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THE SPACE OF QUASISYMMETRIC MAPPINGS*

PEKKA TUKIA

Abstract.

The universal Teichmiiller space T is an open subset of a Banach space B
whose elements are holomorphic mappings of the lower half-plane. It is known
that the universal Teichmiiller space is contractible. We show that it is
homeomorphic to a real Banach space E and that as a real analytic Banach
manifold it is equivalent with an open, convex subset of E. The Banach spaces
E and B are isomorphic as topological, real linear spaces. The method of proof
is to find a set of “moduli” for quasisymmetric mappings.

1. Introduction.

A quasisymmetric mapping is an increasing homeomorphism f of the real
line R satisfying

L
= 70-Sx=0 =

for some g=1 when x,te R, t>0. A quasisymmetric mapping f is g-
quasisymmetric if it satisfies (1) with this particular g¢. The 1-quasisymmetric
maps are just the affine transformations x — ax+b, x € R varies, a,b € R
fixed, a>0. The interest of quasisymmetric maps lies in the fact that the
restriction of a quasiconformal self-map of the upper half-plane

U={zeC: imz>0}

M 1/e

is quasisymmetric. (Every quasiconformal self-map of U has a unique
extension to R and for simplicity we consider them already extended to R).
Conversely, every quasisymmetric mapping is the restriction of such a
mapping. (Cf. Beurling—Ahlfors [5].)

It is often convenient to normalize quasiconformal self-maps of U and
quasisymmetric maps of R so that they fix 0 and 1 (0o is in any case already
fixed). A normalized quasiconformal self-map of U is uniquely determined if
its complex dilatation u(f)=2af/0f is known. Then p(f) is an element of

* 1 wish to thank Magnus Ehrnrooth foundation for financial support.
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L*(U,C), the Banach space of measurable bounded maps U — C with
supremum norm. It is a basic result in the theory of quasiconformal mappings
that the mapping f+> u(f) is one-to-one from the set of normalized
quasiconformal self-maps of U onto the open unit ball M of L*(U,C) (cf.
Lehto—Virtanen [8]). The set M is an open set in a complex Banach space, thus
it is in a natural way a complex analytic Banach manifold. Consequently, this
is a way to define a complex analytic structure in the set of normalized
quasiconformal self-maps of U. We can define an equivalence relation in the set
of normalized quasiconformal self-maps of U as follows: let f~g if and only if
S IR=g]|R. The quotient set of ~ is the set of normalized quasisymmetric maps
of R. The space M is a complex analytic manifold and thus the set of
normalized quasisymmetric mappings inherits a complex analytic structure
from M. One can also show that it is a Banach manifold. This Banach
manifold is called the universal Teichmiiller space. It can be identified with an
open subset in the complex Banach space B of holomorphic functions ¢ in the
lower half-plane L with norm

lolls = sup{2(im2)*le(2)| : zeL}.

(Cf. Bers [2], [3], Earle and Eells [7].)

From the topology of the universal Teichmiiller space is known that it is
contractible (Earle and Eells [7]). In this paper we show that, more precisely, it
is homeomorphic to a Banach space. We also show that as a real analytic
manifold it is equivalent with a convex set in a real Banach space. (It is not
known whether the above imbedding in B is convex). We prove these results by
showing that there is a natural way to associate with a quasisymmetric
mapping a sequence (k;) of real numbers and that the set of such sequences is
an open, convex set in a Banach space that is a linear subspace of [, i.e. the set
of all bounded sequences (k;) with supremum norm.

Our method is in a way direct. We define the real analytic structure of
normalized quasisymmetric mappings and its topological properties without
making essential use of the theory of quasiconformal mappings. It is true that
in section 4 some properties of quasiconformal mappings are needed but this is
for convenience, add a page and we could do without.

