TOTALLY DISCONNECTED SET NON-REMOVABLE FOR LIPSCHITZ CONTINUOUS BOUNDED ANALYTIC FUNCTIONS

NGUYEN XUAN UY

In this paper we exhibit an example of a totally disconnected compact set E of the complex plane, for which there exists a non-constant bounded analytic function on the complement of E, satisfying a Lipschitz condition

$$|f(z)-f(w)| \le M|z-w|$$
 for all z and w in $\mathbb{C}\setminus E$.

1.

Let E be a compact subset of the complex plane C and let $0 < \alpha \le 1$. We denote by $\Gamma_{\alpha}(E)$ the class of bounded analytic functions defined on $C \setminus E$ which satisfy a Lipschitz condition of order α :

$$|f(z)-f(w)| \le M|z-w|^{\alpha}$$
 for all z and w in $C\setminus E$.

We will say that E is removable for Γ_{α} if $\Gamma_{\alpha}(E)$ consists only of constants. In [2, Corollary, p. 37], Dolženko has proved, for $0 < \alpha < 1$, that E is removable for Γ_{α} if and only if the $(1 + \alpha)$ -Hausdorff dimensional measure of E is zero. In this paper we are concerned about the problem of characterizing removable-sets for Γ_{1} .

It is clear that if the interior $\mathring{E} \neq \emptyset$, then E is non-removable for Γ_1 , since, if we take a disc $\Delta(a,r) \subset E$ and define

$$f(z) = \begin{cases} \frac{1}{z-a} & \text{if } |z-a| \ge r, \\ \\ \frac{\bar{z}-\bar{a}}{r^2} & \text{if } |z-a| < r, \end{cases}$$

then $f \in \Gamma_1(E)$. In [4, Problem III 5.1], Garnett has asked if this non-empty interior condition can be improved. This problem has previously been solved by Dolženko in his same paper mentioned above. He proved that if E =

Received May 17, 1976.

 $[0,1] \times L$, then E is removable for Γ_1 if and only if L has a zero length (see [4, Corollary, p. 39]).

In the following we show that there exists a totally disconnected compact set which is non-removable for Γ_1 . We will be involved with the Riesz capacity, therefore, we give here some of its background. The terminology and notations are from Landkof [5].

Let μ be a positive measure and $0 < \alpha < 2$. The Riesz potential of order α of μ is denoted by U_{α}^{μ} , where

$$U^{\mu}_{\alpha}(z) = \int \frac{d\mu(\zeta)}{|\zeta - z|^{2-\alpha}}.$$

The Riesz capacity of order α of a compact set E is defined by the relation

$$C_{\alpha}(E) = \sup \{ \mu(E) : S_{\mu} \subset E, U_{\alpha}^{\mu} \leq 1 \}.$$

If E is arbitrary, then the inner capacity and outer capacity of E are defined respectively as

$$C_{\alpha}(E) = \sup \{C_{\alpha}(K) : K \text{ compact}, K \subset E\}$$

and

$$\bar{C}_{\alpha}(E) = \inf\{C_{\alpha}(V): V \text{ open, } V \subset E\}.$$

Clearly $\underline{C}_{\alpha}(E) \leq \overline{C}_{\alpha}(E)$ If $\underline{C}_{\alpha}(E) = \overline{C}_{\alpha}(E)$, we say that E is capacitable and denote this value by $C_{\alpha}(E)$. If some property holds for all points of C with a possible exception of a set of zero outer capacity, then we say that this property holds quasi-everywhere. It is well known that every Borel set is capacitable and that if $C_{\alpha}(E) < \infty$, then there exists a unique measure μ , called the equilibrium measure of E, satisfying the following properties

- i) $S_u \subset \bar{E}$
- i) $\|\mu\| = C_{\alpha}(E)$
- iii) $U^{\mu}_{\alpha} \leq 1$ and $U^{\mu}_{\alpha} = 1$ quasi-everywhere on E.

2.

We are now ready to prove the following theorem.

Theorem 1. There exists a totally disconnected compact set non-removable for Γ_1 .

The proof is based on the following theorem due to Carleson (see [1, Theorem p. 314]).

Theorem 2. If E is a compact set contained in the interior of the closed unit disc Δ such that the capacity condition

$$C_{\alpha}(\Delta \setminus E) < C_{\alpha}(\Delta)$$

holds for some $\alpha \in (0,2)$, then there exists a non-constant bounded analytic function with bounded derivative on $C \setminus E$.

