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EXTREME BOUNDARIES AND
CONTINUOUS AFFINE FUNCTIONS

PER ROAR ANDENAS*

1. Introduction.

In this paper we shall use the term continuous function space to denote a pair
(X, 4) of a Hausdorff space X and a subspace A of the linear space Cy,(X) of all
continuous and bounded real-valued functions on X. Two continuous function
spaces (X,A) and (Y,B) are said to be isomorphic if there exists a
homeomorphism ¢: X — Y such that the adjoint map ¢*: B— A4 is a
(surjective) norm- and order preserving linear isomorphism. We will study the
following problem:

Under which conditions on X and A4 does there exist a compact convex K of
a locally convex Hausdorff vector space over the reals such that (X, A4) is
isomorphic to (3.K, A(K)|d.K)?

Here 0K denotes the extreme boundary of K (i.e. the set of extreme points),
A(K) is the space of continuous and affine real-valued functions on K, and
A(K)|0.K is the space of all restrictions f|0.K, fe A(K). We are also
interested in additional conditions on X and A ensuring that (X, A4) is
isomorphic to (9.K, A(K)|9.K) with K a simplex.

Part 2 of this paper contains necessary and sufficient conditions for the
existence of isomorphisms of the abovementioned type. In part 3 we consider
some examples, and finally we give a slight extension of a recent theorem of
Haydon [4].

Unless explicitly stated we use the terminology of Alfsen [1] in convexity
theory and Willard [7] in topology. The author would like to express here his
gratitude to E. M. Alfsen for enlightening and helpful discussions on the
subject.

2. The main results.

We start by finding some necessary conditions for (X, 4) to be isomorphic to
some (0K, A(K)|0.K). We will say that A* (the set of non-negative functions
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in A) separates points and closed sets if for any given ¢>0 and for any closed
set F=X and any point x € X\F, there exists fe€ A" satisfying:

2.1 f(x)<e fzZ1lonF.

Let K be a non-empty compact convex subset of a locally convex Hausdorff
vector space E over the reals. We put A=A(K)|6.K. Clearly, 4 is a norm-
closed linear subspace of Cy,(0.K) containing the constants. Furthermore, we
have the following important property of A4:

2.1. PROPOSITION. A™ separates points and closed sets in 0.K.

Proor. Let ¢>0 be given, assume that F<=d.K is closed (in the relative
topology), and let x be a point in .K\F. Denote by F, the closed convex hull
of F. By Milman’s theorem we have x ¢ F,. g, is upper semi-continuous, s0 by
proposition 1.4.1 of [1] we may choose f € A(K) such that f 2 yr and e>f(x)
2 ¥F, (x)=1r,(x)=0. This f clearly meets the requirements of the proposition.

We conclude from proposition 2.1 that if X is a Hausdorff topological space
and A a linear subspace of Cy,(X), then the following conditions (2.2), (2.3), and
(2.4) are necessary for (X, A) to be isomorphic to some (3.K, A(K)|3.K):

(2.2) A contains the constant functions.
(2.3) A is norm-closed.
(24) A" separates points and closed sets.

The following lemma is derived from the important property (2.4) and will
be needed later.

2.2. LEMMA. Let (X, A) be a continuous function space such that A contains the
constant functions and such that A* separates points and closed sets. For each
upper semi-continuous real-valued function g bounded above on X, we have

glx) = inf{f(x) : fe A, g<f}
for all x € X.

ProOF. Let g: X — R be upper semicontinuous and bounded above, and let
x € X be arbitrary. We put g(x)=4. Given ¢>0 we choose an open
neighbourhood U of x such that g <A+ 4c everywhere on U. We also choose
M 20 such that g <M everywhere on X. Since A* separates points and closed
sets and since A contains the constants, we can find h € 4 such that h=A+1e
on X, h(x)<A+e¢ and h2M on X\U. Now g<hon X and h(x)<g(x)+e&. (In
fact, we have g<h, but this strict inequality is not needed.) This proves the
lemma.



EXTREME BOUNDARIES AND CONTINUOUS AFFINE FUNCTIONS 199

An immediate consequence of the above lemma is the following corollary
which will be needed in the proof of our main theorem.

2.3. CorROLLARY. Let (X, A) be as in lemma 2.2. Then for any real number a and
any x € X the set A, ,={h € A : h(x)>a} is directed downwards and for any
ye X, y*x,

inf{h(y): heAd,,} 0.