2. Nets and sieves of R.
A family A4 of closed, non-empty, non-degenerate intervals of R is a net of R
if
(l) UIE /I = R,
(i) INJ= or = a common endpoint, I,J € A, I+J, and
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(iii) If x is an endpoint of I € .4, then x is also the endpoint of another
Je N, T+

An interval of A is also called a mesh of A". Two meshes are said to be
adjacent if their intersection is a point. The set of endpoints of meshes of A" is
the set of vertices of A". It follows that the set of vertices of a net A4 can be
enumerated as a sequence x;, i € Z, so that x;<x; if i<j and that the family
{[xi-1,x;] ;i€ Z} is the net A",

Let us denote the length of an interval I by I(I). A net is said to be symmetric
if its meshes have the same length. A net is said to be quasisymmetric if there is
a constant k=1 such that

Ik = IDIJ) = k

whenever I and J are two adjacent meshes of the net. More precisely, the net
A is k-quasisymmetric if the above inequality is true. A 1-quasisymmetric net is
symmetric and conversely. If k> 1, it need not be true that the ratios of non-
adjacent meshes of a k-quasisymmetric net are bounded.

A net A" is a subdivision of the net A" if the set of vertices of A" contains the
vertices of #". Then a mesh of .4 is a finite union of meshes of A4". A sieve is a
sequence X= (A7), i € Z, of nets such that A", ,, is a subdivision of A", and
that each mesh of .47, is the union of exactly two meshes of .4, ,. Thus the set
of vertices of 4", , is obtained from that of .4"; by adding a vertex in every
mesh of 4. A sieve is said to be fine if for every sequence I; € A, i € Z, such
that I,,, <I,, the intersection

N I; = a point .
ieZ

The words symmetric, quasisymmetric, k-quasisymmetric, mesh and vertex are
applied also to sieves. Thus e.g. a k-quasisymmetric sieve is a sieve containing
only k-quasisymmetric nets. In the same manner, a mesh of a sieve X' is a mesh
of some net of X.

ProrosiTION 1. A quasisymmetric sieve is fine.

ProoF. Let X be k-quasisymmetric. Let (I,), i € Z, be a sequence of meshes of
Z such that I,,,<I,, I;e &, i€ Z. Then we have

Y(k+1) < 1Ly )Y S k/(k+1) .

The conclusion is now obvious.

Math. Scand. 40 - 9
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3. The space of quasisymmetric sieves.

For our purposes it is convenient to assume that the interval [0, 1] is a mesh
of the net A", of a sieve Z=(A"), i € Z. Such a sieve is called normalized. Of
course any sieve can be normalized by performing a transformation of the form
x > ax+bforx e R (a,b € R, a>0). We denote by I,, the mesh of 4", that has
0 as the smaller endpoint. It is clear that, once I, is given, there is a unique
enumeration {I;;}, j € Z, of meshes of 4", for each i € Z such that I ;and I; ;. ,

are adjacent and that the smaller endpoint of I; ;. , is the bigger endpoint of I;;,

je<Z.
Now we can form the ratios
2 kij = I(Iij)/l(li,j-l)a LjeZ.

The normalized sieve is uniquely determined once the numbers (k;), i,j € Z,
are known. For beginning from I,,=[0, 1] we can determine all other meshes
Iy;, i € Z, knowing ko, i € Z. The meshes I, and I_, , are determined from
the mesh I, and numbers k,, and ko,. Thus we can determine step by step all
the meshes I;;, i, j € Z. The sieve X is k-quasisymmetric if and only if

1k £ kj<k forallijeZ.

Thus the set of normalized quasisymmetric sieves can be made to a metric
space by defining the distance between two sieves Z and 2’ to be

3) d(Z,2) = sup |logk;;—logk;
ijeZ

il

where k;; and ki; are the numbers defined by (2) with respect to 2 and 2.
The numbers k;;, i,j € Z, are not independent. A simple calculation shows

o Ldkig
l—1’11""‘7.',2;'+1

4) ki, =k for i,jeZ,
i.e. when passing from A4";_; to 4, only the numbers k;;, j odd, can be given
freely, the numbers k; ,;, j € Z, can be computed from these. On the other
hand, if the positive real numbers (k;), i, j € Z, satisfy the relations (4) there is
always a unique normalized sieve X such that k;;=1(I;)/I(I; ;_,),i,j € Z, where
the meshes I;; are as in (2).