Now recall that, $\alpha > 0$, the α -dimensional Hausdorff measure of a set E is defined as

$$\Lambda_{\alpha}(E) = \lim_{\delta \downarrow 0} \Lambda_{\alpha}^{\delta}(E) ,$$

where

$$\varLambda_{\alpha}^{\delta}(E) \; = \; \inf \left\{ \sum \, r_{j}^{\alpha} \, \colon \; E \subset \varDelta(a_{j}, r_{j}), \; r_{j} \leqq \delta \right\} \, .$$

Note that when $\alpha = 1$ and $\alpha = 2$, $\Lambda_{\alpha}(E)$ are essentially the length and the area of E.

LEMMA 1. Suppose E is a Borel set with a finite length, i.e., $\Lambda_1(E) < \infty$. Then $C_{\alpha}(E) = 0$ for every $\alpha \in (0, 1)$.

PROOF. Follows from the fact that if $C_{\alpha}(E) > 0$, then $\Lambda_{2-\alpha}(E) > 0$ (see [3, chapter VII, Theorem 2]) and that if $\beta > 1$, then $\Lambda_{\beta}(E) = 0$.

LEMMA 2. If $E \subset \Delta$ and $\mathring{E} \neq \emptyset$, then

$$C_{\alpha}(\Delta \backslash E) < C_{\alpha}(\Delta)$$

for all $\alpha \in (0, 2)$.

PROOF. Let γ and ν respectively be the equilibrium measures of ΔE and Δ . Since $S_{\gamma} \subset \overline{\Delta E}$ and $S_{\nu} = \Delta$ (see 5, Appendix]) we have $\gamma \neq \nu$. Furthermore, since ν is the unique maximal measure with $U_{\alpha}^{\nu} \leq 1$ and $\|\nu\| = C_{\alpha}(\Delta)$, we obtain $\|\gamma\| < C_{\alpha}(\Delta)$. Hence

$$C_{\alpha}(\Delta \setminus E) < C_{\alpha}(\Delta)$$
.

PROOF OF THEOREM 1. The idea is to construct a compact set E which satisfies the hypothesis of Theorem 2 and has the property that any two points z and w in $C\setminus E$ can be joined in this set by a rectifiable curve such that its length does not exceed M|z-w|. This condition guarantees that any function with bounded derivative on $C\setminus E$ satisfies a Lipschitz condition there.

Consider a closed square S situated in the interior of Δ . By Lemma 2 above

$$C_{\alpha}(\Delta \backslash S) < C_{\alpha}(\Delta), \quad 0 < \alpha < 2.$$

Now fix $\alpha \in (0,1)$ and choose a sequence (a_n) of positive number such that

$$C_{\alpha}(\Delta \setminus S) + \sum_{n=1}^{\infty} a_n < C_{\alpha}(\Delta)$$
.

We divide S into 4 squares by the two line segments parallel to the sides of S and passing through its center. Let L_1 be the union of these two line segments. By Lemma 1, $C_{\alpha}(L_1)=0$. Thus there exists a small open neighborhood V_1 of L_1 such that $C_{\alpha}(V_1)<\alpha_1$, because L_1 is capacitable. We may choose V_1 as a strip along L_1 so that $E_1=S\setminus V_1$ is the union of four disjoint squares of equal side. Suppose at stage $n\geq 1$, L_n , V_n , E_n were defined and E_n consists of 4^n disjoint squares of equal side. We repeat the above process with each square of E_n and let L_{n+1} be the union of new line segments occurring in this step. Let V_{n+1} be a neighborhood of L_{n+1} with $C_{\alpha}(V_{n+1}) < a_{n+1}$, and $E_{n+1} = E_n \setminus V_{n+1}$ is the union of 4^{n+1} disjoint squares with equal side. Thus $E_1 \supset E_2 \supset \ldots \supset E_n \supset \ldots$. We define

$$E = \bigcap_{n=1}^{\infty} E_n.$$

Then E is totally disconnected and

$$\Delta \backslash E = (\Delta \backslash S) \cup \left(\bigcup_{n=1}^{\infty} V_n\right).$$

So, by the sub-additivity of C_{α} , we obtain

$$C_{\alpha}(\Delta \backslash E) \leq C_{\alpha}(\Delta \backslash S) + \sum_{n=1}^{\infty} C_{\alpha}(V_{n})$$

$$< C_{\alpha}(\Delta \backslash S) + \sum_{n=1}^{\infty} a_{n}$$

$$< C_{\alpha}(\Delta),$$

and Theorem 1 follows.

