CROSSED PRODUCTS, DIRECT INTEGRALS AND CONNES' CLASSIFICATION OF TYPE III FACTORS

COLIN SUTHERLAND

Recently, in [1], A. Connes has given a classification of factors of type III (acting on separable Hilbert spaces) into those of type III_{λ} ($0 \le \lambda \le 1$). The primary object of this note is to show that if a separable Hilbert space \mathcal{H} , and a Borel set $B \subset [0,1]$ are given, then the set of factors on \mathcal{H} of type III_{λ} for some $\lambda \in B$ is Borel with respect to the Effros Borel structure.

The literature of the subject contains references to similar problems, and, in particular the papers of O. Nielsen [6] and O. Marechal [5] should be mentioned. For $x \in (0, \frac{1}{2})$, let \mathcal{R}_x be the Powers factor, so that \mathcal{R}_x is of type III_{λ} where

$$\lambda = \frac{1-2x}{1+2x} \qquad (x \in [0,\frac{1}{2}))$$

(see [2]). Nielsen has shown that if \mathscr{F} denotes the set of all type III factors on a given separable Hilbert space \mathscr{H} then $\{\mathscr{M} \in \mathscr{F} : \mathscr{M} \otimes \mathscr{R}_x \cong \mathscr{M}\}$ is analytic in \mathscr{F} ; the question of whether or not this set is Borel or not is closely related with our work here. Marechal has described a topology on \mathscr{F} which generates the Effros Borel structure, and with respect to which the map $x \in (0, \frac{1}{2}) \to \mathscr{R}_x$ is of first Baire class. We shall show that the set

$$\{(\mathcal{M}, \lambda): \mathcal{M} \in \mathcal{F}, \text{ and } \mathcal{M} \text{ is of type III}_{\lambda}\}$$

is Borel in $\mathscr{F} \times [0,1]$; the map $x \to \mathscr{R}_x$ is an explicit cross-section of this set. The principal tools for the investigation are Takesaki's ([9]) characterization of type III_{λ} factors in terms of crossed products and an easy modification of the authors results on measurable fields of modular automorphisms [8]. We first develop some results of a general nature concerning "Borel fields" of automorphism groups, and crossed products; although these results are essentially trivial they are vital for later arguments, and will also be used in a forthcoming paper analyzing the type of the left regular representation of certain groups.

Received March 17, 1976.

1. Crossed products and direct integrals.

Let G be a locally compact group, and \mathcal{M} a von Neumann algebra acting on a separable Hilbert space \mathcal{H} . We denote by $\operatorname{Aut}(\mathcal{M})$ the group of all (*)-automorphisms of \mathcal{M} . A continuous action of G on \mathcal{M} means a homomorphism $\alpha: g \in G \to \alpha_g \in \operatorname{Aut}(\mathcal{M})$ which is continuous in the sense that for each $x \in \mathcal{M}$ the map $g \to \alpha_g(x)$ is σ -strong *-continuous. We recall that in this situation we may construct the crossed product $\operatorname{R}(\mathcal{M}; \alpha)$, of M by α ; it is the von Neumann algebra on $L^2(\mathcal{H}; G)$ generated by the operators

$$(\pi(\alpha)(x)\xi)(g) = \alpha_q^{-1}(x)\xi(g) \quad x \in \mathcal{M}$$

and

$$(\lambda(h)\xi)(g) = \xi(h^{-1}g) \qquad h \in G$$

where $\xi \in L^2(\mathcal{H}; G)$.

We shall restrict attention to von Neumann algebras \mathcal{M} on separable Hilbert spaces, and to separable locally compact groups; we shall omit the qualification. For the theory of Borel fields of von Neumann algebras we refer to [3] and [7]. Throughout Γ will denote a standard Borel space; by a measure on Γ we will mean a Borel measure.

DEFINITION 1.1. Let G be a locally compact group, and $\{\gamma \to \mathcal{M}(\gamma) : \gamma \in \Gamma\}$ a Borel field of von Neumann algebras. For each γ , let α^{γ} be a continuous action of G on $\mathcal{M}(\gamma)$. We shall say $\gamma \to \alpha^{\gamma}$ is a Borel field of continuous actions if, for each $g \in G$, and each Borel operator field $\gamma \to x(\gamma) \in \mathcal{M}(\gamma)$, the operator field $\gamma \to \alpha_g^{\gamma}(x(\gamma))$ is Borel.