We can use (4) repeatedly to calculate

) .1+ki.—1n+l,2}-1 14k iy
RS € PP L+k; pnjsq

(5) ki,z"j = k

for i,j,ne Z, If n<0 and 2"j € Z we have

L4k p it L+kiyy,om1j41

k- n; = k-_, i — “e s .
b2 ' n'll+ki-ln,j—1 1+ki-+11,2"‘j—1
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Now we can see that there is a one-to-one correspondence between the set of
normalized sieves and indexed families (k;), i,je€ Z, j odd or (i,j)=0, of
positive real numbers. From now on we identify the sieve and the family
corresponding to it. We write P for Z x (2Z 4+ 1) U {(0,0)}, thus we can write the
sieve (k;), (i,j) € P. We can also write the sieve (k;), i,j € Z. Then it is
understood that the numbers k;;, (i, j) ¢ P, are determined from equation (5).

We can paraphrase the condition that a sieve is quasisymmetric as follows:

ProPOSITION 2. A sieve (k;), (i, j) € P, is k-quasisymmetric if and only if
the products (5) lie in the interval [1/k,k] for (i—n,j) € P and n=0 and for
(i—n,j)=0, n<O.

We shall now try to embed the space of sieves in a Banach space so that the
image set is convex. Equation (5) suggests the following transformation

(6) h; = log ((1+k)/2) if j—1€4Z or (i,j)=0,

= log (1 +k3"/2) if j+1e4Z,
for (i,j) € P. We can express the numbers k;; by means of h;; as follows
0] k; = (2exph;—1)*!

for (i,j) € P. Here we choose the exponent —1 if j+1 € 4Z, +1 otherwise.
Equation (5) assumes now the form

(8) logk; ,»; = logk;_, ;
+log (1+ki sy, 2j-1)—10g (L +ki_piq,254+1)

n
+ Z (h.'—-n+k,2"j—1 "hi—n+k,2"j+ V]
k=2

for i,j,n € Z, nZ0. If n<0 the equation is slightly different, cf. equation (5)
The reader can easily modify (8) to fit this case.

On the basis of (8) it is reasonable to consider a Banach space E formed of
all sequences (h;)), (i, j) € P, of real numbers such that both

©® m=sup{lh): (ij)eP} and

sup {

(i—n,j)e P and n20 or (i—n,j)=0 and n<0; e=sign (n)}

]

M

I

n
Z (hi—n+k,2"j—1 “hi—n+k,z"j+1) :
k=¢

are finite. For such sequences we define the norm to be

(10) |l (h;)llg = max {m,M} .
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Finally let E, and E,, m>0, be the subsets of E for which

(11 E, = {(h)€E: h;=—log2+m for (i,j)e P}
Eo = U Em'
m>0

We have identified the set of quasisymmetric sieves with sequences (k;j),
i,j € Z, and these sequences we have mapped by equations (6) to sequences
(h;), (i,j) € P. We can now formulate the main result of this section.

ProposiTION 3. The mapping defined by (6) from the space of quasisymmetric
sieves to the set of sequences (h;}), (i, j) € P, is a bijection onto the set E,, which is
an open, convex set in the Banach space E. Moreover, if the space of
quasisymmetric sieves is topologized by (3) then it is a homeomorphism onto E as
a subspace of E with norm (10) and it, as well as its inverse, is locally Lipschitz.

Proor. This is mechanical. Use equations (5) and (8) together with the norm

(10) and metric (3). It is an immediate consequence of (11) that E, is open and
convex in E.

The set E, is homeomorphic to E. To see this note that for
h=(h;)s, pep € Eo
r(h) = inf{h;+log2 : (i,j)e P} > 0.
Here r is a continuous mapping E, — R. Now it is easy to see that
h = (hij)(i,,)eP and (hij"l/"(h))(i,j)eP
defines a homeomorphism E, — E. These observations combined with

Proposition 3 yield:

CoROLLARY. The space of normalized quasisymmetric sieves is homeomorphic
to a Banach space. This is the space E defined in equations (9) and (10).

