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ON EDGE-COLOURINGS OF GRAPHS

LARS DOVLING ANDERSEN

Abstract.

Properties of the colour-distribution in edge-colourings of graphs are
examined. The results are applied in generalizing two theorems of Vizing and
in proving the following for m=35 and 7: If G is critical graph with

m—3

4(6) > —d(G)+—,
m—1 m—1

then G has at most m—2 vertices (this has been proved earlier by M. K.

Gol'dberg and by Bo Aagaard Serensen; only Gol'dberg’s proof for m=35 has

been published). Finally S(d, s), the maximal chromatic index of a graph not

containing G, as a subgraph, is determined for all d=0 and all s=2. This

answers some questions of Berge and Bosak.

1. Terminology.

We consider finite and infinite graphs without loops. The set of vertices of a
graph G will be denoted by V(G), the set of edges by E(G). If X and Y are
vertices, E(X,Y) will denote the set of edges joining X and Y; if E(X,Y)
contains more than one edge, we call it a multiple edge. A graph having no
multiple edges is simple. The multiplicity of a graph G is the supremum p(G) of
the cardinalities of all sets E(X, Y).

The valency vg(X) of a vertex X of a graph G is the cardinality of the set of
all edges incident with X. The supremum of the valencies of all vertices of G is
denoted by d(G). The set of neighbours of X is denoted by Ng(X).

If G is a graph and e an edge of G then G —e is the graph obtained from G
by deleting e.

Let G be a graph. If k is a cardinal, by a k-edge-colouring or simply k-
colouring of G we mean a mapping of E(G) into a set of cardinality k such that
any two edges incident with the same vertex are assigned different elements,
called colours. We also say that we colour the edges. The chromatic index q(G)
is the least cardinal k such that G has a k-colouring.
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An edge e of G is said to be critical if q(G —e) < q(G). It is easily seen that if G
has a critical edge, then ¢(G) is finite. If e is any critical edge of G we shall call
any (¢(G)—1)-colouring of G —e an edge-deleted colouring of G; we shall then
refer to e as the uncoloured edge. For any such colouring and any vertex X of G
we let Cy denote the set of colours colouring edges incident with X. Cy
denotes the set of the remaining of the g(G)— 1 colours. We call the colours of
Cy present at X, those of Cy absent at X. If E' is any set of edges of G, C(E') is
the set of colours colouring the edges of E'.

The graph G is critical if it has no isolated vertices, has ¢q(G)>d(G), and
every edge is critical. Every critical graph is finite.

Suppose we have an edge-deleted colouring of a graph G, and let a and b be
two distinct colours. Then an (a,b)-chain is a connected component of the
subgraph of G consisting of the edges of colour a or b and all the vertices of G.
A chain is a path or an even circuit, hence it can have at most two vertices of
valency 1. We shall often perform the process of interchanging colours in a
chain; obviously this still gives an edge-deleted colouring of G.

If X and Y are the end-vertices of the uncoloured edge and a € Cy, b € Cy,
then X and Y belong to the same (a,b)-chain. We shall call such a chain
(which is obviously a path with end-vertices X and Y) a critical chain.

A fan at X is a sequence ey, e,,. . .,e,, (n=0) of distinct edges incident with X
with end-vertices Y=2Z2,Z,,...,Z, such that e, is the uncoloured edge and
such that the colour of e; is absent at Z;_, for 1<i<n. Given a fan, we can
obtain an edge-deleted colouring of G by uncolouring e, and giving e;_, the
colour previously colouring e; for 1 <i<n. We shall refer to this process as
recolouring the fan; if n=1 it gives an edge-deleted colouring different from the
original one.

We define three important sets of vertices corresponding to a fixed edge-
deleted colouring where X and Y are the end-vertices of the uncoloured edge:
Ay is the set of end-vertices different from X of all edges which are in at least
one fan at X. By is Ng(X)\Ayx. Ay and By are defined analogously. D is the set
of all vertices which are in at least one critical chain.

