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THE STRUCTURE OF MULTIPLICATION AND
ADDITION IN SIMPLE C*-ALGEBRAS

JOACHIM CUNTZ

A C*-algebra is called simple if it contains no non-trivial closed two sided
ideals. Many examples of simple C*-algebras have appeared in the literature
(we mention without claiming any completeness [1], [2], [4], [7], [9], [10],
[12], [13], [19], [22], [23]), but so far not many general properties of these
algebras are known. The only really positive result seems to be Sakai’s theorem
on derivations of simple C*-algebras [20], [21], [22].

If some sort of classification of C*-algebras is at all possible such a
classification should certainly begin with simple C*-algebras. The present
paper is intended as a first (small) step in this direction. To be precise, we
consider only simple C*-algebras with unit. If 4 is such an algebra then 4 is
algebraically simple, i.e. A contains no non-trivial two sided ideal at all (for the
proof note that any proper ideal I in A has empty intersection with the open
set of invertible elements in A, and that the closure of I is again an ideal). Let
O0%+b e A. Then

J = {Z xibyl'

i=1

Xise - > Xm Y15+ o5 Vn € A}

is a non-zero two sided ideal of A so that J=A. Thus, for any a e 4 and
O0+b e A there are elements x,,...,x, and y,...,y, in A such that a
=Y¥"_, x;by;. We denote by (a/b) the smallest integer n for which, given b+0,
such a representation of a exists. This number reflects in some sense the
interplay between multiplication and addition in A.

Our approach is inspired by the classification of factors by Murray and von
Neumann [17]. We divide first the class of all simple C*-algebras with unit
into two classes, namely finite and infinite algebras. In this paper we are
concerned mainly with the finite case. It turns out that, in finite algebras, (a/b)
and a second number (a/b)” (defined in section 3) play a role analogous to that
of the ratio [p/q] introduced by Murray and von Neumann for two projections
p and q in a finite factor. One can even construct in certain (called factorial)
algebras a dimension function in much the same way as in [17]. This
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dimension function is defined for every element x in the algebra (not only for
projections) and measures the size of the “support projection” of x. It
determines, given a,b in the algebra, the numbers (a/b) and (a/b) .

The class of factorial algebras contains, besides II,-factors, a large class of
simple AF-algebras and, in particular, all UHF-algebras (for the definition of
UHF- and AF-algebras see [13] and [2]). The general results we obtain for
factorial algebras seem to be new and non-trivial even for UHF-algebras. But,
of course, there are finite simple C*-algebras which are not factorial (5.3).

The reader is assumed to be familiar with the theory of operator algebras.
We use the notation of [5], [6].

I wish to thank R. V. Kadison, G. A. Elliott and H. Behncke for helpful
remarks and encouraging comments. Elliott informed me that, in a paper
which has just appeared, he has proved a result equivalent to Lemma 5.1 in
a somewhat similar way [11, 3.1]. The investigations of the present paper will
be continued elsewhere.

1. Definitions.

In this section we give the basic definitions, and prove some related
propositions which will be used frequently in the paper. Throughout this
section A is a C*-algebra which, for convenience, is assumed to be represented
on Hilbert space.

1.1. We restate the definition of (a/b) given in the introduction.
DEFINITION. Let A be simple with unit 1 and a,b € A, b+0. We define

(a/b) = min{n eN | 3xy,...,%X, V1. .., Vn € A such that a= ), xiby,-}.

i=1

Moreover, we define

a

QA

b, if (a/b)=1
axb ifaghand bga
The following formal properties of (a/b) are readily verified.

(@ (a+b/c)= (afc)+ (b/c) (c*0)
1) (a/c)= (a/b)(b/c) (b,c*0)
(ITII) The relation 5 is transitive, and the relation ~ is an equivalence
relation.
(IV) Let M, be the algebra of nx n complex matrices with unit 1, and let
{eul i,j=1,...,n} be a self-adjoint system of matrix units in M,. Let a,b € A.
Then (a/b)<n holds in A if and only if ¢;;®a1,®b in M,@A.



SIMPLE C*-ALGEBRAS 217

ProoF oF (IV). Let a,b € A and a=Y"_, x;by; with x,y, € A. Then

€;;®a = (Z eli®xi)(1n®b)<z ei1®)’i>-
i=1 i=1
Conversely, if e;;®a=x(1,®b)y with x,y € M,®A4, then without loss of
generality we may assume x = (e;; ®1)x and y=y(e;;®1). Thus, x and y have
the representation

x= )Y ®x; and y= ) e,®y; with x,y, €4,

i=1 i=1

whence a=37_, x;by;

1.2. Next, we generalize the concept of the reduced algebra A,=pAp where
p is a projection in A to arbitrary elements of 4. Given £¢>0, let f, be the
continuous function on R defined by

f. =0 on [~o00,¢2],
/. is linear on [g/2,¢] ,
f. =1 on [g00] .

