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STRONGLY FINITE VON NEUMANN ALGEBRAS

WILLIAM L. GREEN and ANTHONY TO-MING LAU!

1. Introduction.

Let M be a von Neumann algebra with predual M,, and let G be any
group of *-automorphisms of M. For each ¢ € M,, we denote the orbit
{@oo : x € G} of ¢ under G by Og(p). We say that M is G-finite if for each
non-zero positive b in M, there is a G-invariant normal state ¢ of M such that
@(b)£0. When G is the group I(M) of all inner automorphisms of M, we write
O(¢) for O¢(p). In this case, G-finiteness is equivalent to the usual notion of
finiteness in a von Neumann algebra. [14, Theorem 2.5.4, p. 97].

Following work of F. Yeadon, who considered in [17] the case G=I(M),
E. Stormer showed in [16] that M is G-finite if and only if for each ¢ € M,
Og(¢) is weakly relatively compact in M . We shall call an algebra M strongly
G-finite if for each ¢ € M, the orbit Og(9) is relatively compact in M, in its
norm topology. In [5] and [10] the authors have considered examples of
strongly G-finite algebras for various choices of G and M. The purpose of this
paper is to show that if G =1(M), this condition is very restrictive. In fact, M is
strongly finite if and only if M is a direct sum of von Neumann subalgebras
each of which is either abelian or finite dimensional.

The authors would like to thank T. Gardner for several helpful discussions
concerning some of the results in this paper; from these discussions emerged
one of the key points in the proof of Theorem 5.4. They are also indebted to
him for calling Lemma 2.3 of [3] to their attention.

2. Preliminaries and some notation.

Let #(M) denote the space of all bounded linear operators from M into M,
and let o denote the ultraweak topology on M. Let M, be the unit ball of M.
By the p-topology on #(M) we shall mean the topology of pointwise
convergence when M has the o-topology. (See [6].) The unit ball of #(M) is p-
compact [8]. By the u-topology on %(M), we shall mean the topology which
has for a basis at « € #(M) the family of all subsets of the form
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{B: (B—)M)cU},

where U is a o-open neighborhood of zero in M. (See [1] and [6].) Note that if
@ € M, then the map o — ¢@-u is continuous from the u-topology into the
norm topology.

Let Aut (M) denote the group of all *-automorphisms of M. If G is any
subgroup of Aut (M), then by G we shall always mean the p-closure of G in
#BM). If T: M — N is a bounded linear map between two Banach spaces,
we denote by T* the adjoint mapping from N* to M*.

3. Some characterizations and combinatorial properties.

Throughout this section we assume that G is a group of *-automorphisms of
the von Neumann algebra M, and after the proof of Theorem 3.3, we shall
assume that G=1I(M). Let M‘, be the subset of M, consisting of all ¢. such that
O¢(p) is relatively compact in M, with respect to the norm topology.

LemMA 3.1. The set M5, is a norm-closed linear subspace of M ,,.

Proor. That M, is a linear subspace of M is clear. Let ¢ € M, be a point
of closure of M. It suffices to show that Og(g) is totally bounded, and this
follows from a standard ¢/3-argument together with the total boundedness of
the orbits in M.

The algebra M is strongly G-finite if and only if M, =M, and it follows
from [16] that a strongly G-finite algebra is G-finite. The following list of
characterizations of strong G-finiteness follows from our recent work in [5]
and [10].

THEOREM 3.2. The following are equivalent:

(1) M is strongly G-finite;

(2) G is a set of one-to-one maps;

(3) G is a set of *-automorphisms of M;

(4) G is a compact topological group when equipped with the p-topology;
(5) G is relatively compact in Aut (M) equipped with the p-topology;

(6) G is relatively compact in Aut (M) equipped with the u-topology;

(7) the p-topology and the u-topology coincide on G;

(8) G is equicontinuous on M, with respect to the o-topology.

Proor. The equivalences of (2), (3), (4), (5), (6), (7) are proved by Green [5],
and that of (1) and (8) is proved by Lau [10].
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If (4) and (7) hold, then for each ¢ e M x> the set {poa:a € G} is norm
compact in M,. Since

06(9) € {poa: aeG},
(1) holds.
If (8) holds, then it follows from [7, D14.1] that (G,p) is a compact
topological semigroup with jointly continuous multiplication. Since G is a
group, it follows easily that G is also a group. Hence (4) holds.

The next theorem gives some geometric characterizations of strong G-
finiteness.

TueoREM 3.3. The following are equivalent:

(1) M is strongly G-finite;

(2) for each x € M, the a-closure C(x) of {a(x) : « € G} is minimal with respect
to being a-closed and invariant under G;

(3) each x € M, is an almost periodic point of the transformation group (G, M,);

(4) each a in G is an isometry.

Proor. (1) = (3). By condition (8) in Theorem 3.2, G acts equicontinuously
on (M,,0). Condition (3) now follows from Proposition 4.4, Corollary 5.4, and
Corollary 5.5 of [4].