PrOOF. Let hy,h, € A, , be given and let y € X, y+x, be arbitrary. Define
g: X —» R by

_ g A RBy)(2), for z+y
86 = {(hl A hy AO)(y), for z=y

Then g is lower semi-continuous. Hence we may apply lemma 2.2 to —g to
obtain he€ 4 such that h(x)>a and such that h<g. Then he A,, and
h=<h, A h,. Furthermore h(y)<0, and our claim is proved.

2.4. DEFINITION. A continuous function space (X, A) has the Dini property if
for every descending net {f;} = A with inf f;=0 and for every £>0, there exists
an index i such that f;<e. (X, A) is said to have the strong Dini property if the
same conclusion holds for every descending net {f;} = A such that inf f;<0.

It is evident that the strong Dini property implies the Dini property. On the
other hand, let 4 consist of all functions f on X =[0,1) of the form

f(x) = ax+b; abeR xeX.

Then it is easily checked that (X, 4) has the Dini property. But it will not have
the strong Dini property, consider fex. the sequence {f,} given by

Jalx) = <n+l+%>x—n, x e [0,1).

There is, however, an important special case in which the Dini property implies
the strong Dini property, as we shall see in proposition 2.5 below. Recall that
(X, A) is said to have the Riesz interpolation property if for any f,, f,,8,,8, € 4
such that f, v f,<g, A g, there exists h € A such that f; v ,Sh<g, A g,.

2.5. PROPOSITION. Let (X, A) be a continuous function space and assume that A
contains the constants and that A* separates points and closed sets. Assume
further that (X, A) has the Riesz interpolation property. Then for (X, A) the Dini
property will imply the strong Dini property.
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ProoF. Let {f;} = A be a descending net such that inf f;<0. Let B consist of
all h e 4 such that f; v 0<h for some index i. We claim that B is directed
downwards. To verify this claim, we consider g,h € B. Let i and j be indices
such that f; v 0<g, f; v 0= h. Since {f;} is descending, there exists an index k
such that fi<f, fi<f; Then f, vO0=<g A h, so by the Riesz interpolation
property there exists h’ € A such that f, v 0Sh'<g A h. Then, by definition,
we have k' € B, thus B is directed downward and may be considered as a
descending net. By lemma 2.2 we have inf,.z h=0. Hence, for every ¢>0, there
exists by the Dini property a function h € B such that h<e. By definition we
have f; v 0<h for some index i, then clearly also f;<e, and the proof is
complete.

We are now able to state our main theorem.

2.6. THEOREM. Let (X, A) be a continuous function space where A is norm-
closed and contains the constant functions and where A”* separates points and
closed sets. Then (X, A) is isomorphic to (0.K, A(K)|0.K) for some compact
convex set K if and only if (X, A) has the strong Dini property.

ReMARK. Professor Alfsen has informed me that the idea to use Dini
properties to characterize extreme boundaries has also been considered by St.
Raymond (unpublished).

The proof of the above theorem will be broken down into several lemmas.
The “only if”-part of the theorem follows from our next result.

2.7. ProposITION. Let K be a compact convex set. Then (0.K, A(K)|0.K) has
the strong Dini property.

Proor. It suffices to consider a descending net {f;} in A(K) such that
inffi(x) 0 forall xed K.

(Note that if { f;| 6.K} is descending, so is { f;}.) The function f=inf f; is clearly
upper semi-continuous and affine, hence it attains its supremum value at a
point in K. (The set {x € K : f(x)=sup,.x f(y)} is a closed face of K and
thus must contain an extreme point of K.) Thus we have <0 on K, and the
proposition follows by compactness of K as in the proof of the classical Dini
lemma.

We turn to the proof of sufficiency in theorem 2.6. Let (X, A) be a continuous
function space where A is norm-closed and contains the constant functions and
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where A" separates points and closed sets. We denote as usual the space of
continuous linear functionals on 4 by A* and define

K ={ped*: p)=1=|pul}.

Then K is a w*-compact convex subset of A*. Furthermore, we define a map
6: X — K by putting é(x)(f)=f(x) for each fe A, that is, §(x) is the Dirac
measure at x restricted to A.

2.8. LEMMA. The map 6 is a homeomorphism of X onto its image 6(X)c K.

Proor. Continuity and injectivity of 4 are obvious. An easy argument using
(2.4) shows that 6 is an open map onto its image.

2.9. LemMA. §(X) <=0 K.

Proor. Assume 6(x)=tu+ (1 —1t)v with u,v € K and O0<t<1. We will show
o(x)=p.

