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CROSSED PRODUCTS,
DIRECT INTEGRALS AND CONNES’ CLASSIFICATION
OF TYPE III FACTORS

COLIN SUTHERLAND

Recently, in [1], A. Connes has given a classification of factors of type II1
(acting on separable Hilbert spaces) into those of type III, (0<A<1). The
primary object of this note is to show that if a separable Hilbert space 5, and
a Borel set B<[0,1] are given, then the set of factors on # of type III, for
some 4 € B is Borel with respect to the Effros Borel structure.

The literature of the subject contains references to similar problems, and, in
particular the papers of O. Nielsen [6] and O. Marechal [5] should be
mentioned. For x € (0,3), let %, be the Powers factor, so that 2, is of type III,
where

_ 1-2x
T 142x

(x e [0,9)

(see [2]). Nielsen has shown that if # denotes the set of all type III factors on a
given separable Hilbert space # then {# € F : M Q@R,=.#} is analytic in
Z ; the question of whether or not this set is Borel or not is closely related with
our work here. Marechal has described a topology on & which generates the
Effros Borel structure, ar.d with respect to which the map x € (0,3) — &, is of
first Baire class. We shall show that the set

{((M,2): M eF,and A is of type III,}

is Borel in & x [0,1]; the map x — £, is an explicit cross-section of this set.

The principal tools for the investigation are Takesaki’s ([9]) characteri-
zation of type III, factors in terms of crossed products and an easy
modification of the authors results on measurable fields of modular
automorphisms [8]. We first develop some results of a general nature
concerning “Borel fields” of automorphism groups, and crossed products;
although these results are essentially trivial they are vital for later arguments,
and will also be used in a forthcoming paper analyzing the type of the left
regular representation of certain groups.
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1. Crossed products and direct integrals.

Let G be a locally compact group, and .# a von Neumann algebra acting on
a separable Hilbert space »#. We denote by Aut(.#) the group of all (*)-
automorphisms of .#. A continuous action of G on .# means a homomorphism
a:g € G — a, € Aut (#) which is continuous in the sense that for each x € .#
the map g — a,(x) is g-strong *-continuous. We recall that in this situation we
may construct the crossed product #(# ; «), of # by a; it is the von Neumann
algebra on L?(s¢; G) generated by the operators

(m(@ X)) (@) = a; ' (x)E(g) xe A
and
(A(m)E) () = ¢(h7'g) heG
where ¢ € L?(o#; G).

We shall restrict attention to von Neumann algebras .# on separable
Hilbert spaces, and to separable locally compact groups; we shall omit the
qualification. For the theory of Borel fields of von Neumann algebras we refer
to [3] and [7]. Throughout I" will denote a standard Borel space; by a measure
on I' we will mean a Borel measure.

DEFINITION 1.1. Let G be a locally compact group, and {y — #(y):yeT}a
Borel field of von Neumann algebras. For each v, let «” be a continuous action
of G on .#(y). We shall say y — a” is a Borel field of continuous actions if, for
each g € G, and each Borel operator field y — x(y) € .#(y), the operator field
y — a}(x(y)) is Borel.

It follows readily (from e.g. [4]) that if y — a is a Borel field of continuous
actionsof Gon {y — #(y):y € I'},and ify — x(y) € .4 (y) is a Borel operator
field, then the map

(8:7) € GXT — al(x()

is Borel as a function of two variables.
The proofs of the following propositions are trivial and left to the reader.

ProrosiTiON 1.2. Let y — o be a Borel field of continuous actions of G on

{y > A () :y e I'}. Then the field of von Neumann algebras y — R(#(y);a’)
is Borel.

DEerINITION 1.3. Let y — a” be a Borel field of continuous actions of G on
{y > #():yeT}, and let pu be a measure on I'. Put A =[P #(y)du(y).
For x € # and g € G, define
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D
o, (x) = L o3 (x(v)du() ,
where x=[® x(y)du(y). We write o,=[P a? du(y).
PROPOSITION 1.4. Let y — o, {y — M (y): y € T'}, M and a,= [P a? du(y) be
as in 1.3. Then

i) o is a continuous action of G on M ; we write a=]§'~3 o’ du(y).
i) 9?([,@ M (y)du(y), ji@ o? du(y)) is unitarily equivalent with
§B R(AM (7)) du(y).

Suppose now that the group G in question is abelian; and o is a
continuous action of G on the von Neumann algebra .#. Following [9], we
define a continuous action 6 of the dual G of G on #(4;a) by

0,(y) = v(p)yv(p)*
where
(v(P))(g) = <p,8>¢(8),
pe G, geG, & e L2(#;G). 1t is readily verified that
{Bp(ﬂ(a)(x)) = m(2)(x), xe M,
0,(A8) = <p,g>ig), 8EC.

Using the identities (*) it is trivial to verify,

™

PrOPOSITION 1.5. Let y — o be a Borel field of continuous actions of the
locally compact separable abelian group G on {y — .#(y):y € I'}. For each
ye T, let 0" denote the continuous action of G on R(M ();a?) dual to o*. Then
y — 67 is Borel. Furthermore, if6)=j',e~a 07 du(y), then 0 is dual to a=_\'i‘3 o du(y)
on R(M ;).

2. Connes’ classification of type III factors.

Let & be a fixed separable (infinite dimensional) Hilbert space, and #
denote the set of all type III factors on . It is known (see [7]) that &,
equipped with the relative Effros Borel structure is a standard Borel space. We
shall consider & as the base space for a certain Borel field of type III factors,
namely £ € F > M.