If S is a set then |S] is the cardinality of S. If « is an infinite cardinal we put
ta=[a]=a. For all reals x, [x] is the largest integer not greater than x.
Any supremum taken over the empty set is supposed to be zero.

When it is clear to which graph we refer we shall often use d, p and q for d(G),
p(G) and q(G).

2. Extensions of two results of Vizing.

In [10] Vizing proved the now classical theorem that for all graphs g <d +p.
Later he proved ([11]) that in a simple critical graph a vertex adjacent to a
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vertex of valency v is also adjacent to at least d —v + 1 other vertices of valency
d. Both these theorems will be generalized below.

Results similar to those of Lemma 1 and Theorem 1 have been found
independently by Gol’dberg and are essentially the contents of [5].

We first prove a lemma stating that in an edge-deleted colouring certain sets
of colours are mutually disjoint. Results of this kind are often in the literature

stated for critical graphs only whereas we do not require more than one critical
edge present.

LemMa 1. Suppose that G is a graph with an edge-deleted colouring, and that X
is an end-vertex of the uncoloured edge such that vg(X)<q(G)—1. Then if
Ay={YLV,,...,V,} and Bxy={Z,,...,Z,}, r,t 20, the following sets of colours
are mutually disjoint:

Cx,Cy.Cy,y. . .,Cy, C(E(Z,, X)), .., C(E(Z, X)) .

Proor. We prove five assertions which together imply the lemma.
(i) For every vertex Vin Ay, C,NCx=(.

ProoF OF (i). Suppose (i) is false and let Y, V',...,V,, n=1, be the end-
vertices of the edges of a fan at X such that the colour a is in Cy» N Cy. Now a
(g— 1)-colouring of G is obtained by recolouring the fan and giving the new
uncoloured edge the colour a. This contradiction proves (i).

(ii) For any two distinct vertices ¥’ and V" in Ay, C,y NCpr=(.

PRrOOF OF (ii). As vg(X)< g—1, there is a colour b absent at X. If Ve Ay and
a € Cy we can prove that ¥ and X are in the same (a, b)-chain. Because suppose
this is not true, and suppose that among the vertices V for which it fails we
consider one such that the fan with end-vertices Y=2Z,,Z,,...,Z,=V has as
few edges as possible. If we interchange colours in the(g, b)-chain containing X
the same edges do still constitute a fan, for if a does not colour any edge of the
fan we have not affected the fan at all, and if a colours an edge of the fan, say

aGCanC(E(X’ZiH)), isn-2,

then Z, and X are in the same (a, b)-chain by the choice of V; hence after the
interchange we have b € Cz N C(E(X, Z;,,)). So in the colouring obtained by
interchanging colours in the (a, b)-chain containing X we still have Ve Ax. But
we also have a € C, N Cy, which contradicts (i). This argument shows that V
and X are in the same (a,b)-chain. So if V'+V" are both in Ay, and
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a € Cy-NCy», then the (a,b)-chain containing X must be a path with three
end-vertices which is absurd. Now (ii) is proved.

Of the last three statements below (iii) follows from the definition of 4y and
By, and (iv) and (v) are obvious.

(iii) For any two vertices V in Ay and Z in By, CyNC(E(Z,X))=(.

(iv) For all neighbours Z of X, Cxy NC(E(Z,X))={.

(v) For any two distinct neighbours Z' and Z” of X,
C(EZ,X))NC(E(Z",X)=¢.

Now the lemma is proved.

THEOREM 1. For any graph G

9(G) £ max {d(G), sup  sup [% Y (w(M+IEW, X)I)]} .
XeV(G) AsNX) L pe 4
|4|=2

Proor. Suppose first that the theorem fails for a finite graph G’. By deleting
edges from G’ we can obtain a graph G with g(G)=4¢(G’) such that G has a
critical edge e, say, with endvertices X and Y. Consider a (g— 1)-colouring of
G—e. As v(X)<d(G)£q—1 (by hypothesis q(G)> d(G)) we can use Lemma 1,
and as vg_.(Y)<g—1 it follows that |4x|=2. The total number of colours in
the mutually disjoint sets mentioned in the lemma can be at most g—1; hence

q—1 2 |Cx+ICyl+ ¥ IC+ X IC(E(Z, X))
VeAx\{Y} ZeBx

= (g—1—(v(X)=1))+ (g—1— (vs(Y)— 1))+

+ X (q—l—UG(V))+(UG(X)— Y IE(V,X)l)-

Ve Ax\{Y} VeAx
This gives
q £
A4S L (o (1) + IV X)) +dx| -2
€Ax
implying
q< [vax (vc;(V)+IE(V,X)I)+1 2 }

|4 Ayl

£ max [% VZA (M +IE(V, X)l)]