(3) = (2). By Proposition 2.5 of [4], each point x.in M, generates a minimal
set. The same argument works for any ball in M, so (2) holds.

(2) = (4). Let a € G be such that a(a)=0 for some a € M. Then 0 € C(a).
Since C(a) is minimal, a=0. Consequently G consists only of one-to-one maps.
By (2) < (3) in Theorem 3.2, each « € G is an isometry.

(4) = (1). Condition (4) implies that each a € G is one-to-one. By (1) < (2)
in Theorem 3.2, M is strongly G-finite.

From now on we assume that G=I(M). Clearly any abelian or finite
dimensional von Neumann algebra is strongly finite, and we show in the
remainder of this section that subalgebras, quotients, direct summands, and
direct sums of strongly finite algebras are strongly finite. Let M" be the unitary
group of M, and for each u € M*, let T, be the automorphism of M defined by
T,(a)=u*au.

LemMA 3.4. If M is strongly finite, and if N is a von Neumann subalgebra of M
with the same identity as M, then N is strongly finite.

Proor. Let ¢ € N, and let peM « be a normal extension of ¢ to M (see
[12, p. 317]). Since N*c M, {@-T, : u € N*} is relatively compact in the norm
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topology of M,. Since restriction to N is a norm-continuous map from M,
onto N, it follows that{p-T, : u € N} is relatively compact in the norm
topology of N .

LemMa 3.5. If M is strongly finite, and if p is any projection of M, then pMp is
also strongly finite.

Proor. Let a(x)=pxp, xe M, and let N=pMp. If ve N¥ then v+
(1—p) € M*. It follows that if ¢ € N, then

{TX(): ve N} c {TX,(®) : ueM"}.

Since Ty, (@) is the restriction to N of T¥(¢oa), the result follows from the
relative compactness of {T}*(¢oa) : u € M*}.

ProposITION 3.6. If M is strongly finite, then any von Neumann subalgebra N
of M is also strongly finite.

Proor. Let p be the identity of N. Then N £ pMp, and the proposition now
follows from the last two lemmas.

ProrositioN 3.7. Let M and N be von Neumann algebras, and let a be an
ultraweakly continuous *-homomorphism from M onto N. If M is strongly finite,
then N is also strongly finite.

ProoF. Let I ={x € M : a(x)=0}, and let z be a central projection in M such
that I=Mz. Then N is *-isomorphic to M (1 —z), which is strongly finite by
Proposition 3.6. We may therefore assume that « is a *-isomorphism. In that
case,

NY = {a(u) : ue M},
and for each u € M¥, we have
Th) = (@ ) *eTkoa*.
The result then follows from the norm continuity of (¢~ !)*.

ProposITION 3.8. Let {M; : i € #} be a family of von Neumann algebras, and let
M=Y,.,®M, Then M is strongly finite if and only if each M, is strongly finite.

Proor. Recall that M, is a set of functions on #, and that we may identify
(M), with the subset of all those functions which vanish everywhere except at
the index i. It is easy to check that if f e (M}),, then this identification makes
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the orbits of f under (M)* and under M* coincide. If now fe M «and ke £, let
fi € (M), be defined by f, =6, f. Then fis a norm limit of linear combinations
of the f,. By Lemma 3.1, M is strongly finite whenever all the M, are strongly
finite. The converse follows from Proposition 3.6.

4. Strong finiteness and type.

THEOREM 4.1. If M is a strongly finite von Neumann algebra, then M is finite
and of type L.

Proor. By [16] or [17], M is finite. Since every von Neumann algebra of
type II, contains the hyperfinite factor N, it suffices by Proposition 3.6 to show
that N is not strongly finite. Let F be the algebra of all 2 x 2 complex matrices,
and let e, be the identity of F. Let Ny =F and N, ,, =N,®F. We regard N, as
a subalgebra of N,,; and N as the weak closure of U, N,. Let p be the

matrix
10
0 0|

and let p, € N, be the projection ¢,®e,® ... ®e,®p. We claim that if g is a
o-cluster point of {p,}, then g=1%e, where e is the identity of N. Let t be the
normal tracial state of N, and let a € U | N,. For all sufficiently large k,

t(pa) = t(pt(@) = 3(a),

so that t(gqa)=4t(a), that is, t((g—1e)a)=0. By the ~-density of U, N,, this
last equality holds for any a € N. But 7 is faithful, so g —3e=0, and the claim is
proved.

For each k, choose now a unitary u, € N, such that p,=T,(p,). By
compactness, {T,,} has at least one p-cluster point, say T, in I(N). But then
T(p,) is a o-cluster point of {p,}, so T(p,)=%e. If now N were strongly finite,
then by condition (3) of Theorem 3.2, T would be a *-automorphism of N. But
this would imply that }e is a projection, which is absurd.