3.

It is known that if area (E) = 0, then E is removable for Γ_1 (see [1, Theorem p. 312]). We don't know whether the converse is also true, this appears to be a more difficult problem. It seems possible that there exists a set of positive area

but removable for Γ_1 . There is a known result (see [4, III 4.7]) closely related to this problem which deserves to be mentioned here with proof.

THEOREM 3. Suppose E is compact with area (E)>0. Let $g \in L^{\infty}$ such that g=0 on $C\setminus E$ a.e. Then the function

$$f(z) = \iint_{E} \frac{g(\zeta)}{\zeta - z} d\zeta d\eta, \quad \zeta = \xi + i\eta$$

satisfies a Zygmund condition $|f(z+h)+f(z-h)-2f(z)| \le M|h|$ for all complex z and h.

Proof. Observe that

$$f(z+h)+f(z-h)-2f(z) = 2h^2 \iint_E \frac{g(\zeta) d\zeta d\eta}{(\zeta-z-h)(\zeta-z+h)(\zeta-z)}$$

We estimate this integral over the sets

$$A = \left\{ \zeta : |\zeta - z - h| \le \frac{|h|}{2} \right\},$$

$$B = \left\{ \zeta : |\zeta - z + h| \le \frac{|h|}{2} \right\},$$

$$C = \left\{ \zeta : |\zeta - z| \le \frac{|h|}{2} \right\},$$

$$D = \left\{ \zeta : |\zeta - z| \ge |\zeta - z - h|, |\zeta - z - h| \ge \frac{|h|}{2} \right\},$$

$$E = \left\{ \zeta : |\zeta - z| \ge |\zeta - z + h|, |\zeta - z + h| \ge \frac{|h|}{2} \right\},$$

$$F = \left\{ \zeta : |\zeta - z| \le |\zeta - z - h|, |\zeta - z| \le |\zeta - z + h|, |\zeta - z| \ge \frac{|h|}{2} \right\}.$$

We obtain

$$\left| 2h^2 \iint_A \frac{g(\zeta) d\zeta d\eta}{(\zeta - z - h)(\zeta - z + h)(\zeta - z)} \right| \le 8\|g\|_{\infty} \iint_A \frac{d\zeta d\eta}{|\zeta - z - h|}$$

$$\le 16\pi \|g\|_{\infty} \int_0^{\frac{1}{2}|h|} dr$$

$$\le 8\pi \|g\|_{\infty} |h|.$$

This estimate also holds for integrals over B and C. Similarly,

$$\begin{aligned} \left| 2h^2 \iint_D \frac{g(\zeta) \, d\zeta \, d\eta}{(\zeta - z - h)(\zeta - z + h)(\zeta - z)} \right| &\leq 2 \|g\|_{\infty} |h|^2 \iint_D \frac{d\zeta \, d\eta}{|\zeta - z - h|^3} \\ &\leq 4\pi \|g\|_{\infty} |h|^2 \int_{\frac{1}{2}|h|}^{\infty} \frac{dr}{r^2} \\ &\leq 8\pi \|g\|_{\infty} |h|. \end{aligned}$$

Since this estimate also holds for integrals over E and F, f satisfies a Zygmund condition.

REFERENCES

- 1. L. Carleson, On null-sets for continuous analytic functions, Ark. Mat. 1 (1950), 311-318.
- 2. E. P. Dolženko, The removability of singularities of analytic functions, Amer. Math. Soc. Transl. 97 (1970), 33-41.
- O. Frostman, Potentiel d'equilibre et capacité des ensembles avec quelques application à la théorie des fonctions, Medd. Lunds Univ. Mat. Sem. 3 (1935), 1-118.
- J. Garnett, Analytic Capacity and Measure, Lecture Notes in Mathematics 297, Springer-Verlag, Berlin · Heidelberg · New York, 1972.
- N. S. Landkof, Foundations of Modern Potential Theory, Springer-Verlag, Berlin-Heidelberg New York, 1972.

STATE UNIVERSITY OF NEW YORK AT ALBANY NEW YORK U.S.A.