14]=2
AG Ng(X)
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contradicting the assumption that the theorem is false. So the theorem is true
for finite graphs.

For infinite graphs the theorem now follows by the techniques of Bosak
[2]. He observed that if d is infinite then ¢=d; and if k is a finite cardinal,
then an infinite graph has a k-colouring if and only if every finite subgraph of it
has.

Theorem 1 is better than the extension of Vizing’s result that

g = sup (UG(X)+ sup IE(Y,X)I>
XeV(G) YeV(G)

(implicit in Vizing’s paper [12], stated in Ore [8]). It also generalizes Ore’s

result [8], that

q = max {d(G), sup [3(v6(X)+v6(Y) +v6(2))1}

where the supremum is taken over all paths with exactly three vertices X,Y
and Z. From this the theorem of Shannon [9], that ¢<[3d], follows.

THEOREM 2. Let G be a graph for which

¢q(G) = max (vG(X)+ max |E(Y,X)|>
XeV(G) YeV(G)
and which has a critical edge e with end-vertices X and Y. Put t=vg(Y)
+1E(Y, X)|.
Then X is adjacent to at least q—t+1 vertices V different from Y and such
that vg(V)+|E(V, X)|=g.

Proor. Consider a (q— 1)-colouring of G —e. The proof will show that the
g—t+1 vertices mentioned all belong to Ay. Using Lemma 1 (obviously
v6(X)<g—1) we get (as in the proof of Theorem 1)

g-12 Y (q-1-vs(")+q-06(Y)+q—v6(X)+v6(X)— ¥ [E(V,X)
VeAx\{Y} VeAx
giving
Y (@-vcM-IEW, X)) S t—q—1+(4x|-1).
VeAx\{Y}

Every term of the sum on the left-hand side of this inequality is non-negative;
as the sum is less than or equal to t —q +|Ax| —2 at most that many terms can
be non-zero — the remaining (|Ax|—1)— (t—q+|Ax|—2) terms must all be
zero. But this number is exactly g—t+1, and the corresponding g—t+1
vertices V of Ax\{Y} must satisfy vg(V)+|E(V,X)|=4.
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CoRrOLLARY 1. Let G be a critical graph for which

q(G) = max (vG(X)+ max |E(Y,X)|>.
XeV(G) YeV(G)

Put m(G)=min, (g (v5(X) +minye ygx) LE(Y, X))).

(i) Every vertex X of G is adjacent to at least two vertices V such that vg(V)
+IE(V, X)=4q.

(i) G contains at least max{3,q—m(G)+1} vertices W such that vg(W)
+maxy vy |E(U, W)|=q.

CoRrOLLARY 2. (Vizing [11]). If G is a simple critical graph and the vertex X is
adjacent to the vertex Y, then X is adjacent to at least d—vg(Y)+ 1 vertices other
than Y and of maximum valency in G.

3. The colour-distribution in edge-deleted colourings of graphs
with g>d+ 1.

Lemma 1 states that in an edge-deleted colouring, X being an end-vertex of
the deleted edge, the sets Cy, Ve AxU{X}, are mutually disjoint. In this
section we show that for graphs with g>d + 1 this disjointness property can be
extended to a considerably larger set than Ay U{X}.

We first prove a lemma very similar to Lemma 1.

LeEMMA 2. Suppose that G is a graph with an edge-deleted colouring, and that X
and Y are the end-vertices of the uncoloured edge, and suppose that v;(X)<q—1
and vg(Y)Sq—1. Then the sets {Cy | Ve AxU Ay} are mutually disjoint.

