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ON THE GROWTH OF
MEROMORPHIC SOLUTIONS OF LINEAR AND
ALGEBRAIC DIFFERENTIAL EQUATIONS

STEVEN BANK and ILPO LAINE*

1. Introduction.

It has been shown by Bank in [1] that the growth of a meromorphic
solution of a linear differential equation with meromorphic coefficients cannot
be estimated uniformly in terms of the growth of the coefficients alone. More
precisely, given any increasing real function &: (0, +00) — R there is a
meromorphic function h satisfying a first order linear differential equation

Ji@F +fo(z)h = 0

with entire coefficients f,, f; of finite order and a sequence (r,),.n of values of r
tending to + oo such that T(r,, h) = ®(r,) for all n € N, where T'(r, h) denotes the
Nevanlinna characteristic function of h ([ 1], Theorem 2). Bank further proved
that the growth of a meromorphic solution y=y(z) of a linear differential
equation

(1) i fi@y? =0

with entire coefficients f,,. . ., f, can be estimated uniformly, in the above sense,
in terms of the characteristic functions T'(r, f,),. .., T(r, f,) of the coefficients
and of the counting functions N(r,1/y), N(r,y/y') for the zeros of y and the
distinct zeros of y'/y ([3, Theorem 2]).

The following problems arise quite immediately: Is it possible to dispense
with N(r, y/y’) in the estimate given in [3], and, in addition, is it possible to get
a similar estimate in the case of a linear differential equation (1) with
meromorphic coefficients? By using the result of J. Miles [6, Theorem on p.
372], on the quotient representation of meromorphic functions, one can easily
translate the results of [3] for entire coefficients, into results for meromorphic
coefficients. However, both of the above questions can be handled
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simultaneously, and the main purpose of this article, to be realized in Section 3,
is to give a positive answer to these questions. These results will be achieved by
invoking in the estimate of T'(r, y'/y), the original form of a well-known lemma
of Clunie [4, Lemma 2]).

The same device will be used in Section 4 to get some new estimates for the
growth of a meromorphic solution y=y(z) of an algebraic differential equation

2 Qzy,Y,..., )" =0

with meromorphic coefficients.

2. Notation and two preliminary lemmas.

All meromorphic functions to be considered here are assumed to be
meromorphic in the complex plane. We shall apply the usual notations and
basic results of the Nevanlinna theory of the value distribution of
meromorphic functions, see e.g. [5].

The equation (2) is a polynomial in the indeterminates y,y,...,y™, and
hence there is a finite set I of multi-indices 4= (i,. . .,i,) such that (2) has a
representation of the form

2) Y a;(@)ye... (") =0

Ael

with meromorphic coefficients a,(z)=a,, . ; (z). The degree of a single term of
multi-index A € I in Q is denoted by

Al = i+ ... +i,
and its weight by

"},” = il +212+ “ee +ni,, .

The total degree of Q is defined by max,;|A|.

We state here two preparatory lemmas. The first of them is nothing else than
a modification of a lemma of Clunie [4, Lemma 2]. (We remark here that the
usual statement of Clunie’s lemma involves the characteristics of the
coefficients, while our statement involves only the proximity functions of the
coefficients. The proof is the same in both cases, and even though the stronger
statement is not essential to this paper, it is more useful in the area of
differential equations.) The second lemma follows immediately by [2, Lemma
7] and [3, p. 283]. Since T(r,y)=T(r,1/y)+ O(1), the alternate form of Lemma
2 below is an obvious corollary.
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LeEMMA 1. Let w=w(z) be a meromorphic solution of the equation
A3) w'P(w) = Qw),

where P(w) and Q(w) are polynomials in w and its derivatives with meromorphic
coefficients {a,|A € I}. Let us denote

¥(r) = max (logr,m(r,ay)) .
Ael
If the total degree of Q is at most n, then there exists a positive constant K such
that
m(r,P(w)) £ K¥(r)+o(T(r,w))
outside of a possible exceptional set of finite linear measure.
LEmMMA 2. Let y=y(2) be any nonconstant meromorphic function and denote

w=y'/y. Then for any o> 1, there exist positive constants A, B and r, 21 such
that for all r=r,

T(r,y) < A(rN(ar,y)+r*exp (BT (ar, w)log (rT(ar, w))))
and

T(r,y) < A(rN(ar,1/y)+r*exp (BT (ar, w)log (rT(ar, w) -

3. Linear differential equations.

THEOREM 3. Let y=y(z) be a meromorphic solution of a linear differential
equation (1) with meromorphic coefficients, and denote w=y'/y. If

®(r) = max (logr, T(r, fo),. . ., T(r, ) »

then for any 6 > 1, there exist positive constants C, C, and ry = 1 such that for all
r2ro, .