It follows readily (from e.g. [4]) that if $\gamma \to \alpha^{\gamma}$ is a Borel field of continuous actions of G on $\{\gamma \to \mathcal{M}(\gamma) : \gamma \in \Gamma\}$, and if $\gamma \to x(\gamma) \in \mathcal{M}(\gamma)$ is a Borel operator field, then the map

$$(g,\gamma) \in G \times \Gamma \to \alpha_g^{\gamma}(x(\gamma))$$

is Borel as a function of two variables.

The proofs of the following propositions are trivial and left to the reader.

PROPOSITION 1.2. Let $\gamma \to \alpha^{\gamma}$ be a Borel field of continuous actions of G on $\{\gamma \to \mathcal{M}(\gamma) : \gamma \in \Gamma\}$. Then the field of von Neumann algebras $\gamma \to \mathcal{R}(\mathcal{M}(\gamma); \alpha^{\gamma})$ is Borel.

DEFINITION 1.3. Let $\gamma \to \alpha^{\gamma}$ be a Borel field of continuous actions of G on $\{\gamma \to \mathcal{M}(\gamma) : \gamma \in \Gamma\}$, and let μ be a measure on Γ . Put $\mathcal{M} = \int_{\Gamma}^{\oplus} \mathcal{M}(\gamma) d\mu(\gamma)$. For $x \in \mathcal{M}$ and $g \in G$, define

$$\alpha_{g}(x) = \int_{\Gamma}^{\oplus} \alpha_{g}^{\gamma}(x(\gamma)) d\mu(\gamma) ,$$

where $x = \int_{\Gamma}^{\oplus} x(\gamma) d\mu(\gamma)$. We write $\alpha_a = \int_{\Gamma}^{\oplus} \alpha_a^{\gamma} d\mu(\gamma)$.

PROPOSITION 1.4. Let $\gamma \to \alpha^{\gamma}$, $\{\gamma \to \mathcal{M}(\gamma) : \gamma \in \Gamma\}$, \mathcal{M} and $\alpha_g = \int_{\Gamma}^{\oplus} \alpha_g^{\gamma} d\mu(\gamma)$ be as in 1.3. Then

- i) α is a continuous action of G on \mathcal{M} ; we write $\alpha = \int_{\Gamma}^{\oplus} \alpha^{\gamma} d\mu(\gamma)$.
- ii) $\mathcal{R}(\int_{\Gamma}^{\oplus} \mathcal{M}(\gamma) d\mu(\gamma), \int_{\Gamma}^{\oplus} \alpha^{\gamma} d\mu(\gamma))$ is unitarily equivalent with $\int_{\Gamma}^{\oplus} \mathcal{R}(\mathcal{M}(\gamma); \alpha^{\gamma}) d\mu(\gamma).$

Suppose now that the group G in question is *abelian*; and α is a continuous action of G on the von Neumann algebra \mathcal{M} . Following [9], we define a continuous action θ of the dual \hat{G} of G on $\mathcal{R}(\mathcal{M}; \alpha)$ by

$$\theta_p(y) = v(p)yv(p)^*$$

where

$$(v(p)\xi)(g) = \langle \overline{p,g} \rangle \xi(g)$$
,

 $p \in \hat{G}$, $g \in G$, $\xi \in L^2(\mathcal{H}; G)$. It is readily verified that

(*)
$$\begin{cases} \theta_p(\pi(\alpha)(x)) = \pi(\alpha)(x), & x \in \mathcal{M}, \\ \theta_p(\lambda(g)) = \langle \overline{p,g} \rangle \lambda(g), & g \in G. \end{cases}$$

Using the identities (*) it is trivial to verify,

PROPOSITION 1.5. Let $\gamma \to \alpha^{\gamma}$ be a Borel field of continuous actions of the locally compact separable abelian group G on $\{\gamma \to \mathcal{M}(\gamma): \gamma \in \Gamma\}$. For each $\gamma \in \Gamma$, let θ^{γ} denote the continuous action of \hat{G} on $\mathcal{R}(\mathcal{M}(\gamma); \alpha^{\gamma})$ dual to α^{γ} . Then $\gamma \to \theta^{\gamma}$ is Borel. Furthermore, if $\theta = \int_{\Gamma}^{\oplus} \theta^{\gamma} d\mu(\gamma)$, then θ is dual to $\alpha = \int_{\Gamma}^{\oplus} \alpha^{\gamma} d\mu(\gamma)$ on $\mathcal{R}(\mathcal{M}; \alpha)$.