When a is in A, we denote throughout the paper by |a| the absolute value
la|= (a*a)* of a.

DeFINITION. Given a € A, set

A, = Ay = U f(a)Af.(lal)
£>0
It is easy to see that the closure of A, coincides with the closure of |al4lal, and is
a simple C*-subalgebra of 4, if 4 is simple.
One of the main features of the reduced algebra is the property that x € 4,
implies x $a. In fact, if x=£,(lal)yf.(al) then x5 f.(la) Sa*aga.

1.3. PROPOSITION. Let x € A with polar decomposition x=u|x|. Then uf (|x|) is
in A for any continuous function f on R that vanishes in 0.

Proor. If P is a complex polynomial without constant coefficient, then
uP(x]) is in A. Let {P,} be a sequence of polynomials such that P,(|x|)
converges to f(|x|) in norm. Then uP,(|x|) converges to uf(|x|) in norm and the
assertion follows.

1.4. Given a in A with polar decomposition a=ula| and ¢>0 we know from
1.3 that z,=uf,(ja|) is in A.
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As f5(lal) f.(lal) = f.(la]), the mapping @, defined by
D.(x) = z,5xz},
is an isomorphism of f,(|al)4f,(|a]) onto f,(la*|)Af,(la*|). Its inverse is
O,y = zhyzys -

The isomorphisms @, (¢>0) extend to an isomorphism @ from A, onto A4,s.
Obviously x~®(x) for all x € A4,.

1.5. We say that two positive elements h, b’ of A are equivalent in the sense of
Murray-von Neumann and write h~ k' if there is x € 4 such that h=x*x and
W=xx* If &: 4, > A, is the isomorphism defined in 1.4 and he 4, is
positive, then obviously h~ ®(h).

1.6. We say that x € A is orthogonal to y € A and write xly, if xy=yx

=x*y=yx*=0,

ProrosiTION. Let a,b e A, b+0, (a/b)=n, and let b,,...,b, be pairwise
orthogonal elements of A such that b;Zb (i=1,...,n). Then a$Y ", |bl*.
Proor. Let b,=u;b;| be the polar decomposition of b, By 1.3 we have

1
u;|b;|*+ € A. Since the b; are orthogonal, also |b||b;|=0 for i+ .
If a=3}_; x;by; and b=sbit; (i=1,...,n), then

a= Z x;sbit,y; = (Z xisiui‘bil%)<z |bi|;—)<z lbiﬁtiy‘)
i=1 i=1 i=1 i=1
and this is exactly what we wanted to show.

1.7. LEMMA. Let e, b be positive elements of A and a, x, y be arbitrary elements
of A such that b=xay and ea=ae=a. Then there is z € A such that zz*=b and
e(z*z)=z*z. If |b|| £1 then z*z L e (< is the usual order on the self-adjoint part

of A).
PRrOOF. Set z,=x(ayy*a*)!. Then
Zoz& = xayy*a*x* = bb* = b?.
On the other hand
2829 = (ayy*a*)*x*x(ayy*a*)?

whence e(z3zy)=28zo. If zo=1u|zo| is the polar decomposition of z,,~then
z=ulzo/* is in A4 by 1.3. It follows zz*=|z¥|=b and ez*z=e|z,|=|zo| =2*z.
The second assertion is obvious.
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The following special case is important. Let p,q € A4 be projections and p $gq.
If we apply the Lemma to a=e=gq and b=p, we see that there is a projection
q'=q in A such that g'~p.

1.8. ProrosiTioN. Let A be simple and a,b non-zero elements of A. There is
0%y € A such that yy* € A, and y*y € A,, and there are non-zero elements
z€ A, z € A, such that zxz'.

Proor. Given d+0 in A4, the set
J = {c| dxc=0 for all x € A}

is a closed ideal in A. From J# A (for instance |d| ¢ J) we conclude J={0}.
Thus, given a,b € 4 and ¢>0 with e<|al|, e<| b, there is x € A such that
y=/.(la)xf,(Ibl)+0. It follows yy* € A, and y*y € A,. With &: 4, « — A,
defined as in 1.4 and z € A« we get zx P(z). Therefore z and z'=®(z) have
the desired properties.