4. Sieves and quasisymmetric mappings.
Let £ and X’ be two normalized, fine sieves. Then, as we have seen, we can
enumerate the meshes of £ and X’ as

2

jeZ};
i € Z, beginning from the interval [0, 1]=14,=14,. Using this enumeration we
can define an increasing homeomorphism of R as follows. If x € R there is a
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sequence {I,; € A ,}, n € Z, such that

This sequence of meshes of X is unique if x is not a vertex of Z. In case x is a
vertex of X then there are just two such sequences. Since X’ is fine,

N Iy, = {y}
neZ

for some y € R. It is clear that y depends only on x and not on the sequence
(I4,), n € Z, if there is any choice. Thus there is a unique mapping R — R,
denoted fyy, such that

fex(x) =y,

x and 'y as above. The mapping f5; is obviously a homeomorphism. If Z, 2’
and X" are fine, normalized sieves then we have

fezofsy = frpr and  (fzp)™' = frx.

Conversely, given an increasing homeomorphism f:R - R, we can
construct from it a fine sieve, denoted X ;. We can start from the normalized
symmetric sieve X, i.e. from the sieve whose vertices are the numbers k/2™,
k,m € Z. Then we define X, to be the image of the symmetric sieve under f.
Thus the ith net of X, consists of the intervals [ f((k—1)/2)), f(k/2)], ke Z. If f
fixes 0 and 1 then the sieve Z, is normalized. It is easy to see that the map
S Z,is a bijection from the set of normalized increasing homeomorphisms
of R to the set of normalized, fine sieves and that the inverse of f1—» X, is
Z > f5 5. As a rule, when we form mappings from sieves, the initial sieve is the
symmetric sieve 2, and we shall write

fr= fz.,z .

Suppose that f: R — R is quasisymmetric. Then, by (1), the sieve X is also
quasisymmetric. We shall prove that the converse is also true. We shall also
show that this mapping is a homeomorphism. Before we do that we must
define a topology in the set of normalized quasisymmetric mappings. (The set
of normalized quasisymmetric sieves is topologized by (3)).

Let f be quasisymmetric. The quasisymmetry q(f) of f is the smallest
number g for which (1) is valid. The dilatation d(f) of f is the smallest number
k for which M (Q)/k < M(f(Q)) kM (Q) for all quadrilaterals Q with interior U,
M(Q) is the modulus of Q. Let f and g be quasisymmetric and let

(12a) d(f,g) = logd(fog™"),
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(12b) d(f,g) = logq(fog™"),
(12¢) di(f,8) = logq(gof~1).

Now d is a metric in the set of normalized quasisymmetric mappings. This is
true neither for d, nor d; but we can use also them to define a topology in this
set (they are more convenient in practice), and we also call d, and d; metrics.
Then bounded sets are the same in each metric, and they are equivalent if
restricted to some bounded set. This follows from the fact that the Beurling—
Ahlfors extension of a g-quasisymmetric mapping is g?-quasiconformal ([5])
and that the function 4 in [8, I1.6.3] is continuously differentiable (cf. also [8,
1.2.4] and [5, p. 131]).

The composition (f,g) > fog defines a group structure in the set of
normalized quasisymmetric functions. Then the above topology is not a group
topology, but the right translations g — gof, g varies, f fixed, are continuous
(in fact, they are isometries in each of the metrics d, d, and d,).

We denote by Q the set of normalized quasisymmetric functions and by S the
set of normalized quasisymmetric sieves.

PROPOSITION 4. The mapping f + X ; is a homeomorphism Q — S with inverse
Z +» f5. Moreover, these mappings satisfy a Lipschitz condition in every bounded
set of Q and S.

Proor. It is immediate that X, is k-quasisymmetric if f'is a k-quasisymmetric
mapping. It is also easy to see that f+ X, is an injection with left inverse
2 +— f5. Thus our Proposition is proved if we can prove the following three
assertions. We shall make free use of the fact that instead of d in (12a) we can
use d, or d; in (12b) and (12c).