2. Connes' classification of type III factors.

Let \mathscr{H} be a fixed separable (infinite dimensional) Hilbert space, and \mathscr{F} denote the set of all type III factors on \mathscr{H} . It is known (see [7]) that \mathscr{F} , equipped with the relative Effros Borel structure is a standard Borel space. We shall consider \mathscr{F} as the base space for a certain Borel field of type III factors, namely $\mathscr{M} \in \mathscr{F} \to \mathscr{M}$.

Let ω be a faithful normal state on $\mathscr{L}(\mathscr{H})$, the set of all bounded operators on \mathscr{H} . The restriction $\omega|_{\mathscr{M}}$ of ω to $\mathscr{M} \in \mathscr{F}$ is again faithful and normal, and

thus uniquely determines a 1-parameter automorphism group of \mathcal{M} i.e. the modular automorphism group of \mathcal{M} associated with $\omega|_{\mathcal{M}}$. We denote this group by $\{\sigma_t^{\mathcal{M}}: t \in \mathbf{R}\}$. Also, we denote the representation of \mathcal{M} deduced from $\omega|_{\mathcal{M}}$ by $\pi_{\mathcal{M}}$, and the modular automorphism group of $\pi_{\mathcal{M}}(\mathcal{M})$ by $\tilde{\sigma}_t^{\mathcal{M}}$.

LEMMA 2.1. i) The field $\mathcal{M} \in \mathcal{F} \to \pi_{\mathcal{M}}(\mathcal{M})$ of von Neumann algebras is Borel. ii) The field $\mathcal{M} \in \mathcal{F} \to \tilde{\sigma}^{\mathcal{M}}$ of continuous actions of R is Borel.

PROOF. We adapt the proof given in [8] for measurable fields of weights to the Borel case.

Let $\mathcal{M} \to x_j(\mathcal{M})$ be countably many Borel choice functions for the field $\mathcal{M} \in \mathcal{F} \to \mathcal{M}$. Let $\eta_{\mathcal{M}}$ be the canonical injection of \mathcal{M} into the full left Hilbert algebra $\mathfrak{A}(\mathcal{M})$ determined by $\omega|_{\mathcal{M}}$ on \mathcal{M} , and put $\xi_j(\mathcal{M}) = \eta_{\mathcal{M}}(x_j(\mathcal{M}))$. Evidently, the vector fields $\mathcal{M} \to \xi_j(\mathcal{M})$ have the properties

- i) $\xi_i(\mathcal{M})$ are dense in $\mathfrak{A}(\mathcal{M})$ with respect to the #-norm
- ii) the maps $\mathcal{M} \to (\xi_i(\mathcal{M}) | \xi_k(\mathcal{M})) = \omega(x_k(\mathcal{M}) * x_i(\mathcal{M}))$ are Borel
- iii) the vector fields $\mathcal{M} \to \xi_i(\mathcal{M})\xi_k(\mathcal{M})$ and $\mathcal{M} \to \xi_i(\mathcal{M})^{\sharp}$ are Borel.

Thus if $\mathscr{H}(\mathscr{M})$ and $\mathscr{D}^{\sharp}(\mathscr{M})$ respectively are the Hilbert space completion and domain of the sharp operation (with graph norm) of $\mathfrak{A}(\mathscr{M})$, both $\mathscr{M} \to \mathscr{H}(\mathscr{M})$ and $\mathscr{M} \to \mathscr{D}^{\sharp}(\mathscr{M})$ are Borel fields of Hilbert spaces, and the field of canonical injections $i(\mathscr{M})$: $\mathscr{D}^{\sharp}(\mathscr{M}) \to \mathscr{H}(\mathscr{M})$ carries Borel vector fields to Borel vector fields. Put $K(\mathscr{M}) = i(\mathscr{M})i(\mathscr{M})^{*}$; then $K(\mathscr{M})$: $\mathscr{H}(\mathscr{M}) \to \mathscr{H}(\mathscr{M})$ and carries Borel fields to Borel fields. Since the modular operator $\Delta(\mathscr{M})$ of $\mathfrak{A}(\mathscr{M})$ is defined by

$$\Delta(\mathcal{M}) = K(\mathcal{M})^{-1} (I - K(\mathcal{M})),$$

for any Borel vector field $\mathcal{M} \to \xi(\mathcal{M}) \in \mathfrak{A}(\mathcal{M})$ we also have $\mathcal{M} \to \Delta(\mathcal{M})^{\frac{1}{2}}$ $\xi(\mathcal{M})$ a Borel vector field. In order to prove (i) it is now sufficient to note that the operator fields

$$\mathcal{M} \to \pi_{\mathcal{M}}(x_j(\mathcal{M})) = \pi_l(\xi_j(\mathcal{M}))$$

are Borel choice functions for $\mathcal{M} \to \pi_{\mathcal{M}}(\mathcal{M})$ (where π_l is the "left regular" representation of $\mathfrak{A}(\mathcal{M})$ on $\mathcal{H}(\mathcal{M})$).

