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A SIMPLE AXIOMATICS FOR DIFFERENTIATION

ANDERS KOCK

We attempt here to describe a property of ring objects A in a category E,
which will give 4 some of the features of the affine line, namely that functions
A — A can be differentiated. The first basic idea is that “the object of
infinitesimals in A, D, should exist, as well as, for any other object M, the
object of maps M? from D to M, and that this should have some of the
properties of the tangent-bundle of M. In particular, one should have an
isomorphism Az A4 x A. This approach was suggested by Lawvere in 1967,
[5] (unpublished), and some work in this direction has been carried out by
Wraith (who constructed a Lie-algebra object out of a monoid object in such a
category, [7]). The axiomatics employed by Wraith for D was a bit heavy.

The second basic idea, which seems to be new, is that one can construct D
and Ax A — AP canonically, and that the only axiom needed (except for
sufficient categorical properties of the surrounding category E) is that this map
Ax A — AP should be invertible. This axiom is then sufficient to define a map
f'+ A— A out of any f: A — A, and to prove the rules

(f+g) =f+g; (fg =f8+fg,
and

®f) = @) f
(chain rule).

We finish by giving a model for such A4, E which satisfy the axiom; the
surrounding category is the topos classifying commutative rings, and A is the
generic commutative ring in there.

In a subsequent paper we investigate in the same setting Taylor series theory
(in one or several variables), and indicate the relationship of our theory to
formal power series.
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1. Some generalities about rings in cartesian categories.

We consider a commutative ring object A4 in a cartesian category E (cartesian
category =category having finite limits). So there are given maps

AxA—*> A4 AxA-—"- A

(“m” for multiplication; in formulas, we sometimes use the usual

dot - instead); and
1—2, 4 1—1 s 4,

satisfying the usual equations.
We let D denote the equalizer of the two maps 4 — A given by the
“descriptions”

ara-a a— 0.

(The reader should have no trouble translating these “descriptions” into
actually existing maps in the category.) So D is the set of elements with square
zero, in the set case.

We shall assume that the functor x D: E — E has a right adjoint (-)°, the
adjointness being given by the end adjunction, which we denote ev:

MPxD 2w, M.
We consider the map
AxXxAxA— A
given by the description

(ay,a3,a3) = a, + (a5 a3) -

Since D is a subobject of A, we get by restriction a map

AxAxD %5 4
(given by the same description). The exponential adjoint of that is denoted a:
(1.0) AxA—2> AP .

In section 2, we shall introduce the only axiom we need, namely invertibility of
o; in this paragraph, however, we deduce properties of o not depending on
that.

We can equip A x A with the “ring of dual numbers” structure, with addition
described coordinatwise, and multiplication

(AxA)x(AxA)—*> AxA
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given by the description
((a,b), (c,d)) = (a-c,a-d+b-c) .

Also, we can equip A” with a ring structure, induced from that of A4; the
multiplication is the composite

AP x AP ~ (Ax AP —m2— 4P,

similarly for addition.

PROPOSITION 1. The map o is a ring-homomorphism with respect to the two ring
structures just described.

Proor. Proving that o preserves multiplication means that we should prove

(Ax A)x (Ax A) —2x2, 4P 4P

114

(Ax AP
lmb
Ax A < — AP

commutative. We take the exponential adjoints of the two legs of the diagram.
The counterclockwise composite is immediately seen to give do (* x D), whereas
the clockwise, with a little effort, is seen to give the composite

(1.1) (Ax A)x (Ax A)x D —1*4, (4 x A)x (A x A) x (D x D)
> (AxAxD)Xx (AxAxD)—2*%, 4xA ", 4,

where the isomorphism indicated is given by shuffling the D’s in between the
A’s, but keeping the relative order of the D’s and of the A’s. To compare the
composite with do(* x D), we compare their descriptions:

(1.2) (a1,05,a3,a4,d) — ay° a3+ (a,°a4+a,°a3) d
by &o (* x D), whereas the description for (1.1) is
(a1, a3, a3, 04,d) > d(ay, ay,d)" d(as, ay,d)
= (a,+ay d) (as+a, d).