1.9. ProposITION. Let A be simple and p € A a projection. Let a£0 be an
element of A such that (p/a)=n. Then there is 6 >0 such that (p/b)<n whenever
la—bll <6, and such that (p/f,(lal)) Sn whenever ¢ <.

Proor. Let p=3Y""_, x,ay;. Without loss of generality we assume x;=px; and
Yi= YD

There is a >0 such that 3I_, x;by; is invertible in 4, whenever |la—b|| <.
In this case obviously (p/b) <n. If ula] is the polar decomposition of a and ¢ <4,
then

la—af.(ahl = llu(lal—lalf(aD)l

lal —lal f-(aDll < 6.

If z, is defined as in 1.4, then af,(lal)=z,,|alf,(|a]). This shows that

fela) % lalf(la)) R af.(lal)

whence

(p/f.(aD) = (p/af.(la)) = n.

1.10. The following is interesting in connection with other comparison
theories in operator algebras (cf. in particular [16]).
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ProrosITION. Let A be simple, p € A a projection and h € A positive. If (p/h)
=n, then there are x,,...,x, € A such that

p =Y xhxr.

i=1

Proor. We consider first the case n=1. By 1.9 we have then (p/f,(h))=1, if
¢>0 is small enough. Lemma 1.7 applied to a=f,(h), e=f,,,(h) and b=p shows
the existence of z € 4 such that zz*=p and f,,(h)z*z=2z*z. Obviously, there is
a (unique) positive k in the C*-algebra gentrated by h such that f, , (h)=kh. We
get p=zk*hkiz*,

Let now n be an arbitrary natural number and (p/h)=n. By 1.1IV this
implies e;; ®p$1,®h in M,®A. By the reasoning above there is x € M,®4
such that e;®p=x(1,®h)x*. We may assume that x has the form
x=31_,e,;®x; (x;€ A). It follows

e, ®p = (i e1i®xi)(1n®h)<i ei1®x7>

i=1 i=1

and p=37_, x;hx*.

Let now A be simple with unit 1 and h € 4 positive. There are x,,...,x, in 4
such that 1=3"_, x;hx*. If a € 4 is positive, then a=3"_, atxhx*at.

Thus, the proposition shows in particular that any positive a € 4 can be
written as a=Y}., y;hy* with y,,...,y, € A.

2. Finite and infinite algebras.
Throughout this section 4 denotes a simple C*-algebra with unit.

2.1. DeFINITION. We call A infinite if there is a non-invertible element a of 4
such that ax1. 4 is said to be finite if it is not infinite (that is if (1/a)=2 for
every non-invertible a in A).

2.2. We start with some considerations concerning infinite algebras.
Examples of such algebras are the Calkin algebra and type III-factors in a
separable Hilbert space. There exist also separable infinite algebras [8.2.1].

PropOSITON. If A is infinite, then A contains two orthogonal projections p and
q such that p~q~1in A.

PROOF. Let a € A be non-invertible and a=x1. Then either |a| or |a*| is non-
invertible. Let us assume without loss of generality that |a| is not invertible. By
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1.9 there is >0 such that f,(la])~ 1. Lemma 1.7 applied to a= f,(lal), e=f,;,(lal)
and b=1 shows that there is a projection r ~1 in 4 such that f,,(la])r =r. Since
re A, and 0 € Sp (|la|) we see that r+1.

Let u € 4 be such that u*u=1, uu*=r and set n=(1/1—r). The projections

1—ru(l—ru*,... 0" *(1=ru*"1!
are pairwise orthogonal and equivalent (~ and =), so that with
s = (1=-r+u(l—ru*+... +u" 'A—rju*!

we get (1/s)=1 by 1.6. On the other hand 1—s=u""'ru*"~! whence 1 —s~r
~1.

For g we take now 1—s and for p we take the projection p<s with p~1
whose existence is asserted at the end of 1.7.

In particular, the proposition shows that A4 is finite if and only if x*x=1
implies xx*=1 (x € A). If there is a finite trace on A then A can not be infinite
(any non-trivial trace on A4 is faithful [5,6.2.2]). This shows that a simple C*-
algebra with unit which is finite in the sense of Dixmier [8] is also finite in the
sense of the definition above.