To prove (ii), we note that since $\mathcal{M} \to \Delta(\mathcal{M})^{\frac{1}{2}} \xi_j(\mathcal{M})$ is a Borel operator field, so is $\mathcal{M} \to \Delta(\mathcal{M})^{it} \xi_j(\mathcal{M})$ for any fixed $t \in \mathbb{R}$. But

$$\tilde{\sigma}_{t}^{\mathcal{M}}(\pi_{\mathcal{M}}(x_{j}(\mathcal{M})) = \pi_{l}(\Delta(\mathcal{M})^{it}\xi_{j}(\mathcal{M}))),$$

so that $\mathcal{M} \to \tilde{\sigma}_t^{\mathcal{M}}(\pi_{\mathcal{M}}(x_j(\mathcal{M})))$ is Borel for each fixed t and j. But the $\pi_{\mathcal{M}}(x_j(\mathcal{M}))$ are dense in $\pi_{\mathcal{M}}(\mathcal{M})$ with respect to the σ -strong *-operator topology, so that if $\mathcal{M} \to y(\mathcal{M})$ is any Borel field with $y(\mathcal{M}) \in \pi_{\mathcal{M}}(\mathcal{M})$, the field $\mathcal{M} \to \sigma_t^{\mathcal{M}}(y(\mathcal{M}))$ is also Borel.

THEOREM 2.2. Suppose $B \subset [0,1]$ is a Borel set, and let \mathscr{F}_B denote the set of factors on a given separable Hilbert space of type III_{λ} for some $\lambda \in B$. Then \mathscr{F}_B is a Borel set.

PROOF. By Lemma 2.1, the field of continuous actions $\mathcal{M} \to \tilde{\sigma}^{\mathcal{M}}$ is Borel, and thus by Proposition 1.2, the field of von Neumann algebras $\mathcal{M} \in \mathcal{F} \to \mathcal{R}(\pi_{\mathcal{M}}(\mathcal{M}); \tilde{\sigma}^{\mathcal{M}})$ is Borel, as is the field of dual actions $\mathcal{M} \to \theta^{\mathcal{M}}$ (Proposition 1.5). Let $Z(\mathcal{M}; \sigma^{\mathcal{M}})$ denote the centre of $\mathcal{R}(\pi_{\mathcal{M}}(\mathcal{M}); \tilde{\sigma}^{\mathcal{M}})$; by [3], $\mathcal{M} \in \mathcal{F} \to Z(\mathcal{M}; \sigma^{\mathcal{M}})$ is Borel. Thus if $\tilde{\theta}^{\mathcal{M}}$ denotes the restriction of $\theta^{\mathcal{M}}$ to $Z(\mathcal{M}; \sigma^{\mathcal{M}})$, $\mathcal{M} \to \tilde{\theta}^{\mathcal{M}}$ is a Borel field of continuous actions of \mathbb{R} .

By Takesaki's result [9] we know that for $t \in \mathbb{R}$ and $\mathcal{M} \in \mathcal{F}$, $e^t \in S(\mathcal{M})$ (the modular spectrum of \mathcal{M}) if and only if $\widetilde{\theta}_t^{\mathcal{M}} = \text{identity}$. We shall use this to show that for any $a \in (0,1)$, the set $\mathscr{F}_{(a,1]}$ is Borel; since sets of the form (a,1] generate the Borel structure in [0,1], and the map $B \subset [0,1] \to \mathscr{F}_B$ is a lattice isomorphism, the proof will then be complete.

Let $\mathcal{M} \to z_j(\mathcal{M})$ be a sequence of Borel choice functions for $\mathcal{M} \in \mathcal{F}$ $\to Z(\mathcal{M}; \sigma^{\mathcal{M}})$, and consider the maps $\Phi_i : \mathcal{F} \times R \to Z(\mathcal{M}; \sigma^{\mathcal{M}})$ given by

$$\Phi_{i}(\mathcal{M},t) = \tilde{\theta}_{t}^{\mathcal{M}}(z_{i}(\mathcal{M})).$$

By 1.5, the Φ_j are Borel. Since $e^t \in S(\mathcal{M})$ if and only if $\tilde{\theta}_t^{\mathcal{M}} = \text{identity}$, i.e. if and only if $\Phi_i(\mathcal{M}, t) = z_i(\mathcal{M})$ for all j, the set

$$\mathscr{G} = \{ (\mathscr{M}, t) \in \mathscr{F} \times \mathsf{R} : e^t \in S(\mathscr{M}) \}$$

is Borel in $\mathcal{F} \times R$.