(i) The mapping f+ X, is a continuous mapping Q — S and satisfies a
Lipschitz condition in every bounded set of Q.
(i) If £ € S, then f; € Q and the mapping ¥ — f; maps bounded sets onto
bounded sets.
(iii) The mapping X - f5 is a continuous mapping S — Q and satisfies a
Lipschitz condition in every bounded set of S.

Proor oF (i). Let us fix some ¢ > 1. We must show that there is a constant
¢>0 depending only on ¢ such that if f and g are normalized quasisym-
metric functions, f and gof g-quasisymmetric, g A-quasisymmetric, then

d(2,.,Z;) < clogi.
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Now, by the definition of the metric d

i,jeZ
where
v JG+1/2)—1G/2)
Y fGR)~f(G-1)/2)
and

v _ BUG+1)/2)-g(£G/2))

Y g(fU2) —-s(f (G- 1)/2))
Since g is A-quasisymmetric, it has a quasiconformal extension G to the upper
half plane U so that the dilatation of G<A? (cf. Beurling-Ahlfors [5]). If

M ((a, b, c,00) denotes the modulus of the quadrilateral with vertices a, b, ¢ and
oo (a,b,c € R, a<b<c) with interior U, we have

(1/A>)M(a,b,c,0) < M(g(a),g(b),g(c),00) < A*M(a,b,c,00) .

Now it is easy to see (cf. Lehto—Virtanen [8, pp. 15-16]) that M(a,b,c, o)
depends only on t=(b—a)/(c—b) so that it is a continuously differentiable,
increasing function of ¢, and tends to oo as ¢ tends to 0o, and tends to O as ¢
tends to 0.

On the basis of the above discussion it is easy to see that (i) is true.

ProOF OF (ii). Let = (A4"), i € Z, be g-quasisymmetric. We must show that
for some ¢ 21 that depends only on ¢

1o £ (frlx+D)—fz)(fz(0)-fz(x—0) = o

for x,t € R, t>0. It is no restriction to assume that 0<x<4 and 1<t<2. For
now we can consider the net 4", of X, otherwise we simply replace it by A4,
for some i € Z. As usual, we denote the meshes of A", by I;;, j € Z. Let Z,, be
the symmetric sieve and its nets A7 =(I}), j € Z, for i € Z. Now x € I}, and
x+telf,UI,UI,. Let a=I(I,o)=1(f(%,)). Then

alg £ I(y,) £ fr(x+)—fs(x) £ 1T, 0UI;UI UL 3UTL)
< a(l+e+e’+e*+e%).
In the same manner one sees that
ale S fy(x)—fr(x—1) < a(l+e+e*+0*+¢%).
Thus, if 6=9(1 + 0+ 0% +¢*+¢*), then f; is o-quasisymmetric.
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Proor oF (iii). We must show that for some ¢>0 and ¢>0
dl(f):’ fE’) é Cd(Z,Z')

for all Z,2" € S with d(Z,2")<e¢ and d(Z,2Z,)<K (Z, is the symmetric sieve
€ S) where the constants ¢ and ¢ depend only on K. This and (ii) imply (iii).
Let us fix K>0 and 2 € §, 2= (k;;), i, j € Z, such that

(13) [logk;) < Kforalli,jeZ.

We must estimate the quasisymmetry of fs.of 7' = f55. For this we fix x,t € R,
t>0, and estimate the quotient in (1) for f= f;;. Let us, as usual, denote the
nets of 2 and X' by

Ni={l,jeZ} and N} ={l,jeZ}forieZ.