Tr,yy=C (rN (o7,1/y)+r*exp(C,H (or)log (rH (ar)))) ,
where
H(r) = N(r,1/y)+®(r) .
Therefore, the growth of the solution y(z) can be estimated uniformly in terms of

the growth of the coefficients and the counting function for the zeros of y.

Proor. We may assume that y is nonconstant and that f, does not vanish
identically. Clearly w satisfies an algebraic differential equation
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4) A@z,w,w',. .., W) =0,

where A is a polynomial in w,w',...,w®" ! whose homogeneous part of
maximum total degree in w,w’,...,w"””D equals f,w", and where the
coefficients of A are linear combinations of f,,. . ., f,. Clearly the equation (4)
can be written in the form

%) ww' b = A, (z,w,w,...,w" D),

where the total degree of A, is at most n— 1 and where the coefficients of A, are
linear combinations of the meromorphic functions fy/f,,..., f,_1/f»1. An
obvious application of Lemma 1 gives a constant K, >0 such that outside a set
of finite measure,

m(r,w) £ K, ®(r)+o(T(r,w)) .

Let us consider now a point z, where all the coefficients f,,. . ., f, take finite,
non-zero values. Clearly the solution y(z) of (1) does not have a pole at z,.
Therefore we may find two constants K,>0 and r,2r, such that

(6) N(ry) < K,9()
for all r=r,. We get the obvious estimate
N(r,w) = N(r,w) = N(r,1/y)+ N(r,y) £ N(r,1/y)+K,®(r)
for all r=r,, hence
T(r,w) £ N, 1/y)+ (K, +K)® )+ o(T(r,w))

holds outside of a possible exceptional set of finite linear measure. An obvious
application of [2, § 2], gives two constants K >0 and r;2r; such that, given
p>1,

T(r,w) = K(N(Br,1/y)+ ®(Br)

holds for all rzr,. The assertion follows now by a straightforward
combination of this result with the estimate of Lemma 2, if we choose C=4,
C,=2BK, ro=r, and select a in Lemma 2 and § above to satisfy af<o.

REMARK. We note in this connection that the coefficients of (4) are actually
some integral multiples of the original coefficients of (1). This fact could be
possibly used for a more detailed study of the value distribution of y(z).

4. Algebraic differential equations.

We consider in this section an algebraic differential equation (2) with
meromorphic coefficients. Let us denote
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@(r) = max (logr, T(r,a,(2)))
rel

and let Q, denote the homogeneous part of Q of total degree g, i.e.

Q =Y a;@yo... ("),
hee

If y=y(2) is a meromorphic solution of (2'), which for some integer g does not
satisfy the equation Q,=0, then the growth of y(z) can be estimated uniformly
in terms of the growth of the coefficients and the counting functions for the
distinct zeros and distinct poles of y, (see [3, Lemma 4]).

If y=y(z) is simultaneously a solution of all of the homogeneous equations
Q,=0, then some estimates for the growth of y can be found in [2, Theorem 9].
For a homogeneous part Q, of Q, let us denote by A4,(z) the sum of all

coefficients a,(z) in Q, having multi-indices of maximal weight, ie. for
k=max; -, ||l we have

A2) = Y a,(2).
=4
The significance of the functions A,(z) for the possible growth of y=y(z) has
been noticed earlier, see e.g. the results of Yang [9, Theorem 3] and of

Mohon’ko-Mohon’ko [7, Theorems 7-10]. This section is devoted to give an
improvement of these results as a further application of Lemmas 1 and 2.

