of a theorem of Hirsberg and Lazar, Math. Scand. 38 (1976), 325-340.

J. Lindenstrauss, Extensions of compact operators, Mem. Amer. Math. Soc. 48 (1964).

J. Lindenstrauss and A. Pelczynski, Absolutely summing operators in ¥ ,-spaces and their
applications, Studia Math. 29 (1968), 275-326.

J. Lindenstrauss and L. Tzafriri, Classical Banach spaces (Lecture notes in Math. 338),
Springer-Verlag, Berlin - Heidelberg - New York, 1973.

E. Michael and A. Pelczynski, Separable Banach spaces which admit I7, approximations, Israel
J. Math. 4 (1966), 189-198.

N. J. Nielsen, On Banach ideals determined by Banach Lattices and their applications,
Dissertationes Math. (Rozprawy Math.) 109 (1973), 1-66.

G. Olsen, On the classification of complex Lindenstrauss spaces, Math. Scand. 35 (1974),
237-258.

G. Olsen, Edwards separation theorem for complex Lindenstrauss spaces with application to
selection and embedding theorems, Math. Scand. 38 (1976), 97-105.

H. H. Schaefer, Topological vector spaces, third edition, Springer-Verlag, Berlin - Heidelberg -
New York, 1970.

M. Zippin, On some subspaces of Banach spaces, whose duals are L,-spaces, Proc. Amer.
Math. Soc. 23 (1969), 378-385.

UNIVERSITY OF ODENSE
DENMARK

AND

UNIVERSITY OF OSLO
NORWAY