Then there is some i € Z such that x and x +¢ are in adjacent meshes I;; and
I; ;4 of &, and that this is not true for i'>i. We can also assume that
x—t € I;;, otherwise we reverse in the following the roles of x—t and x+t.
For simplicity we assume that i=0, j= —1. Thus

x+tely xand x—tel,_,;.
There is a sequence n(0),n(1),... of integers such that

{x+t} = N L

i20

where n(0)=0 and each I, is a subinterval of I;_; ,;_). Now it is easy to see
that

(14) x4+t = oyci 066+ ..
where each o, i>1, is either 0 or 1 (depending on n(i)) and
(15) ¢; = kipe/ (L +kipgy) if 0;=1,
/A +K; piy+1)  if ;=0

(Notice the analogy of expressing x+¢ in binary notation as x+t=
a;/2+a,/2*+ ..., a;=0 or =1). By (13),

1/(5+1) < ¢; £ £/ 4+, izt

Let us consider then another X' € S, X' = (k)), i, j € Z. Then, by the definition
of fr5, {fzz' (x+ t)} = ni_Z_O I’in(i)' Thus

fre(x+1) = a,ci+acich+ ...,

with the same a;’s as in (14) and ¢}’s are defined as in (15) if we furnish the ¢;’s
and k;,;’s of (15) with dots.
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We define real numbers u;, i>1, as follows:

ki . L
Ly = cfey = —mo DKo 5 )
l + kin(i) kin(i)
1+k; i .
=T LLIULE if ;=0.
+ ki niy+1

Let us denote u=sup;, |u]. Then u<C,d(Z,2) if d(Z,2')<e, where C,>0
and &, >0 depend only on K. We have

(16) Ser(x+1) = oy (L+uy)e; +ay(L+u)(L+u)eic, + . ..

1A

oy (L+u)e, +a(1+u)cic,+ ...

(aycy +ociC+ .. )+ Au+Au*+ ...

X+t+Au+Au*+ ...,

It is clear that the power series A;u+ A4,u*+ . . . converges in a neighbourhood
of the origin which depends only on K. Thus, if T=d(Z, "),

fzz'(x+t) é x+t+C2T

for T<e, where C, and ¢, are positive numbers depending only on K. From
(16) we also obtain

fz;’(X'*‘t) g x+t—C2T

for T <e, (clearly we can assume that C, is big enough and ¢, small enough to
be used once more). In the same manner we can calculate estimates for fy5 (x)
and fyy(x—1t) and get

x=C3T £ frp(x) £ x+C,T
and
x—t—C,T £ fsy(x—1t) £ x—t+C,T
for T<e, where ¢;, C; and C, depend only on K. Thus

t—(Co+CyT _ frr(x+)—for(®) _ t+(Co+CyT
t+(C3+COT = frp ()= frp(x—1) T t—(C3+CYT
This is valid if T <¢ where ¢ depends only on K. Now our choice of notation

(replacing the net A4"; by A4",) implies that ¢t =cg where cx >0 depends only
on K. This concludes the proof of (iii).
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5. The analytic structure.

We have shown (Propositions 3 and 4) that we can identify the set of
normalized quasisymmetric functions with a convex set in a real Banach space.
Thus it is naturally a real analytic Banach manifold. We have indicated in the
Introduction that this is not the only way to endow it with the structure of a
Banach manifold. It can be embedded in a complex Banach space of
holomorphic functions (the space B in the Introduction) or, yielding the same
structure, it can be identified with a quotient manifold of the open unit ball M
in the Banach space L*(U, C) (cf. Introduction). The question arises whether
these structures are in some sense equivalent. The answer is that they are
equivalent as real analytic Banach manifolds. Since our Banach space E is only
a real linear space this is the best result we can hope for.

We need not go into details but it is useful to resume some results in Earle
and Eells [7]. One can define a mapping ¢: M — B as follows. Let u € M.
Then

O(p) = [w1].