We call a projection p in A4 finite or infinite if A, is finite or infinite
respectively. If p is infinite it follows in standard fashion from 2.2 that there are
infinitely many orthogonal projections g; in 4, all equivalent in the sense of
Murray-von Neumann to p. We conclude from 1.6 that (a/p)=1 for all a € A.
We conjecture that, in an infinite simple C*-algebra with unit, (a/b)=1 holds
for any a,b € A4, (b=*0).

2.3. Contrary to this we have in finite algebras the following.

PRrOPOSITION. Let A be an infinite dimensional finite simple C*-algebra with
unit and let n be a natural number. There is a € A such that (1/a)=n.

Proor. There is a positive element & of A that has infinite spectrum [15,2.5].
For this h there exist non-zero continuous functions g,,. . .,g, (with disjoint
supports) on Sp (k) such that the elements g;=g;(h) are pairwise orthogonal.
Repeated application of 1.8 shows that there are non-zero elements f; € A,
(i=1,...,n) such that fiZfoR ... R/f, (f O<k<n and f,...,f, are
constructed, choose z € A; =4, and 2’ € 4, such that zxz' and write f; .,
=z')

If we assume that (1/f,)Sn—1 we get 1S3 |f|* by 1.6. This is a
contradiction to the finiteness of 4 since the expression on the right hand side
is certainly not invertible. In fact, f,L 371 |f%.
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More generally, the proposition, combined with 1.1 II, shows that for each
b € A there is a € 4 such that (b/a)=n.

2.4. PropPOSITION. Let A be finite. Then every projection p in A is finite.

Proor. If a € A4, is not invertible in 4, and p=xay with x,y € 4,, then z=
1—p+ais not invertible in 4 and 1=(1—p+x)z(1—p+y) is a contradiction.

2.5. ProPOSITION. Let A be finite and p,q € A projections. Then pxq if and
only if p~gq.

Proor. Let paxq. According to 1.7 there is a projection g’ =g with ¢’ ~p and,
consequently, ¢’ ~p. If we assume that ¢’ #¢, then ¢’ p~q is a contradiction
to the finiteness of g (2.4).

We do not believe that this proposition holds in general for infinite algebras.

3. Factorial algebras.

We introduce now a class of simple C*-algebras for which detailed
information about (a/b) and the comparison theory with respect to $ can be
obtained through a dimension function. It will be shown in section 5 that this
class contains, besides II,-factors, all UHF-algebras and also the algebras
studied in 6.4-6.6 of [12]. In this section A will denote a simple C*-algebra
with unit.

3.1. DEFINITléN. Let a,b € A, b+0. We define with the convention sup &

=0
(a/b)” = sup{n| 3b,,...,b, € A, such that b;Zb (i=1,...,n)
and b;Lb; for i%j} .

Thus, (a/b)” is either a natural number or oco. It follows from 2.2 through a
standard argument that (1/a) =00 for any ae A, if A is infinite (for
completeness we may set (a/0) =oo for all a). If 4 is finite, however, (a/b) is
finite for every a € A and 0%b € A. In fact, the following holds.

3.2. PrOPOSITION. If A is finite, then

(a/b) < (a/b) for ac A, 0+beA.
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PRrOOF. Let (a/b) =n and assume that there are pairwise orthogonal elements
by,....b,4y in A, such that b;Zb (i=1,...,n4+1). There is an £>0 such that
f.(ab;=b; (i=1,...,n+1). Set

c = Z Ibi|* .
i=1
Then by 1.6 cgag f.(lal).
There are x,y € 4 such that f,(la})=xcy. With d=1—f,(ja]) this yields

1 = (x& +B)E +d)Ey+db) .

1 1
This is a contradiction since ¢3+d? is orthogonal to b,,; and thus not
invertible.

3.3. DerFINITION. Let A4 be finite. A sequence of non-zero elements {h,} in A is
said to be a fundamental sequence if (1/h,) — oo and if there is a natural
number K such that for all ae 4 and neN

(a/h)” = (a/h) £ (a/h) +K
A is called factorial if there is a fundamental sequence in A.

It will be seen later in 3.9 that only the cases K=1 and K =2 occur. In 11,-
factors and UHF-algebras K may be chosen equal to 1, in the example 6.5 of
[12] K has to be chosen equal to 2.

3.4. The following Lemma together with 1.1 II is essential for the
construction of a dimension function.

LeMMA. Let A be factorial and let h be an element of a fundamental sequence in
A. Then

(a/h)” = (a/b) ((b/h)—K) forall aec A, O+be A.