Multiplying this out, and using d-d=0 gives the right hand side in (1.2). The
proof that a preserves addition and 1 is similar (does not use d-d=0). (It is
well-known that for diagrams of the type considered here, an “elementwise”
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proof like the one given here is immediately translatable into diagrams which
then provide the “real” proof.)

PrOPOSITION 2. Let 1: A — A x A denote the map with description a — (a,1).
Then the diagram

“+>

Ax A——sg—— AP

commutes.

Proor. Pass to exponential adjoints; the lower map then becomes the
composite (a,d) — &(a, 1,d)=a+d, which is the exponential adjoint of .

2. The axiom: invertibility of o.
In this paragraph, we assume

AxioM. The map o in (1.0) is invertible.

One could be more elaborate and include the structure of the surrounding
category E into the axiom; doing that, one would say: a ring object 4 in a
category E with finite inverse limits satisfies the Axiom or is of line type iff the
equalizer of the squaring map and the zero map A — A is exponentiable, and
the map a: Ax A — AP is invertible. Doing this, it makes sense to state:

ProprosiTiON 3. The ring object Z[X] in the dual of the category of
commutative rings satisfies the Axiom. (The ring structure on Z[ X] in this dual
category is of course the standard coring structure Z[X] — Z[X]®Z[X] in the
category of rings.)

We leave the proof of this Proposition to section 3, and now turn to the
derivation of consequences of the Axiom.
We immediately get two maps f and y from 4° to 4:

B: AP —=l, 4x A4 B, 4
y: AP —l, x4 PO, 4

The map B does not really depend on the Axiom:
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ProposiTION 4. The map B equals
AP AT, Al > g
Proor. It suffices to prove the diagram

Ax A5 AP

(2.1) projo J J A0

A—s— 4

commutative. Passing to exponential adjoints, we get twomaps A x Ax1 — A4
which we should prove equal. One of them (corresponding to the counter-
clockwise composite in (2.1)) is just proj,. The other one is (using extra-
ordinary naturality of ev (see e.g. [6], IX,4])):

ev oA x1loax1 = evodP? x 101 oax 1
= evyoaxDoAx Ax 0!
=goAxAx 0",
and this latter map is analyzed by the description a; + (a,-0).
This proves the Proposition. On the other hand, the map y above is new, and

should be thought of as “enlarging the infinitesimal into visible size”, and is the
map which leads to the crucial construction of derivative or differentiation:

DEeFINITION 5. Given a map f: A — A, its derivative f’ is the composite map

At 4P L2 4P 2, g
We can now prove

ProposiTION 6 (First Taylor Lemma). For any map f: A — A, the two maps
AxD — A with descriptions respectively (a,d) — f(a+d) and (a,d) — f(a)
+d- f'(a) are equal. In short form

fla+d) = f(a)+d f(a).
(The reader will recognizg the beginning of a Taylor expansion of f in a in this

formula.)

ProoFr. It is an easy consequence of Proposition 4 that

A—t, A2 L2, 4P 8, 4
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is just f itself. From this, and the definition of f’, it follows that
A —+ 4P
(ﬁf')J J P
AxA— AP

commutes. Now pass to exponential adjoints AxD — A with the two
composite maps of this diagram. The clockwise composite yields

evo (f? x D)o (+ x D) = foeve(+ x D)
=fo+

which is the map with description (a,d) — f(a+d). The counter-clockwise
composite yields

@ f,f'>xD
whose description is (a,d) — d(f(a), f'(a),d)=f(a)+d [ (a).