Here w* is the unique quasiconformal mapping that fixes 0, 1 and oo, whose
complex dilatation is x4 in U and that is holomorphic in L. Brackets [w*]
denote the Schwarzian derivative of w* (or more precisely, its restriction to L).
Then one can show that @(u)=®(v), u,v € M, if and only if w,|R=w, | R where
w, denotes the unique quasiconformal self-map of U with dilatation A € M and
that fixes 0, 1 and oo. The image (M) is the universal Teichmiiller space T.
The mapping & is continuous and holomorphic and at every point u € M the
differential d®(y): L*(U,C) —» B has a right inverse B — L*(U,C). ([7,
section 6]). From this it follows that the complex analytic structure of T
=@(M) is inherited from that of M and that a mapping f: T— X, X a
manifold with a complex analytic (real analytic, differentiable) structure, is
holomorphic (real analytic, differentiable) if and only if fo®d: M — X is
holomorphic (real analytic, differentiable). For this, and other results we need
from the theory of infinite-dimensional Banach manifolds and analytic
mappings in Banach spaces we refer to Bourbaki [6].
The proof of our main result in this section is based on the fact that in

Mc = {pe L*(C,Q): |ul<1}

wt depends analytically on u if w* is the quasiconformal mapping of C with
complex dilatation u fixing 0, 1 and co. We formulate this precisely in the
following Lemma.

Let 4 be some topological space and B a subset of A. Then we denote by
Fg(A4,C) the complex Banach space of continuous mappings 4 — C with
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norm

Ifllp = sup{lf(x)|: xeB}.

LEMMA. (a) The mapping u — w* is a holomorphic mapping M — F(C,C)
for each compact K =C.

(b) The mapping p > w, is a real analytic mapping M — F (U, C) for each
K< U compact.

Proor. This has been proved by Ahlfors and Bers [1]. We must only make
apparent what is latent in [1, Theorem 11, p. 403]. First note that a mapping
betweeen two open sets of complex Banach spaces is holomorphic if and only if
it is locally bounded and has at every point partial derivatives in every
direction. Now Theorem 11 of Ahlfors and Bers [1] implies that the mapping
u — w* is a holomorphic mapping M, +— Bg , where

M, = {peL*(C,C): |ul,<k}

and Bg , is the Banach space of continuous mappings C — C that vanish at
the origin with norm [1, p. 397]

— i/p
15, = sup ME).—”%L( f j |f,l"dxdy)
lzZ| SR

L SR X =Y

Here k<1, R>0is arbitrary and p> 2 satisfies the conditions (8) of [1, p. 387].
Now let K< C be compact and R € R be a constant such that sup, g |x|<R.
Then it is obvious that there is some ¢>0 such that

Iflk = clfls,

for every f for which these norms are defined

What has been said above proves (a). We can embed M in M as follows:
Let u € M. Denote by u*: C — C the element of M¢ that coincides with u in
Uand,ifzeL,

pr@) = u@
the bar ~ denoting complex conjugation. Then u — u* embeds M as a con-
vex subset in M and w“=w"’| U. This proves (b).
We can define a map ¥: M — §, S the space of normalized quasisymmetric
sieves, as follows: If u € M, let

wu(G+1279)—w,(27")
w,(127)-w, (=127

kij(ll) =
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Then (k;;(n)), i,j € Z, defines a sieve Z=¥(u) € S. Since X depends only on
w, | R it can be factorized uniquely as ¥ = @-® where ¢ is a map T— S. As we
have indicated above, ¢ is real analytic if and only if ¥ is real analytic. The real
analytic structure of S was defined by embedding it by a transformation
(k;;) = (k. i,j € Z, (cf. equation (6)) as a convex subset in a real Banach space
E (equation (9)). An inspection of (6), (9) and (10) shows that ¢ is real analytic
if

H and (klj(#))’ l,] € Z >

is a real analytic map from M to the [*-space of all sequences (a;)), i,j € Z, of
real numbers. This is indeed so as is seen by the above Lemma (b) since then

((1 —wu(x))/wu(x))’ xekK,

is, for compact K < (0,1), a real analytic map from M to the [®-space of all
sequences of real numbers (y,), t € K.
Thus the mapping ¢: T — S,

o(P() = (kij(ll)), LjeZ,

is real analytic. It is easily seen to be a bijection (this follows from the fact that
every quasisymmetric map has a quasiconformal extension to U). We wish to
show that it is a real analytic isomorphism, i.e. also ¢ ~! is real analytic. For
this it is sufficient to show that the derivative d¢o(x) has a continuous inverse
at every point x € 7. And for this it is sufficient that for each x € T there is a
neighbourhood U of x and a constant ¢>0 such that

17 cly-xlp £ le)—@lg for yeU

where | ||g and | - || denote the norms in the Banach spaces B and E (instead
of the sequences (k;)), i,j € Z, we consider here the sequences (h;), (i,j) € P,
defined by (6)). By Propositions 3 and 4 we can instead of (17) show that for
each x € T there is a neighbourhood U of x and ¢>0 such that

(18) clx=ylp S d(foop forw) for yeU

where d is the metri¢ of (12a).