Proor. If K 2 (b/h), the inequality is trivially true. Thus assume (b/h)— K >0
and let (a/b) =r and (b/h)=s. Let b,,...,b, € A, be pairwise orthogonal and
b;xb (i=1,...,).

We have (b/h) = (b/h)—K=s—K (i=1,...,r). For each i=1,...,r there
are orthogonal elements ci,...,ci_g € A,,=A,, such that ¢;Rh (i=1,...,r,
ji=1,...,5—K).

Since ¢} lc, whenever i+ or j#k, the assertion follows.

3.5. THEOREM. Let A be factorial and {h,} a fundamental sequence in A. For
each a € A the limit
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Ala) = lim (a/h)(1/h,)""

n—oo

exists and is independent of the fundamental sequence. A is called the dimension
Junction on A.

Proor. For n,m e N write t,= (1/h,), s,=(a/h,), rpn= (h,/h,). Then t, - o0
as n — 0o, by assumption, and s, = (1/a)"'t, — oo as n — oo, by 1.1 II. Also
rum — 00 if n is fixed and m — oo. From t, <r,,t, and

Sm g (a/hm)~ g (sn_K)(rnm—K)
(this is 1.1 II and 3.4) we get the following inequality

s,—K r,,— K _s

m
Ly T'nm Ly

IA

™

(we assume here that n is so large that s,— K is positive).
Let n be fixed. If we let m tend to infinity in (*), we get

(s,—K)/t, £ lim infs,/t,, .

If n — oo, this leads to

lim sups,/t, < lim infs,/t,, .

n—o00 m-* 00

This argument is due to Murray and von Neumann [17].

If {h,} is a second fundamental sequence in A then the sequence {k,} defined
by k,,=h, and k,,,,=h, is of course again a fundamental sequence. As
(a/k,)(1/k,)~ ! converges this shows that the value A(a) does not depend on the
choice of the fundamental sequence.

3.6. Let A be factorial and A the dimension function on A. The following
properties are immediate consequence of the definition of .

(@) aghb= A@)=i)
axb = Ala)=A(b)
(b) (V/a)"'sA@=1 (a+0)
Ma)=0 <« a=0
() Ala+b)ZAi(a)+A(b)
alb = A(a+b)=A@)+A(b)
(@ A(ab)<min {A(a) A(B)}
(€) A@=A(a*a)=A(aa*)=Ai(a*)
O A@)=lim,.o A(f,(a]).



SIMPLE C*-ALGEBRAS 225

Proor. Let {h,} be a fundamental sequence in A.

(a) If agb, then (a/h,) < (b/h,).

(b) follows from (1/h,) < (1/a)(a/h,,).

(c) The first assertion follows from 1.1 L. If a.lb, then

(a+b/h) 2z (a/h) +(b/hy) .

(d) We have (ab/h,)<min {(a/h,), (b/h,)}.

(e) Using 1.4 we see that (a*a/h,) = (aa*/h,), and (a/h,) = (a*a//h,) is
obvious.

(f) This follows from the definiton of (a/h,)~

3.7. In factorial algebras the comparison theory is to a large extent
determined by the dimension function.

THEOREM. Let A be factorial, a,b € A, b+0, A the dimension function on A
and N e N.

@) If (a/b)<N, then A(a)< NA(b)
(ii) If A(@)<NA(b), then (a/b)<N.

We remark, however, that if h € A4 is positive, then A(h)=A(h?) though h~h?
does not hold in general. The algebra in [12,6.5] contains two projections p, q
such that A(p)=A(q) while p and g are not comparable.

PROOF OF THE THEOREM. Let {h,} be a fundamental sequence in 4. (i) follows
from the inequality (a/h,) < (a/b)(b/h,). To prove (ii) choose n € N such that
N(b/h,)"> (a/h,) and set (b/h,) =r. There are orthogonal elements c,,. . .,c, in
A, such that ¢;Z h, (i=1,...,r). Since Nr> (a/h,), we conclude from 1.6 that in
My®A we have

eu®a§ Z eii®|¢j|*
i=1 N

oo
1,...,r

]

i
j
(In fact e;®c; R e,; ®h,).

If we denote the sum on the right hand side by x, then x $1y®b. According
to 1.1 IV this means just (a/b)<N.

3.8. THEOREM. Let A be factorial, a,b € A, b+0, A the dimension function on A
and N eN.

(i) If (a/b) =N, then A(a)ZNA(b)
(i) If A(a)>NA(b), then (a/b) ZN.