Many properties of f’ can now be proved from

ProrosiTiON 7. For any f: A — A, the diagram
AxA—Ls Axa
a J l o
D
AP —— 4
commutes, where J: Ax A — A x A is the map with description

(a0, a1) = (f(ao) ay- f'(ay)) -

Proor. It suffices to prove that the exponential adjoint diagram commutes.
The exponential diagram is the outer diagram in

AxAxD -2, AxAxD

axD d ** axD
v L 4
APxD-"> A AP xd
foxD * ! ev

AP xD—— 4
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The “square” * commutes by naturality of ev, and the triangle commutes by
definition. So it suffices to prove ** commutative. The two composite maps
here have the descriptions

(22) (ap,a4,d) — flag+d-ay)

(@0, ay,d) — d(f(ao),ay"f"(ao),d) = f(ao)+d-ay f"(ao)
respectively. But d-a; has square 0 since d has (formally “AxD — AxA — A4
factors through D”), so that the Taylor Lemma can be applied to f(ay+d-a,)
to yield the equality of the right hand sides in (2.2).

We can now prove

THEOREM 8. Given maps f,g: A — A, then

(2.3) (f+g) =f'+¢
(24) (fgy =fgt+fg
(2.5) (gof) = (gf)-f" (chain rule).

(Here + and - denotes the ring structure on the set hom (A, 4) derived from
the ring object structure on the co-domain ring object. Similarly for + and -
on hom (4, 4°) in (2.6) below.)

Proor. Since, with the “ring-of-dual-numbers” ring structure on A x A4,
proj;: Ax A — Ais aderivation with respect to proj,: A x A — A, and since «
is a ring isomorphism (Proposition 1), we get that y: 4° — 4 is a derivation
with respect to : A — A. Since

(2.6) (f+2° =fP+g® and (f0)° = /"8,
we get
(f+g) = v(f+g°-+
=y (fP+g")+
= (ofPod)+ (yog’ +)
=f+g

(the third equality sign using that y is an additive homomorphism). Similarly
(f8) =vye(f0)+
= yo(fP-ghe +
((osP)- (BogP)+ (BosfP)- (rog)e +

I
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= (rofPo+) (Bog’ o)+ (BofPo 1) (vog®o +)
=/fg+f¢g.
Again, the third equality sign uses that y is a derivation with respect to 5, and
the last equality follows from the definition of f’ and g’, and from fog’- + =g
(this equality we noted in the proof of Proposition 6).

This proves (2.3) and (2.4). To see the chain rule (2.5), we observe that (with
the notation of Proposition 7), (gof) =g f (because of invertibility of « and
because (gof)P=g"-fP).

Now (gof) and gof have descriptions

(ag, a1) — (g(f(ao)), a;" (g2 f) (ao))

and
(a0, a1) = &(f(ao), a,"f"(ao))
= (8(f(ao))a,"f"(a0) g (f (@0))) -

Comparing the second coordinates, we see that the two maps
(2.8) AxA— A
with descriptions

(ag,a,) = a;-(g°f) (ao)

(a0,a1) = a,"f"(a0)" &' (f (ao))

are equal. If we now “put a;=1”, that is, compose (2.8) on the left with t:
A — Ax A (given by a;, — (ay, 1)), we get equality of two maps A — A,
these two maps being precisely those of (2.5). This proves the Theorem.

3. Ring objects of line type.

Let R denote the category of finitely presented commutative rings, and let &
denote the category of (covariant) functors from R to the category of sets, &.
(Then & is the classifying topos for the notion of commutative ring, see [2] or
[4].) We have the Yoneda embedding

y:R® - ¥
BH[B’_]

(square brackets denoting the hom-functor R°® xR — ). The forgetful-
functor 4: R — & is a ring-object in &, and may be identified with y(Z[X]).
(It is the gemeric commutative ring object in the sense of classifying topos.)
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Now Z is a cartesian closed category, and has finite inverse limits, so D exists
and is exponentiable. The inclusion D — 4 may be identified with y applied to
the map in R

(3.1) Z[X] — Z[e] = Z[X]/(X?)

which sends X to &.
If M e & and C € R, it is easy to describe the object M” © in Z. 1t is the
functor R — %, which to B € R associates M (B® C). And the evaluation map

(3.2) MO x y(C) 2> M
is the natural transformation whose Bth component ev® (B € R) is the map (in
)

MB®C)x[C,B] —» M(B)

which to the pair <t,h) with t € M(B®C) and h: C — B associates M (h)(t),
where h is the composite ring map

B®C i B®B — B.
With this, we can now describe the map a: 4 x 4 — A” in explicit set-theoretic
terms:
ProrosiTioN 9. Let B € |R|. Then the map ag
ag: A(B)x A(B) - A(B®Z[c])
is given by
<by,by) = (b1 @)+ (b,®e) .