Let g € A be arbitrary and put A=g(x). By lemma 2.2 there exists a sequence
{g,} from A4 such that g,2¢g v A on X and g,(x)<A+1/nfor n=1,2,.... Now
the functions f,=g,— 4 € A are all non-negative and

tu(f)+1=0v(f) = fu(x) = 0

as n — 00. Hence u(f,) — 0, and so u(g,) — 4 as n — oo. It follows from the
inequality g, =g that 12> u(g). By symmetry also A < u(g). Hence (x)(g) = p(g),
and the proof is complete.

2.10. LEMMA. The map h — h defined by
(2.5) h(pw) = p(h), pekK

is a norm-preserving linear order isomorphism of A onto A(K).

ProoF. It is straightforward to check that the map defined in (2.5) is linear
and norm-preserving. Hence the map is an isometry, and therefore it is a
uniform isomorphism of A onto its image. A is complete, hence {(h:heA}is
complete and therefore closed in A(K). To prove surjectivity it thus suffices to
prove that {i: h e A} is dense in A(K). But this is an easy consequence of
corollary I.1.5 in [1] and the fact that the w*-continuous linear functionals on
A* are precisely the evaluations at elements of 4. Finally one easily checks the
equivalence

hl é h2 i d E] é EZ (hthEA)v

and the proof is complete.
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‘To establish the above three lemmas we have only used the fact that (X, 4)
satisfies (2.2), (2.3), and (2.4). We now bring in the strong Dini property to
finish the proof of theorem 2.6.

Proor oF THEOREM 2.6. Only the “if’-part of the proof remains. By the above
lemmas it is clear that the proof will be complete if we can prove the inclusion
0.K<d(X). Assume then that this inclusion does not hold and select
u € 0.K\6(X). The continuous functions space (0.K, 4(K)|.K) satisfies (2.2),
(2.3), and (2.4), therefore, using corollary 2.3, we see that

B = {H|0.K : He A(K), Hw>1}
is directed downwards and that
inf H(y) =0 forved.K, v¥u.
H|0KeB

From lemma 2.10 it follows that
B=1{heAd: h|oK e B}
={heAd: uh>1}

is directed downwards, and thus it may be considered as a descending net {h;}.
Since §(X)<d.K by lemma 2.9 and u ¢ (X) by assumption, we have

infhy(x) = infi,(6(x) < 0

for all x € X. By the strong Dini property there then exists an index i such that
h;<1. This means u(h;) <1 contradicting the inequality u(h;)> 1. Thus we have
proved J(X)=0.K. Finally we note that by lemma 2.10 the map
6*: A(K)|3.K — A defined by O6*(H|0.K)(x)=H(d(x)) is a (surjective)
isomorphism preserving all relevant structure, the inverse isomorphism being
h — k|d.K. The proof is complete.

It is well known (corollary II. 3.11 in [1]) that a compact convex set K is a
simplex if and only if (K, A(K)) has the Riesz interpolation property. From
theorem 2.6 together with proposition 2.5 and lemma 2.10 the following result
will follow.

2.11. CoroLLARY. Let (X, A) be a continuous function space where A is norm-
closed and contains the constant functions and where A* separates points and
closed sets. Then (X, A) is isomorphic to (0K, A(K)|.K) for some simplex K if
and only if (X, A) has the Dini property and the Riesz interpolation property.
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REMARK. In the above corollary the Dini property may be replaced by the
following equivalent condition:

(2.6) If {f;} = A is a descending net converging pointwise to 0, then f; — 0
weakly (with respect to the duality (4, 4*)).

Obviously the Dini property implies (2.6), and conversely if (2.6) holds, then we
have in particular (in view of lemma 2.10) that f;(u) = u(f;) ~ 0 for each u € K.
But K is w*-compact so the classical Dini lemma gives that f; — 0 uniformly,
and the desired conclusion follows.

3. Examples and comments.

The results of the preceding paragraph are clearly related to the following
question: Which topological spaces are homeomorphic to extreme boun-
daries? In view of theorem 2.6 this question is equivalent to finding an intrinsic
topological characterization of the Tychonoff spaces X allowing subspaces 4
of Cy(X) satisfying (2.2), (2.3), and (2.4) and having the strong Dini property.