Let  be a faithful normal state on % (), the set of all bounded operators
on 3. The restriction w| , of w to .# € & is again faithful and normal, and
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thus uniquely determines a 1-parameter automorphism group of .# ie. the
modular automorphism group of .# associated with w|,. We denote this
group by {67¥ : t € R}. Also, we denote the representation of .# deduced from
w| 4 by m 4, and the modular automorphism group of = ,(.#) by &*.

LemMa 2.1. i) The field # € F — = 4(#) of von Neumann algebras is Borel.
ii) The field # € F — 6* of continuous actions of R is Borel.

Proor. We adapt the proof given in [8] for measurable fields of weights to
the Borel case.

Let .# — x;(.#) be countably many Borel choice functions for the field
M e F — M. Let n, be the canonical injection of .# into the full left Hilbert
algebra A(A) determined by w|, on 4, and put &;(M)=n4(x;(H)).
Evidently, the vector fields .# — &;(.#) have the properties

i) £;(#) are dense in A(.#) with respect to the #-norm
ii) the maps A4 — (&;(M)| i (M))=w(x,(A)*x;(.#)) are Borel
iii) the vector fields # — &;(#)E (#) and A — & ,-(./{)“ are Borel.

Thus if #(#) and 2* () respectively are the Hilbert space completion and
domain of the sharp operation (with graph norm) of A(.#), both 4 — # (H)
and .# — 9" (#) are Borel fields of Hilbert spaces, and the field of canonical
injections i(#): M) > H (#) carries Borel vector fields to Borel vector
fields. Put K (#)=i(#)i(A)*; then K(H): # (M) — # (#) and carries Borel
fields to Borel fields. Since the modular operator 4(.#) of W(.#) is defined by

A(H) = K(#4)"'(I-K(4)),

for any Borel vector field # — &(#) € U(MA) we also have 4 — A(MH)?
£(#) a Borel vector field. In order to prove (i) it is now sufficient to note that
the operator fields

M — nl(xj(./l)) = nl(éj("”))

are Borel choice functions for # — 7 4(#) (where =, is the “left regular”
representation of U(A) on ().

To prove (ii), we note that since # — A(H)* & ;(#) is a Borel operator field,
so is M — A(M)" ¢;(#) for any fixed t € R. But

& (4 (x; (M) = m(A(M)E(M)),

so that # — 6% (n_¢(x;(.#))) is Borel for each fixed ¢ and j. But the 7, (x;(.#))
are dense in 7w () with respect to the o-strong *-operator topology, so
that if # — y(#) is any Borel field with y(#)e n,(#), the field
M — ¥ (y(A)) is also Borel.
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THEOREM 2.2. Suppose B<[0,1] is a Borel set, and let & g denote the set of

factors on a given separable Hilbert space of type 111, for some 1 € B. Then Fg
is a Borel set.

Proor. By Lemma 2.1, the field of continuous actions .# — # is Borel, and
thus by Proposition 1.2, the field of von Neumann algebras # € #
— R(n 4(M); %) is Borel, as is the field of dual actions .# — 6#
(Proposition 1.5). Let Z(.#; 0%) denote the centre of R(my(M); &“”); by [3],
Me F — Z(M;0*) is Borel. Thus if §# denotes the restriction of 84 to
Z(M; a"’), M — §¥ is a Borel field of continuous actions of R.

By Takesaki’s result [9] we know that for t € R and A4 € &, ¢' € S(H) (the
modular spectrum of .#) if and only if &% =identity. We shall use this to show
that for any a € (0,1), the set #, ; is Borel; since sets of the form (a,1]
generate the Borel structure in [0, 1], and the map B<[0,1] — £ is a lattice
isomorphism, the proof will then be complete.

Let .# — zj(#) be a sequence of Borel choice functions for # € #
— Z(M; 0*), and consider the maps P;: F xR — Z(M ; 6*) given by

(M, 1) = G (z;(M)) .

By 1.5, the @; are Borel. Since e’ € S(.#) if and only if G# =identity, i.. if and
only if @;(#,t)=z;(#) for all j, the set

Y = {(M,t)e FxR: & eS(HA)}
is Borel in # x R.
For a € (0,1), put 9,= %N (F x (loga,0)), and put
Yo = (Fx{teR: t<0})—-%.

Finally let P be the projection of # xR on #.

Firstly, it is clear that % =P%, and thus that #(o is analytic in #.
Secondly, we claim that #,,=P%, — for # € #,, if and only if
(A,t) € 4 for some t € (loga,0).

Finally we claim that &, is analytic in #. Put

g, = 9N (F x (—oo,loga])

— clearly ¥, is Borel. For each integer n22, define a map &, on & x
{(—00,0]} by ®,(#,t)=(H,t/n). Clearly the maps &, are Borel. But now,
MeFg, if and only if there exists a te R with (A,t)e ¢4, and
®,(A,t) ¢ %, for all n=2. Hence

y(o'al = P(g:‘n(g- U ¢;lga)) .
n=2
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Thus, each of the sets F ), # o, and F, y; are analytic in F. By the

separation theorem for analytic sets [4], each is Borel.

r(

COROLLARY 2.3. For M € &, let r(#) be the unique generator of S(.#) with
M) € [0,1]. Then r is a Borel map.
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