Math. Scand. 40 - 15
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Proor. Let {h,} be a fundamental sequence in 4. By 3.4
(a/h)” 2 (a/b) ((b/h)—K),

whence (i).
For the proof of (ii) choose n € N such that (a/h,) > N(b/h,) and set (b/h,)
=r. There are orthogonal elements c,,...,c,y in A, such that ¢;Zh,

(i=1,...,rN). Write

Jr

d; = Y ol (=1...,N).
i=(-Dr+1
Another application of 1.6 shows d;X b (j=1,.. ., N). Since the d; are elements

of A, and pairwise orthogonal, the proof is complete.

3.9. CoroLLARY. In a factorial algebra A we have for all a,b in A
(b+0),

Aa)/ab)—1 £ (a/b)” £ (a/b) < A@)/A(b)+1 .
In particular (a/b) < (a/b)” +2.
Proor. Combine 3.7 and 3.8.

3.10. CoroOLLARY. In a factorial algebra any sequence {h,} satisfying (1/h,)
— 00, is a fundamental sequence.

Proor. This follows from 3.9.

3.11. CoroLLARY. Let A be factorial and let g, h be positive elements of A such
that A(h)<A(g). Then there exists x € A such that x*x=h and xx* € A,.

Proor. By 3.7 and 3.6 (f) we have hg f,(g) if ¢>0 is small enough. Thus
Lemma 1.7 applied to a=f,(g), b=h and e=f,,(g) gives the assertion.

Since in the case of UHF-algebras and more general factorial AF-algebras 4
is known (see section 4), this corollary and other results of this section can
immediately be applied to comparability questions in such algebras.

4. The uniqueness of the trace on factorial algebras.

Let F be a II,-factor with normalized trace 7. Given x € F, let p, be its
support projection. It is fairly easy to see that F is factorial and A(x)=1(p,). In
this section we prove a general version of this result for arbitrary factorial
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algebras having a finite trace (4.2). As a consequence, we will see that, if there is
a finite trace on a factorial algebra, then this trace is unique. This implies that
every representation of finite type of a factorial algebra is a factor
representation (cf. [5,6.8.7(ii)].

In this section A denotes a factorial simple C*-algebra with unit. By a
(normalized) finite trace on 4 we mean a state T on A4 such that t(xy)=1(yx)
for all x,y € A. We remark incidentally that there exists a simple C*-algebra
with unit having uncountably many different finite trace [10,2.17].

4.1. LEMMA. Let t be a finite trace on A and let g, h € A be positive and non-
zero.

(a) For every £>0, there is >0 such that

t(fs(h) = ((h/g)—2)(f.(8)) -
(b) For all ¢, 0<e<|g| and for all 6>0

() = (LWL (f2(2)) -

PROOF. (a) Set (h/g)=n. Since f,(g)Sg, we get (h/f,(g))=n and (h/f,(g)) 2
n—2 for any ¢>0 (3.9). There is 6>0 and there exist orthogonal elements
Cyye - o> Camy € f15(M)Af25(h) such that ¢;Z f,(g) (i=1,...,n—2). An application
of Lemma 1.7 to ¢, f5(h), f,(g) in the place of a,e, b shows that there are x; € 4
such that x;x* =f,(g) and x*x; < f;(h). From the definition of x; in the proof of
1.7 it follows that the elements x§x,,. .., x}* ,x,_, are pairwise orthogonal and
so, that

Xikxl‘}' e +x:_2x” 2 = ,fé(h)
Now

n-2 n—2

“(fah) 2 (2 x*x) = T ) = ¥ t(exd) = (1-21(£(8) -

i=1 i=1
(b) Given ¢ and 6, let n=(f;(W/f.(g) In M,®4 we have
e 1 ®f;(W$1,®f.(g). By 1.7 there is x € M,®A such that
xx* = e;;®@f;(h) and x*x = 1,8f,2(8)

If x has the representation x=Y"_, e,;,®x; with x; € 4, then fs(h)=27_; x;x*.
On the other hand x¥x;<f,,(g) (i=1,...,n) and

(k) = r(z xix.-*) = ¥ tletx) < melfale))

i=1
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4.2. THEOREM. Let A be factorial and let © be a finite trace on A. Then

Aa) = }Lt?o t(f5(lal)) forallae A.

Proor. Since 4(a)=A(|al), it suffices to prove the assertion for positive a. The
following inequalities follow from Lemma 4.1 for positive elements a,b of A
and ¢,6>0.

® () = (1/b)-2)7".