It is known that all locally compact Hausdorff spaces are homeomorphic to
extreme boundaries, and recently Haydon [4] has proved that every Polish
space is homeomorphic to the extreme boundary of a simplex. In view of the
above remark it is of some interest to give direct constructions of the relevant
subspaces A in these cases, thus furnishing alternative proofs that the spaces in
question are homeomorphic to extreme boundaries and at the same time
giving examples of continuous function spaces (X, A) of a general character
satisfying the conditions of theorem 2.6.

Let X be a non-compact, locally compact Hausdorff space. We fix
Xo» Yo € X, XoF Yo, and let A, consist of the continuous functions f: X — R
with compact support satisfying f(x,)+ f(yo) =0. We define A to be the norm-
closure of the linear space of functions of the form f+r where fe 4y, r e R.
Thus A4 consists of precisely those continuous f: X — R satisfying

lim f(x) = 3(f(xo)+f (o)) -

X 00

3.1. PROPOSITX‘ON. Let X be a non-compact, locally compact Hausdorff space
and let A be constructed as above. Then (X, A) satisfies the conditions of theorem
2.6, hence X is homeomorphic to an extreme boundary.

ProoF. It is trivial to verify that (2.2), (2.3), and (2.4) are satisfied. So let { f;}
<A be a descending net with inf ;0. Let £>0 be given. We put

Fi={xeX: f(92e
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and assume F;# ¥ for all indices i. {F} is then a filter base. If one of the F/’s is
compact, then clearly (), F;+ . If no F; is compact, we have lim__,  fi(x)=2e
for all i. On the other hand we have

fitxo) +£i(yo) = 2 lim f(x) .

Thus £;(x,) +f;(vo) = 2¢ for all i, hence either x, or y, lies in M, F,. It follows that
N, F, is nonempty in any case. But for a point x in this intersection we must
have lim, f;(x)=¢, a contradiction. Hence F;=J for some i, and the proof is
complete.

ReMARKS. Results similar to the above proposition are proved in [3], [5],
and [6].

In case X is a compact Hausdorff space the above construction of A simply
gives A=C(X), so in this case we arrive at the pair (X, C(X)), and corollary
2.11 is evidently applicable. (In this connection it should be noted that the
compact convex set K corresponding to (X, A) of proposition 3.1 is, in fact, also
a simplex.)

Our next task will be to give a direct construction of the subspace 4 when X
is a Polish (=completely meterizable and separable) space. Our proof leans
heavily on Haydon’s construction in [4]: Let X be a Polish space and T a
metric compactification of X. X is a Gyset in T, so there exist open sets
T=Gy>G,>...2G,>... such that X=N%,G, Now there exists for
each n20 a sequence of non-negative functions {h}} = C(T) such that 33>, h}
=Yg, and

diam (supph}) < 27", k=20,

where {¢}} is a double sequence of positive numbers satisfying lim,_, ,, &g =0 for
each n. We put

p: = h:X'I\G,,“’ ngO, k;o .

It is furthermore possible to choose distinct points xj, yi, n=0, k=0, in X such
that if p;+0 we have xj, y; € supp h}.
We now define A(T) as the linear space of all fe C(T) satisfying

x o o
61 fo=3 3 ppl 0D (""Hf W) _ § oL/ OF)

n=0 k=0 k=0 2

for each t € T\X. Here n, is the unique integer such that t € G, \G,,.,;. We
then put

(32) A={fIX: feA)}.
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For any u € C(T)* we define

(33) W =nty % ( f pkdu) (6(e)+80) -
Putting
= {y(W : peC(D* |u(X)=0},

it is easy to see that fe A(T) if and only if y(u)(f)=0 for all y(u) € M, that is,
A(T) is the annihilator of M.

Clearly 4 is a norm-closed subspace of C,(X) containing the constant
functions. The main difficulty is to establish that A* separates points and
closed sets. The proof rests upon the following crucial result in [4]:

3.2. LemmaA (Haydon). M is w*-closed.

For ¢>0, x € X and an open subset V of T with x € V we put

B(x,V,e) = {fe C(T) : f<1, f(x)>1—¢ f|(T\V)<0}.

Then we have to prove that B(x, V,&) N A(T)+ . We suppose that there exists
a triple (x, V,¢) such that B(x, V,e)N A(T)=F. B(x,V,¢) is (norm-) open and
convex, so by Hahn—Banach separation there exists u € C(T)* with u(f)>0
for all f e B(x,V,e) and u(f)=0 for all f € A(T). This means that y annihilates
A(T), that is, p e M. By lemma 3.2, M" =M, hence ue M, ie we have
u=7y(v) for some v € C(T)* with |v|(X)=0. Thus, for each fe C(T) we have

G4 #(f) =f fdv—z z (J )&Q;L(ykl
TNX

n=0 k=0

We omit the proof of the following simple lemma.
3.3. LemmMa. inf{u(f) : f€ B(x,V,3¢)} >0.