Proor. Lemma 1 gives Cy N Cy= ¢ for two distinct vertices U and V where
{U,V}cAx or {U,V}cAdy or {UV}N{X,Y}+@. So suppose that
Ue Ax\(AyU{Y})and Ve Ay\(Ax U{X}). Let X=Y,,Y,,...,Y,=V,n=1, be
the end-vertices of the edges of a fan at Y, b a colour of Cxy NC(E(Y,,Y)).
Assume that the theorem fails for U and V and let a € Cy N Cy. As vg(X)<
q—1 there is a colour c different from b absent at X. It follows from the proof
of Lemma 1 that both U and V must be the other end-vertex of the path which
is the (a,c)-chain containing X. This contradiction proves the lemma.

In Lemma 2 it is not assumed that ¢>d + 1, but on the other hand g>d +1
would imply that vg(X)<g—1 and vg(Y)<q—1.
In [3], Gol’'dberg proved the following:
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LemMMA 3. Let G be a graph with q>d+1 and consider an edge-deleted
colouring of G. Then for any critical chain H the sets {Cyl Ve V(H)} are
mutually disjoint.

ProOF. Suppose the lemma is false and let U and V be two distinct vertices of
a critical (a, b)-chain such that ¢ € Cy N Cy. Obviously c#a and c+b. If U and
V are not neighbours in the chain, we select a vertex Z between them. If ce C,
we choose a colour f e C, (by assumption, g— 1 exceeds the valency of Z) and
interchange colours in the (c, f)-chain containing Z. Then the colour c is
absent at Z and at one (or both) of U and W. We can therefore assume that U
and V are neighbours of the (a, b)-chain.

So there is an edge of the critical chain joining U and V. Recolouring this
edge with colour ¢ gives an edge-deleted colouring such that at neither end-
vertex of the uncoloured edge do a and b both occur and at the same time these
end-vertices are not in the same (q, b)-chain. This is a contradiction and so the
lemma is proved.

The next theorem shows that Lemmas 2 and 3 can be combined and
extended. We prove that the sets Cy are mutually disjoint for all V in the union
of Ay, Ay, and the set D of vertices of any critical chain.

THEOREM 3. Let G be a graph with q(G)>d(G)+ 1 and X and Y two vertices of
G such that the edge e € E(X,Y) is critical. Then in any (q(G)— 1)-colouring of
G—e the sets {Cy | Ve Ay U AyU D} are mutually disjoint.

Proor. We first prove that for any two distinct vertices U and V of D,
CyNCy= . If they are in the same critical chain this follows from Lemma 3.
So suppose that they are not, say U is in a critical (a, b)-chain and Vin a critical
(c, d)-chain, where a and c are in Cyx, b and d in Cy. a and c or b and d may
coincide, but not both. Now assume that a colour 4 is in Cy; N Cy. Obviously
h#a,b,c, d. Let the successive vertices of the (a,b)-chain be X,Z,,...,Z,Y,
t21, and of the (c,d)-chain X, W,,...,W..Y,r=1. Now either Z, +W,, Z, + W,,
or Z,+ Wy, because otherwise we would have r=t=1and U=V. Let { W, Z} be
one of these pairs of vertices such that Z + W, If Z+ U we choose k € C, and
interchange colours in the (h,k)-chain having Z and U as end-vertices.
Similarly if W+ ¥V we choose [ € Cy, and interchange colours in the (h, [)-chain
containing Wand V. After these interchanges we have h € C; N Cy, and as we
still have Wand Z in Ay U Ay this contradicts Lemma 2. So the disjointness is
established for two vertices both in D.

Lemma 2 takes care of the case of two vertices both in Ay U Ay. So assume
finally that U € Ax\D and Ve D\(Ax U Ay). Then U and V are both different
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from X and from Y. Let ¥ belong to a critical (a, b)-chain, a € Cy and b € Cy.