This is 4.1 (a) applied to h=1 and g=>b. From 4.1 (b) we get replacing h by 1
and g by b

(£ () 2 1/L0)".
By 1.9 we have (1/f,(b))= (1/b) for small ¢ and hence
) (f,(b)) = (1/b)~*  for small ¢ .
Lemma 4.1 (b) and (1), taken together, yield
1(f5(a) = (f@/.B)((1/b)-2)"" .
As (f5(a)/f.(b)) = (a/f,(b)) and (1/b)= (1/f,(b)) for small ¢ (1.9), this leads to
3) (fy(@) < @LGNAG)-2)" .

Using 4.1 (a) and (2) we get for small 6 >0, chosen in dependence on b, when a
is fixed

Q) ©(f5(a) 2 ((a/b)-2)A/b)"" .

Let {h,} be a fundamental sequence of positive elements in A such that ||h,| =1
for each n. Then {f,, (h,)} is a fundamental sequence whenever 0<¢, <1 (3.10).
If we replace b in (3) and (4) by h, and let n tend to infinity then the right hand
side of-(3) as well as the right hand side of (4) tend to A(a). Consequently

AMa) = ‘l,in(l)f(f.s(a)) = Ma).

4.3. Let A be factorial,  a finite trace on 4 and h=h* € A. Then t induces a
positive measure dr on the spectrum Sp (h) of h through the relation

f fae = (7))
Sp (h)

for each continuous function f on Sp (h). Let g be a positive continuous
function on Sp (k) and let

4, = {seSp(h| g(s)>0}.
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As ¢ tends to 0, the functions fog converge pointwise to the characteristic
function y,, of 4, and

J xa,dT = limj feegdr = limt(f,(g(h)) = A(g(h).
Sp (k) Sp (k) £=0

=0

This situation can be interpreted in the opposite sense. In fact, 4 induces then a
measure 1 on Sp (k) by 2(U)=A(u(h)) where U is any open subset of Sp (h) and
u is a positive continuous function on Sp (h) chosen in such a way that u(s)
>0 < 5 € U. From this point of view we get

(g(h) = j gdl
Sp (h)
for all continuous functions g on Sp (h). This is an exact analogy to the
definition of the trace on a II;-factor in terms of the dimension function by
Murray—-von Neumann in [17], [18]. In particular this shows that, if there is
a finite trace on a factorial algebra, then this trace is unique.

5. Factorial AF-algebras.

A simple AF-algebra with unit is always finite. We are now going to show
that a large class of simple AF-algebras is even factorial. From the dimension
group associated with the algebra (cf. [12]) it can immediately be seen if a
given simple AF-algebra is factorial.

5.1. LEMMA. Let A be an AF-algebra. Let a,e, e’ be positive elements of A such
that ||a||=|e| =|l€'|=1 and such that ea=a, ¢€'e=e (this implies in particular
aZeZeé). Then, for every ¢>0, there exists a projection p in A satisfying
lpa—al <€ and ep=p.

Proor. Let A’ be the dense locally finite dimensional involutive subalgebra
of A. Let n=7 be a natural number. There is x=x* € A’ such that |x—al <¢/n
(n will be chosen appropriately at the end of the proof). Let s be the spectral
projection of x corresponding to the interval [¢/3,1+¢/n]. Then

Isx—all £ |sx—x|+|x—al < 2¢/3.

There exists x in A’ such that xx=xx=s and sx —%s=X%. We have ||x|| <3¢~ .
It follows that

Ise—sll = [ %xe—xx| < %[ (ll(x—a)ell + lae—xI)

£ (3/e)(2e/m) = 6/n .
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Since also ae?=a, the same calculation shows ||se’? —s||<6/n. Let b be the
relative inverse of se’s in A,. We see that ||b|| £1/(1—6/n).

Write z=b?*se. Then zz*=s and p=_z*z=esbse is a projection. It is clear that
¢ p=p. Furthermore

lz*—sll = llesb*—s| < [l(es—s)b*|| +lsb* —s]|
S6n t(1—6/m) "+ ((1—-6/n)"t-1) = qa,.
Obviously «, — 0 as n tends to infinity. Now
Ip—sll = Ip—z*sll+lz*s—sl| = |z*z—9)|+(z*—9)s]| < 2a,.
Finally
lpa—al < |lpa—sal + ||sa—sx|| +|sx—a| < 2a,+¢&/n+2¢/3

and this expression is smaller than ¢, if n is sufficiently large.