Assume now that x ¢ {xf, yi}; n,k=0, and choose some ¢, satisfying
0 < ¢ < inf{u(f): feB(x,V,3e)} .
We then select N and K such that (cf. (3.4))
Xp) +
35wl = j fa-3% 3 (f )MHIU)
T\GN+1

n=0 k=0
where |¢, (f)| <é¢, for fe C(T), | f]| 1. We choose an open set U<V NGy,
such that x € U and

U N {xp,Vitosy = I -

ksK
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Let f,: T — [0,1] be continuous and such that fo(x)=1, fo| (T\U)=0. Then
fo—4¢ € B(x,V,3e), thus

u(fo) = u(fo—%e) 2 inf{u(f) : fe B(x,V3e)} = ¢ .
On the other hand, because of our choice of U and f, (3.5) gives u(fy)=¢,(f)
<ég,;. This contradiction forces us to conclude that, in fact,

B(x,V,e)N A(T)*F. Only a minor modification is needed in the above
argument if x € {x}, yi}n x>0, and the details are omitted.

3.4. ProPOSITION. Let X be a Polish space and let A be defined as in (3.2).
Then (X, A) satisfies the conditions of theorem 2.6, hence X is homeomorphic to
an extreme boundary.

Proor. Only the verification of the strong Dini property remains. Let {f;} be
a descending net from A with inff;<0. For each index i let f; be the unique
extension of f; to a member of A(T). Let ¢>0 be arbitrary. Assuming

xeX: fi(ze) +

for all indices i, we have by compactness of T that
D {teT: fi)2e} + & .

A point t in this intersection must lie in T\X, t € G,\G,, .+, say, since
inf f;(x)=0 for all x € X. In view of (3.1) we then have

[0 =3 ¥ i@ +L07)
k=0
for each i. We fix an index i;. Since f;, is bounded there exists k; such that
ka Pr@O(f, ) +£,00) < ze.
>ky

Since {f;} is descending the last inequality subsists for indices i2i;. Thus, for
i=i,, we have

ky
fi < kzo RO +f07) +3e

However, the finite sum in the last inequality must also be less than &/2 for i
sufficiently large since lim f;<0. Hence we have f;(t) <¢ for i sufficiently large,
contradicting the fact that f;(f)=¢ for all indices i. The result follows.
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REMARK. Let X be Polish and let A be defined by (3.2). Let K be constructed
as in the proof of theorem 2.6. Then K is a simplex. The easiest way to prove
this seems to be to establish the following: If i is a boundary measure on K
such that [ hdji=0 for all i € A(K), then i=0, i.e. we will have no boundary
affine dependences on K different from 0. The proof of this fact follows the

pattern of the proof of the corresponding statement in [4] and is therefore
omitted.

We conclude this paper by sketching the proof of a slight extension of
Haydon’s result. Let {(X,, 4,)};.; be a family of continuous function spaces
satisfying the conditions of theorem 2.6. Let 3';_; X; denote the disjoint union
of the X;s. We may assume without loss of generality that the Xs are
mutually disjoint and that at least one X contains more than one point. We
then pick x,,yo € X;,, Xo ¥ Yo, and let A, consist of all f: X, ; X; — R such
that f| X; € 4, for all i € I and such that there exists a finite subset J of I with
ip € J and

flU Xi= 3(f (x)+£ (o)) -

iel\J

The proof that the norm-closure A of A, does indeed satisfy (2.2), (2.3), and
(2.4) and that (3 ;.; X;, A) has the strong Dini property is a straightforward
(but lengthy) verification. Furthermore, it is trivial to check that if each (X, 4,)
has the Riesz interpolation property, so has (3;; X, 4).

We say that a topological space X is locally separable if each point in X has
an open separable neighbourhood. Then, mimicking the proof that each
paracompact, locally compact Hausdorff space is the disjoint union of locally
compact, o-compact, Hausdorff spaces (cf. [2, pp. 241-242]), we see that each
completely metrizable, locally separable space is the disjoint union of Polish
spaces. In view of the above remark the following result is then clear:

3.5. ProposiTION. Every completely metrizable, locally separable space is
homeomorphic to the extreme boundary of a simplex.
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