Let ¢ € Cx, c+a. We must prove that Cy N Cy = J. Suppose on the contrary

thatd € C;NCy. Thend+a,d+b, and d+c. By Lemma 1, U and X belong to

the same (d, ¢)-chain, and it follows from Lemma 3 that V and X belong to the

same (d, c)-chain. But this is impossible, and therefore Cy N Cp = .
Theorem 3 is now proved.

CoRrOLLARY 3. Let G be a graph with gq>d+1 and with an edge-deleted
colouring, and let X and Y be the end-vertices of the uncoloured edge. Then

q-3

Ay UAy UD| £ .
l[Ax U Ay I_q—d—l

Proor. Counting colours in the disjoint sets of Theorem 3 gives

g—1 2 ([4x U Ay UD|-2)(g—-1-d)+2(q—d),
which implies the statement of the corollary.

To help the discussion in the next section we also state:

COROLLARY 4. Let G be a graph with

with an edge-deleted colouring, and let X and Y be the end-vertices of the
uncoloured edge. Then |Ax U Ay UD|<m.

Proor. The assumption gives ¢>d+ 1, then we must have d=3, and from
Corollary 3 we get

q-—3 m—1 m-1
< =

4. The number of vertices in critical graphs with g>d+ 1.

In the following, a ringgraph will mean a circuit or any graph obtained from
a circuit by substituting one or more edges by multiple edges.

LEMMA 4. The critical graphs in which every critical chain in every edge-
deleted colouring has exactly 3 vertices, are precisely the ringgraphs with three
vertices.
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Proor. Let G have the property stated. Consider a (g — 1)-colouring of G —~e,
where e is an edge of G with end-vertices X and Y. G being critical, there are
colours absent at X and Y,say a € Cy and b € Cy. Let Z be the third vertex of
the critical (a, b)-chain. Now we first prove:

(i) Cz € C(E(X,Y)), CxcC(E(Y,Z)) and CycC(E(X, Z)).

ProoF oF (i). Suppose ¢ € C5. Uncolouring the edge of E(X, Z) coloured b
and giving e the colour b we obtain another edge-deleted colouring. As the
critical (a,c)-chain must have only three vertices, ¢ must colour an edge of
E(X,Y). So C;<=C(E(X,Y)). The other two inclusions are obvious from
considering critical chains with b respectively a as one colour (in fact we see
that X, Y, and Z are symmetrical as the uncoloured edge can be “shifted”
among them). Now (i) is proved.

(i) Cz=C(E(X, )UC(E(Y,Z2)UC(E(X,2)).

Proor oF (ii). Suppose not. Let ¢ € C; and assume that ¢ is not colouring
any edge joining two of X, Y, and Z. Colour c is present at X and Y, and the
(b, c)-chain containing Y must contain the edge of E(X,Z) of colour b
(otherwise an interchange of colours in the chain would give a critical (g, c)-
chain with more than three vertices contrary to hypothesis). Following this
chain from Y we can assume that X is met before Z. Now we uncolour the edge
of E(X, Z) coloured b and give e the colour b; the (b, c)-chain containing Y is
now a circuit. Interchanging colours in this circuit gives a critical (a, b)-chain
with more than three vertices contrary to hypothesis. This contradiction
proves (ii).

(i) and (ii) together imply that all colours (CU Cy) colour an edge of the
subgraph spanned by X, Y, and Z. This subgraph must then have g—1 edges in
addition to e; hence it has chromatic index g. G being critical, the subgraph is
the whole of G. So G is a ringgraph with 3 vertices, and Lemma 4 is proved.

In [2], Bosak made the following conjecture:

Let G be a graph with finite d and let ¢t denote the maximal number of edges
of a subgraph of G with at most 3 vertices. Then

If t 2 [3d+3], then g = ¢.

If t < [3d+1%], then g < [3d+3].
A proof of this has first been published by Gol’dberg [4], unpublished proofs
have been found by Bo Aagaard Serensen and by the author. Theorem 4 below

implies the validity of the conjecture; the proof given is based on Lemma 4
which is adapted from Gol'dberg’s proof.
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THEOREM 4. If G is a critical graph with q(G)>32d(G)+1%, then G is a ringgraph
with 3 vertices.