5.2. THEOREM. Let A be a simple AF-algebra with unit. Let {q,} be a sequence
of projections in A such that (1/q,) — o0o. If there is a constant K >0 such that
for all projections p in A and for all n e N

(p/4) < (p/9) +K

then {q,} is a fundamental sequence in A.

PRroOF. It is enough to show that we have (k/q,) < (h/q,) + K for all positive
elements h of A.
In fact, we have for arbitrary a € 4 the relation |a|*Z a (1.6) so that, if the
desired inequality holds for |a|*, we get »

(a/q,) < (al*/g,) < (al*/g) +K = (a/q) +K .

Thus, let h € A be positive and let g be an element of {q,}. Write ¢,=4"".
Lemma 5.1 applied to a=f, (h), e=f,,,(h) €' =f,(h) shows that there is a
projection p, € A satisfying

Ip1faW—fu(W <& and  f,(py = p; .
Suppose that p,._, has been constructed. Again by Lemma 5.1 applied to
a = .f;,.(h)'-pn—l’ e = f2¢.+x(h)—pn*-l and ¢ = j;z.ﬂ(h)—pn—l ’

there is a projection r in 4 _, _,, such that

"r(f;,.(h)—pn‘l)_(fe..(h)—pn—l)" < €,

and
(fe..+1(h}—pn—l)r =T.
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With p,=p,_,+r this gives
"pnf;,,(h)_fa,.(h)“ < &, and fs..+1(h)pn = Dn-

Let N=sup,. (P,/q9). By Lemma 1.7 and 1.1 IV there exist projections s, (one
for each n eN) in My® A such that

Sp ~ e11®pn and Sn § 1N®q .

Since My®A is an AF-algebra, so is B=(1y®q)(My®A)(1y®q) (cf. [7,
1.5(iii)]). There are partial isometries v, in B such that v*v,=s, and v,v*<s,,,.
Every v, has a unitary extension u, in B with u,s,=v, and u*u,=u,u*=1y®q
(this follows from 1.6 and 1.8 in [13] and the corresponding fact for finite-
dimensional C*-algebras). Hence replacing s,,; by uf ... u¥s,, u,...u; we
may even assume that s, <s,<s;<... .

There are elements x, of My® A satisfying

x:xn = ell®pm xnx:lk =S, and SnXp+1 = Xp -

By construction of the projections p, we have p,h* — h*. In fact
Ipah? = B2 < |l pah? = puf., (B2 + Do f,, (WH — £, (WKH]
+ 1 £ (h)h* — ¥

et 4e |h¥| +et .

IIA

Consequently the limit y=lim,_, x,(e;;®h*) exists in My®A and y*y
=e;;®h while (1y®q)yy*=yy*.

Hence e, ,@h=y*(1y®q)y and by 1.1 1V this shows (h/q)<N.

To complete the proof we remark that

N = sup (p,/9) < sup (p,/q) +K
neN neN
by the hypothesis of the theorem, and that

sup (/9 < (h/q)”

since p, € A4,.

5.3. We adopt the notation of Elliott in [12]. Let A be an infinite
dimensional simple AF-algebra with unit, E its set of projections and d the
dimension on A, that is the map of E into ~-equivalence classes. d(E) is
embedded into an ordered abelian group — the dimension group of 4. The
dimension group of M,®A is the same as that of 4.
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For two projections p,q € E we see using 1.1 IV and 1.7
(p/lgd =n < d(p) < nd(g)
(Pl zn < dp) Z nd(g)

Thus, by Theorem 5.2, A is factorial if (and only if) for any two projections
p, q € A, there is n € N such that

nd(q) = d(p) £ (n+2)d(q) .

It is readily seen that this is true if the positive cone of the dimension group is a
whole half-space as in [12,6.4-6.6].

5.4. Let A be an AF-algebra and let h € A be positive. In the course of the
proof of Theorem 5 it was shown that there is a sequence of projections
P1Sp,Sp3<... in A4, such that p,hp, converges to h as n tends to infinity.
This may be viewed as a partial answer to the question of Dixmier, if in a
matroid algebra there exist “sufficiently” many spectral projections for a given
self-adjoint element [7,8.2]. We remark that, by a recent result of Bratteli [3],
existence of “exact” spectral projections in AF-algebras can not be expected in
general.

5.5. G. Elliott pointed out to me that, for simple AF-algebras (with unit),
uniqueness of the trace implies the factorial property. This follows from a
theorem of Goodearl and Handelman [14, 4.3] applied to the dimension group
associated with the algebra, together with Theorem 5.2.
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