THEOREM 4. Let y=y(z) be a meromorphic solution of (2') which also satisfies
all homogeneous equations Q,=0. If for some g, for which Q %0, we have A, %0,
then for any 6> 1, there exist positive constants C, C, and ro =1 such that for all
r2ro,

() T(r,y) < C(rN(or,y)+r*exp (C,H(or)log (rH(o7)))) ,
where
H(r) = N 1/»+N(@r )+ o).

Therefore, the growth of the solution y(z) can be estimated in this case uniformly
in terms of the growth of the coefficients and the counting functions for the poles
and distinct zeros of y.

Proor. It is well-known [5, Lemma 3.5], that w='/y satisfies
® YW= WP W)y,

where P,_,(w) is a polynomial in w and its derivatives, of total degree at most
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n—1 with constant coefficients. Substituting (8) into the equation
Q,(z,y,...,y™)=0 we get

2,295,y = (4" + 0 W)y* = 0,

where k=max;_,[|4| and Q,_,(w) is a polynomial in w and its derivatives, of
total degree at most k—1 with coefficients which are linear combinations of
the original coefficients a,(z), |A|=q. Clearly we may assume

Aq(Z)Wk +Qx-1(w) =0,
hence
m(r,Aw) £ K, 9(r)+ o(T(r,w))

for some constant K, >0 outside of a possible exceptional set of finite linear
measure as an application of Lemma 1. Obviously

N(r,Aw) £ N(r,A)+N(r,w) £ K, +N(r,1/y)+N(r,y)
for some constant K, >0, hence

T(r,w) £ T(r,1/A)+ (K, +K)@(")+N(r,1/y)+ N(r, )+ o(T(r, w))

< K39+ N, 1/y)+ N, y)+o(T(r,w)

for some constant K, >0 outside of an exceptional set of finite linear measure.
Hence there exist two constants K >0 and r, 2r, such that, given >1,

T(r,w) S K®(Br)+N(Br,1/y)+ N (r,y)

for all r=r,. The same conclusion as in the proof of Theorem 3 gives the
assertion, if we choose C=A4, C,=2BK, ro2r, and if af<o.

COROLLARY 5. Let y=y(z) be a meromorphic solution of (2') which also
satisfies all homogeneous equations Q,=0. If for some q, for which Q, %0, we
have A, %0, then the growth of the solution y(z) can be estimated uniformly in
terms of the growth of the coefficients and the counting functions for the zeros
and distinct poles of y.

Proor. This corollary follows immediately, if we apply the alternate form of
Lemma 2 in the final conclusion of the preceding proof.

REeMARKs. 1) If all of the functions A4,(z) vanish identically, the estimate given
in Theorem 4 (or equivalently in Corollary 5) can fail. The example (given in

[8, p. 70])

W'wp =2w" (WPw+ W)+ ww)—w* = 0
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possessing an entire solution w=exp (sinz) can be used to demonstrate this
fact.

2) Using Lemma 4 of [3] and Theorem 4 above (or Corollary 5 as well) we
can determine the quantities which are needed to get a uniform estimate for the

growth of a meromorphic solution of (2'). We list the following three
possibilities:

(a) there is a g such that y does not satisfy Q,=0,
(b) y satisfies all Q,=0 and there is an 4,%0,
(c) y satisfies all Q,=0 and all 4,=0.

To determine now what quantities enter into the growth estimate for a solution
y of (2'), we can use a refinement of the reasoning in [2, Theorem 9], based on
Theorem 4 (or Corollary 5) above. If (a) or (b) holds, then Lemma 4 of [3] or
Theorem 4 above, respectively, can be used to determine these quantities. If (c)
holds, then w=y'/y solves an equation A, =0 of order n—1. If (a) or (b) holds
for w and A,, then Lemma 4 of [3] or Theorem 4 above can again be used to
determine the quantities which enter into the growth estimate for T'(r, w), and
then Lemma 2 above can be used to estimate T'(r, y). If (c) holds for w and 4,
then w'/w solves an equation A4,=0 of order n—2, and the process can be
repeated. If (c) continues to hold, then eventually we obtain a first-order
equation A,_,=0. For 4,_,, (c) obviously cannot hold.

3) Theorem 3 can be also proved as a corollary to Theorem 4. One must
only combine the estimates (7) and (6) and observe, that the equation (1) is a
homogeneous equation of type (2') of total degree one such that A4,(2)

= fa(2) %0.
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