Proor. By Corollary 4 with m=35, in every edge-deleted colouring of G D has
at most 4 vertices. As a critical chain contains an odd number of vertices, any
such chain must have exactly 3 vertices. It follows from Lemma 4 that G is a
ringgraph with 3 vertices.

Another question, extending that of Bosak, can be formulated in the
following way (Jakobsen [7]):

Is (*) below true for all odd integers m=3?
(*) If G is a critical graph with

> e der—3
17 01 T m—1

then G has at most m—2 vertices.

If the answer is yes, then there are only a finite number of different critical
graphs with g>d+1 for each d (and these all have less than d vertices).

For m=23 the statement is true by the theorem of Shannon [9]. For m=5 it
is true by Theorem 4, and Theorem 5 below shows that it is also true for m=7.
In [7] Jakobsen reports that Theorem 5 has been proved by Bo Aagaard
Serensen, and recently he informed the author that M. K. Gol’dberg has found
a proof as well (both proofs unpublished).

We may note that (*) is true for ringgraphs for all odd m=3.

THEOREM 5. If G is a critical graph with q(G)>Zd(G)+%, then G has at most 5
vertices.

Proor. By Corollary 4 with m=7, in every edge-deleted colouring of G
|[AxUAyUD|<7, X and Y being the end-vertices of the uncoloured edge.
Hence every critical chain must have 3 or 5 vertices. If every critical chain in
every edge-deleted colouring has 3 vertices, by Lemma 4, G has exactly 3
vertices. So assume in the following that G has an edge-deleted colouring with
a critical chain having 5 vertices; let the deleted edge e have end-vertices X and
Y, a e Cx, b € Cy, such that the critical (a,b)-chain has successive vertices
X,Z,,Z,,Z,,Y. Let the subgraph of G spanned by these S vertices be denoted
by H. Observe that there is symmetry among the vertices of H as we can get
other edge-deleted colourings having critical (a, b)-chains with the same 5
vertices by shifting the colour b from the edge of E(X,Z,) to e etc. — Now we
prove:

(i) D=V (H).



ON EDGE-COLOURING OF GRAPHS 171

PrOOF OF (i). Suppose that D contains a vertex W not in V(H). In the critical
chain to which W belongs it cannot be joined to X or Y, because if
ce CyNC(E(W, X)) then the critical (a,c)-chain contains X,W,Y,Z; and
necessarily another vertex not in H contradicting |D|<6. So in the critical
chain to which W belongs it is not joined to X or Y; its neighbours must be in
H, hence we can assume that one is Z;. Let ¢ € C(E(Z,, W)), ¢ being a colour
of the critical chain, i.e., c € Cy or ¢ € Cy. Now if ¢ € Cy then we can uncolour
the edge of E(Z;, Y) coloured a and give e the colour a; afterwards W is joined
to an end-vertex of the critical (a,b)-chain which we have just seen is
impossible. If ¢ € Cy then the critical (b, c)-chain cannot contain W (for then it
would contain at least seven vertices). Hence an interchange of colours in the
(b, c)-chain containing W gives a colouring where the critical (a, b)-chain has at
least 7 vertices. This contradiction shows that D cannot contain a vertex which
is not in V(H), and (i) is proved.

We proceed to prove

(ii) Every colour of CxUCz UCz UCz UCy colours two edges of H.

Proor oF (ii). It is true for a and b. Let ¢ be a colour of the union different
from a and b; by the symmetry we can assume that ¢ € Cyx. Then c is present at
Yand Z,, and it follows from (i) that in both cases it colours an edge of H. So
either ¢ colours two edges of H, or it colours an edge of E(Z,,Y). Suppose the
latter. Interchange colours in the critical (b, ¢)-chain. By considering the critical
(a, c)-chain we see that ¢ must colour an edge of E(Z,, Z,), so also in this case ¢
colours two edges of H. This proves (ii). (iii) goes further:

(iii) Each of the g—1 colours colours two edges of H.