Let I be a discrete group. For each a € T', let A(a) be the isometry of [,(I')
defined by

[A@f1x) = fa™'x), xel.
Let VN (I') be the von Neumann algebra generated by {4(a) : a € I'}.

COROLLARY 4.2. If VN (I') is strongly finite, then the center of I' has finite
index in T.
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Proor. Let G denote the group of all inner automorphisms of VN (I')
induced by {A(a) : a € I'}, and let M=VN (I'). Since I(M) is a group of *-
automorphisms, G is also a group of *-automorphisms of M. By [5, Theorem
2.4] each conjugacy class in I’ is finite. By Theorem 4.1 and a result in [9] (see
also [15]), I contains an abelian subgroup of finite index. An application of
[11, Corollary 4.4] shows that the center of I must have finite index.

ExAMPLE 4.3. There exist finite von Neumann algebras of type I which are not
strongly finite. Let H be the semi-direct product of the integers Z by the two
element group { +1}. We write Z additively, so that the product in H is given
by

(m,a)(n,b) = (m+an,ab), mmneZ; abe{+1}.

It is easy to check that the infinite set {(2k, —1) € H : k € Z} is a conjugacy
class in H, so by Corollary 4.2, VN (H) cannot be strongly finite. However, by
[9] or [15], VN (H) is of type I, and since H is discrete, VN (H) is also finite.

5. The main result.

By Theorem 4.1, the problem of finding all strongly finite von Neumann
algebras is reduced to the corresponding problem for algebras of the form
Z®M,, where Z is abelian and M, is the algebra of all n x n complex matrices.
Let u, be normalized Haar measure on the circle group T.

LemMMA 5.1. The algebra L™ (T, ug) ® M, is not strongly finite.

Proor. Consider the algebra VN (H), where H is the group discussed in
Example 4.3. As in [2, Chapitre 3, § 7, no 6], we identify VN (H) with an
algebra (under convolution) of square-summable functions on H, and we may
further identify VN (Z) with the subalgebra of all functions in VN (H) which

vanish off Z. Let & be the characteristic function of the singleton containing
(0, —1). Each function fin VN (H) may be written uniquely in the form f=
J1+0+f;, where f, and f, are in VN (Z). To each such f, we associate the
2 x 2 matrix L(f), where

Ji Oxfy%d
fr Oxf 1*5] .

(This matrix arises naturally from the left multiplication of f on VN (H).) It is
easy to check that the map f— L(f) is a normal *-isomorphism of VN (H)
into the von Neumann algebra VN (Z)@ M,. Since VN (Z)= L*(T, u,), there
exists a normal *-isomorphism of VN (H) into L™(T, u,))® M,. As VN (H) is
not strongly finite, the lemma follows from Propositions 3.6 and 3.7.

L(f) =[
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Lemma 5.2..Let (X, p) be a probability space with no atoms. Then there exists
a von Neumann subalgebra of L*(X, p) which is *-isomorphic to L™ (T, p,).

Proor. Let n be a non-negative integer. By [3, Lemma 2.3, p. 57], there exists
a partition {S?:i=1,2,...,n} of X into pairwise disjoint measurable subsets
such that each S? has measure 1/n. Let x} be the characteristic function of S?,
and let A be the C*-algebra generated by

{at : i=1,..,n; n=1,2,...}.

We may assume that L* (X, u) is operating by multiplication on L?>(X, u). Let Y
be the spectrum of 4, and let v be the spectral measure on Y determined by the
constant function 1. Then v(x})=u(S})=1/n, and it follows easily that v has no
atoms. By [2, Proposition 1, p. 114], the weak closure of A4 is isomorphic to
L*(Y,v). As Y is compact and metrizable, the result now follows from [13,
Theorem 9, p. 327].

ProrosiTiON 5.3. Let Z>~L*(X, n) be an abelian von Neumann algebra, and
let n>1 be an integer. Then Z@M, is strongly finite if and only if (X, p) is
purely atomic.

Proor. If (X, ) is purely atomic, then Z® M,, is a direct sum of copies of M,
Suppose then that (X,p) has a non-trivial non-atomic part. By Lemma 5.2,
some countably decomposable direct summand of Z contains a copy of
L>(T, yo). It follows that Z@M, contains a copy of L*(T,u,)®M,, so by
Lemma 5.1, Z®M,, is not strongly finite.

THEOREM 5.4. A von Neumann algebra M is strongly finite if and only if M is a

direct sum of von Neumann algebras each of which is either abelian or finite
dimensional.

Proor. Combine Proposition 3.8, Theorem 4.1, and Proposition 5.3.

ReMARK. Let Z=~L*(X,p), and let 4 be the spectrum of Z. Then (X, ) is
purely atomic if and only if Z, N4 separates the points of Z. For suppose
(X, p) has a non-atomic part, and let Z, be a von Neumann subalgebra of Z
which is *-isomorphic to L*(T, u,). Since zero is the only linear functional on
L*(T, uo) which is both normal and multiplicative, each element of Z,N A4
must annihilate Z,.
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