Equation (18) is valid if f,,, =id € Q. This is seen from the fact that the
Beurling—Ahlfors extension o(f) of a g-quasisymmetric function f is @*-
quasiconformal (cf. [5]) and from [5, section 4.4]. Thus for some ¢'>0

cllp(e(Nle £ d(fid)

in a neighbourhood of id € Q. Since for a sieve X € S, ¢~} (Z)=D(u(o(fy))
and @ is holomorphic, (18) is valid if f,,)=id. For arbitrary x € T the validity
of (18) follows from the facts that the right translations are isometries of Q and
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that if in M a natural group structure is defined by setting u- A=v if and only if
w,ow,=w,, then the right translations of M are holomorphic self-equivalences
of M (cf. Earle and Eells [7]).

This together with Corollary to Proposition 3 proves:

THEOREM. The universal Teichmiiller space T is real analytically equivalent to
an open, convex set in a real Banach space and it is homeomorphic to this Banach
space.

RemARKs. The Banach space of the above Theorem is the space E defined in
(9) and (10), and the convex set is the set E, of (11). Since there is a real
analytic isomorphism T — E,, the tangent spaces, i.c. the spaces B and E, are
isomorphic as topological (real) linear spaces. Hence the universal Teichmiiller
space is homeomorphic to the space B of holomorphic mappings of the lower
half-plane of which it is a subset.

The above homeomorphism f of T onto a Banach space E is not
diffeomorphism since the map r used in Corollary to Proposition 3 is not
differentiable. However, there are some natural metrics for T and we can ask
whether f fulfils some Lipschitz conditions with respect to these metrics and
the norm metric of E. We consider on T, which we also identify with the set Q
of normalized quasisymmetric mappings, the metric induced by the norm || - |
if T'is regarded as a subset of B (cf. Introduction), the metric d of (12a) and the
Teichmiiller metric dy(f,g)=infr g K(FoG™') where F and G are quasiconfor-
mal extensions to U of the quasisymmetric mappings f and respectively g. K (h)
is the dilatation of a map h. Then d <d and they are equivalent if restricted to
some d-bounded set (which is also dr-bounded) (cf. the discussion in the
paragraph containing formula (12a)). Now it follows from Propositions 3 and
4 and from the properties of the map used to prove Corollary to Proposition 3
that f and f~! are Lipschitz if restricted to some bounded set of T or E and if
the metric of T is d or dy. Also it is seen that f and f ™! are locally Lipschitz if
we consider T with the norm metric || -||5. We can also consider T with the
metric d of (3) (34 of (12a)), if we identify T with S. As above, f and f~! are
Lipschitz if restricted to some bounded set if T is provided with this metric.
This is perhaps the most natural metric of T in the sense that it can be ex-
pressed directly in terms of quotients of form (1).

In recent years there has been a rapid advance in the topology of infinite
dimensional manifolds. In particular, it has been shown that in many cases two
infinite dimensional manifolds with the same model space are homeomorphic if
and only if they are homotopically equivalent. This is true at least if the model
space Y is a linear metric space homeomorphic to YN=YxYx..., the
countable product with the product topology. It is always so if Y is separable.
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The Banach space B is not separable but whether it is homeomorphic to BY,
I do not know. But if this were the case it would follow from the contractibility
of T, as proved by Earle and Eells [7], that T is homeomorphic to B.

For these and other results in infinite dimensional topology cf. Bessaga and
Pelczynski [4].
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