ProoF oF (iii). It is true for any colour absent at some vertex of H, by (ii).
Suppose ¢ is a colour present at every vertex of H. We want to prove that c
colours two edges of H, so suppose it does not, say ¢ colours edges joining X
and Y to vertices not in H. Then we can assume that the (b, c)-chain containing
Y contains another vertex of H (by symmetry. For otherwise we can
interchange colours in the (b, c)-chain containing Y without affecting the edge
incident with X of colour ¢, and in the resulting colouring the critical (a,c)-
chain has exactly four edges and contains Z;. As none of these four edges has
been affected by the interchange we see that also in the original colouring does
the (a, ¢)-chain containing X contain another vertex of H.) Following the chain
from Y we let V denote the vertex of H different from Y first met. By symmetry,
it is sufficient to consider two cases, V=X and V=2Z,.

If V=X we uncolour the edge of E(X, Z,) coloured b, and give this colour to
e. We then interchange colours in the (b, ¢)-chain containing X (which is now a
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circuit) and obtain a colouring where the critical (a,b)-chain has at least 7
vertices, which is a contradiction.

So we have V=2Z,. Let U and W be the neighbours of Y and Z, respectively
such that ¢ € C(E(Y,U)) and ¢ € C(E(Z,, W)). We investigate two possibilities,
namely whether ¢ colours an edge of E(Z,,Z;) or not.

Assume ¢ € C(E(Z,, Z,)). Interchanging colours in the critical (a,b)-chain we
obtain a (b, c)-chain which is a circuit containing Y; hence it does not contain
X. By interchanging colours in the (b, c)-chain containing X and considering the
critical (a,c)-chain we see that a € C(E(U,W)). Now let d € Cx, d=*c. d is
present at Y, and by (ii), it colours an edge joining Y to a vertex both in the
original critical (a, b)-chain and in the critical (g, ¢)-chain containing U and W;
hence it colours an edge of E(Y, Z,). By (ii), d also colours an edge of E(Z,, Z,),
and so there is a (b, d)-chain which is a circuit with vertices Z,,Z,,Z;, and Y.
Now we interchange colours in the (b, d)-chain containing X. In the colouring
that we have finally obtained D contains all of X, Y, Z,, Z,, Z,, U, W, which is
a contradiction. So ¢ ¢ C(E(Z,,Z,)).

This implies that Z, and Z, are in the (b, c)-chain containing Y (otherwise
interchanging colours on this chain would result in a critical (a, c)-chain with
more than five vertices, a contradiction). By symmetry we can assume that Z,
is met before Z, (but after X). Interchanging colours in the critical (a, b)-chain,
uncolouring the edge of E(Z,, Y) now coloured b, and giving e the colour b we
obtain a colouring where there is a (b, c)-chain which is a circuit not contain-
ing Z,. We interchange colours in the (b,c)-chain containing Z;, and by
considering the critical (g, c)-chain it is seen that Z, and U have a common
neighbour Z + W outside H. By choosing d € Cz,, d +c, we get a contradiction
in the same way as above. This finally proves (iii).

From (iii) we see that H consists of a circuit with 5 vertices to which (g—3)
sets of two independent edges are added. But such a graph is easily seen to be
critical with chromatic index g. As G is critical G=H, and the theorem is
proved.

The proof given above for the case m=7 of the statement (*) mentioned
before the theorem does not generalize to greater m. We formulate instead the
following

CoNIECTURE. If G is a critical graph with q(G)>d(G)+ 1, then in every edge-
deleted colouring of G all sets {Cy | Ve V(G)} are mutually disjoint.

One can prove that this conjecture is equivalent to a conjecture by Gol'dberg
in [4]. It implies the “critical graph conjecture” (see [6]) that every critical
graph has an odd number of vertices, in the special case g>d+1;forifa e Cy,
and a € Cy for any U %V, then obviously the graph under consideration has
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an odd number of vertices. The conjecture also implies (*). For if we consider
an edge-deleted colouring of the critical graph G with n vertices, then by
the conjecture

(n—2)(g—d—1)+2(g—d) = q-1.

Combining this with

(the assumption of (*)) we get n<m. Since n and m are both odd, the
conclusion of (*) follows.