Identifying BQZ[e] with B[¢] (the “ring-of-dual-numbers” over B), the map
described is

{by,by,> +> b +¢b,.

PrOOF. We have to see that the map a as described in the Proposition has
the property that it makes the following diagram commutative:

AxAxD
(3.3)
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where ev is as described in (3.2) (D=y(Z[¢])), and the Bth component of &
(B € |R)) is given by

BxBx{beB| b¥’=0} > B
(b1, b2, b3) > by +by by .

Now the Bth component of the composite map in (3.3) is given by the
composite

A(B)x A(B)x D(B) — A(B®Z[]) x D(B)
= A(B®Z[]) x [Z[¢], B] —"— A(B)
which takes (a,,a,,a;) (with a2=0) to A(h)(t) where
t=a,®1+a,8¢c€ ABR®Z[e]) = BRZ[e],
and where h is the composite map
(34 B®Z[e] —5g;> B®B— B,

where h is the ring map Z[¢] — B given by h(e)=a;. Now the value of (3.4) at
a,®1+a,®c¢ is a; +a,-a,. This proves the Proposition.

THEOREM 10. The ring object A in & (i.e. the generic comutative ring object) is
of line type.

Proor. We just analyzed that a is the natural transformation with B-
component given in Proposition 9, but that is a bijective map (the canonical
bijection B x B2 B[¢]), so a is invertible in Z.

Remark 11. It follows from well-known commutative algebra that Z[¢] is
exponentiable in the category R°P itself (for a C € R, the exponential is the
symmetric C-algebra on the Kahler differentials of C, see e.g. [3, Proposition
T.9]). Since also R°P has finite inverse limits, and y: R°® — Z, like any Yoneda
embedding, preserves those finite inverse limits and exponentials that exist, the

analysis in Proposition 9 and the proof of the theorem also give that the ring-
object Z[X] in R is of line type.

Returning to the notation of Theorem 10, we thus have, for A=y(Z[X]) in
Z a differentiation process which to a map f: A — A yields a new map f': 4
— A. Now, since y is full and faithful (or by Remark 11), we also have a
process, which to a map ¢: Z[X] — Z[X] yields another map ¢": Z[X]
— Z[X]. Now a ring map ¢:Z[X]— Z[X] is completely given by
@(X) € Z[X]. We can now prove that the element ¢'(X) € Z[X] actually is
the derived polynomial, so that the Definition 5 is correct. To see this, we note



A SIMPLE AXIOMATICS FOR DIFFERENTIATION 193

that multiplication and addition of maps f correspond to multiplication and
addition of the corresponding polynomials ¢ (X). So by Theorem 10, it suffices
to prove the assertion for one single polynomial, namely X, which corresponds
to the identity map id: A — A. So we should prove that id": 4 — A equals
A— 1—1 4 Butid® is the identity map of 4°, so that id’ is given by

’yoidDo—:{: = '))o-?- = ‘yoaoa—lo:{:
= pI'Ole‘C ’

using the definition of y, and Proposition 2. But from the description of 7 in
Proposition 2, we see that

projet = (A — 1 —L1 4).

This establishes what we may briefly express

ProrosiTioN 12. For the ring af line type of Theorem 10 or Remark 11, the
differentiation process considered here coincides with usual formal differentiation
of polynomials.

Let us finally remark that in any cartesian category, the terminal object 1
carries a unique (commutative) ring structure, and, with this, is of line type. 1
believe that in the category of sets, this trivial case in the only ring of line type.
At least, I can prove that if 4 is a ring of line type which is not the null ring,
then D must contain infinitely many elements, and therefore the isomorphism
A x A= AP implies that A4 is uncountable.
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