For $a \in (0,1)$, put $\mathcal{G}_a = \mathcal{G} \cap (\mathcal{F} \times (\log a, 0))$, and put

$$\mathscr{G}_0 = (\mathscr{F} \times \{t \in \mathbf{R} : t < 0\}) - \mathscr{G}.$$

Finally let P be the projection of $\mathscr{F} \times \mathbb{R}$ on \mathscr{F} .

Firstly, it is clear that $\mathscr{F}_{\{0\}} = P\mathscr{G}_0$ and thus that $\mathscr{F}_{\{0\}}$ is analytic in \mathscr{F} . Secondly, we claim that $\mathscr{F}_{(a,1]} = P\mathscr{G}_a$ for $\mathscr{M} \in \mathscr{F}_{(a,1]}$ if and only if $(\mathscr{M},t) \in \mathscr{G}$ for some $t \in (\log a,0)$.

Finally we claim that $\mathcal{F}_{(0,a]}$ is analytic in \mathcal{F} . Put

$$\mathscr{G}'_a = \mathscr{G} \cap (\mathscr{F} \times (-\infty, \log a])$$

— clearly \mathscr{G}'_a is Borel. For each integer $n \ge 2$, define a map Φ_n on $\mathscr{F} \times \{(-\infty,0]\}$ by $\Phi_n(\mathscr{M},t) = (\mathscr{M},t/n)$. Clearly the maps Φ_n are Borel. But now, $\mathscr{M} \in \mathscr{F}_{(0,a]}$ if and only if there exists a $t \in \mathbb{R}$ with $(\mathscr{M},t) \in \mathscr{G}'_a$ and $\Phi_n(\mathscr{M},t) \notin \mathscr{G}_a$ for all $n \ge 2$. Hence

$$\mathscr{F}_{(0,a]} = P\!\!\left(\mathscr{G}_a' \cap \!\!\left(\mathscr{G} - \bigcup_{n=2}^{\infty} \Phi_n^{-1}\mathscr{G}_a\right)\right).$$

Thus, each of the sets $\mathscr{F}_{\{0\}}$, $\mathscr{F}_{\{0,a\}}$ and $\mathscr{F}_{\{a,1\}}$ are analytic in \mathscr{F} . By the separation theorem for analytic sets [4], each is Borel.

COROLLARY 2.3. For $\mathcal{M} \in \mathcal{F}$, let $r(\mathcal{M})$ be the unique generator of $S(\mathcal{M})$ with $r(\mathcal{M}) \in [0,1]$. Then r is a Borel map.

REFERENCES

- A. Connes, Une classification des facteurs de type III, Ann. Sci. École Norm. Sup. 6 (1973), 133– 252
- A. Connes, Calcul des deux invariants d'Araki et Woods par la théorie de Tomita et Takesaki, C.R. Acad. Sci. Paris Sér. A 274 (1972), 175-178.
- 3. E Effros, The Borel space of von Neumann algebras on a separable Hilbert space, Pacific J. Math. 15 (1965), 1153-1164.
- 4. K. Kuratowski, Topology I. Academic Press, New York, 1966.
- O. Marechal, Topologie et structure Borélienne sur l'ensemble des algèbres de von Neumann, C.R. Acad. Sci. Paris Sér. A 276 (1973), 847-850.
- O. Nielsen, The asymptotic ratio set and direct integral decompositions of a von Neumann algebra, Canad. J. Math. 23 (1971), 598-607.
- 7. O. Nielsen, Borel sets of von Neumann algebras, Amer. J. Math. 95 (1973), 145-164.
- 8. C. Sutherland, Direct integral theory for weights and the Plancherel formula, Queen's University, Department of Mathematics, Preprint No. 1974-6 (to appear).
- 9. M. Takesaki, Duality for crossed products, and the structure of von Neumann algebras of type III, Acta Math. 131 (1974), 249-310.
- 10. E. J. Woods, The classification of factors is not smooth, Canad. J. Math. 25 (1973), 96-102.

MATHEMATICS DEPARTMENT UNIVERSITY OF OREGON EUGENE, OREGON 92603 U.S.A.