In connection with the critical graph conjecture we should mention that
Lemma 4 has the following corollary:

COROLLARY 5. There are no critical graphs with precisely four vertices.

5. Application to questions of Berge and Bosak.

For all s=2, let G, denote the ringgraph with three vertices X, Y, and Z, such
that |E(X,Z)|=|E(Y, Z)|=[s/2] and |E(X, Y)|=[(s+1)/2]. Then d(G,)=s and
q(G)=[3s]. Vizing [12] has shown that for all d24, G, is the only critical
graph with g=[3d]. This leads to the question of finding a better upper bound
for the chromatic index of a graph not containing G, as a subgraph. In [1]
Berge made the following conjecture:

If G is a graph not containing G, as a subgraph, where 4<s=<d(G), then
9(G)<[3d(G)]1~[d(G)/s].

Berge himself proved this for s and d even (ibid.), and Bosak verified the
conjecture for the cases d<2s and d even ([2]). The truth of the conjecture
follows from Theorem 4 of this paper (Gol'dberg also observed this in his
paper [4]). Bosak denoted by S(d,s) (d 20,s=2) the maximal chromatic index
of a graph not containing G, as a subgraph, and gave some bounds for this
number. In Theorem 6 below, S(d, s) is determined for all 420 and all s22. It
is seen that the actual value of S(d,s) is much less than the upper bound of
Berge’s conjecture.

THEOREM 6. Let d and s be integers such that d=0 and s22, and let S(d, s)
denote the maximal chromatic index of a graph not containing G as a subgraph.
Then
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(1) S(d,9=[34] for d<s—1.
(2) S,s)=d—-1+[s/2] for sS£d<2s—6.
(3) Sd,s)=[3d+1] for d=2s—5.

ProoF. (1). S(d,s)<[34] by Shannon’s theorem, and for d <s—1 this bound
is obtained for graphs not containing G, namely if d=0 or d=1 by the
complete graph with 1 or 2 vertices, and if d=2 by the graph G,.

(2). Let s<d<2s—6 (this implies s=6) and suppose (reductio ad
absurdum) that G is a graph such that G2 G, and such that ¢g>d—1+[s/2].
We can assume that G is critical. Then

s d+6 5 1
> 2 Zd4-
¢z d+[2] > d+[ : ] > [4d+2]

and so by Theorem 4, G is a ringgraph with three vertices. Since g =d+[s/2]
and g equals the number of edges of G, it follows that each pair of vertices of G
is joined by at least [5/2] edges, so G2 G,,2;. Since G2 G,, we conclude that s
is odd and G=G,_,. But this contradicts the assumption d > s. So we have that
Sd,s)<d—1+[s/2].

The upper bound is obtained for the ringgraph with three vertices X, Y, and
Z, such that

IE(X,Y)| = [g] IE(X,Z) = [%—1] |E(Y,Z)| = [%]—1.

Obviously it does not contain G, as a subgraph.

(3) Let d=25—5 and suppose (reductio ad absurdum) that G is a crmcal
graph such that GG, and such that g>[3d+3}]. By Theorem 4 G is a
ringgraph with three vertices. Now

5,1 d 3 s 53 s
> | — — — — ——— —
q=[4d+2]+1 d+[4 2]_d+[2 4+2]_d+[2].

Thus as GPG,, G must have three multiple edges each consisting of [s/2]
edges, with s odd. Such a graph has d=s5-—1, and s —1 2 2s—5 implies s<4. As
s is odd we get s=3. But then G is a circuit with 3 vertices and has g=[3d +1]
which is a contradiction. Thus S(d,s)<[3d +1].

The bound is obtained for all d and s. If d=0 or d=1 take the same graphs
as in the proof of (1). If d=2 take the ringgraph with 5 vertices
X1, X, X5, X,, X5 such that

d
|E(X 1, X))l = |E(X5, X3)l = |E(X,,X5)| = [5]
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and

d+1
EX3, Xl = [E(X5, X,)| = [;2:]

This graph has g=[3d +%] (see [1] or [2]). Note that it is not always critical.
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