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SOME CONTINUITY
AND MEASURABILITY RESULTS ON
SPACES OF MEASURES

PAUL RESSEL

0. Introduction.

Consider the following problem: Let X, Y, Z be three analytic spaces and let
f: XxY— Z be a universally measurable mapping. Associate with f the
mapping

F-M, (X)xY—> M_(Z2)

(M, (X) denoting all non-negative finite Borel measures on X) which maps
(4,y) € M (X) x Y to the image measure of u under f,, where f,(x):= f(x, y).
Can we claim that F again is universally measurable, and do stronger
regularity properties of f such as Borel measurability, a-measurability or
continuity also extend to F? Questions of this kind arise naturally in
connection with stochastic sequential machines, and it is the purpose of this
paper to give positive answers to them.

It turns out that the main problem indeed is the following: is the canonical
map M (X)xM_,(Y) > M_ (X xY), sending (y4,v) to its product measure
u®v, a continuous mapping? This is known to be true if X and Y are separable
metric spaces (cf. [3, III. Lemma 1.1]) and also for regular t-smooth measures
on completely regular spaces (Ditlev Monrad, unpublished), but both these
results do not answer the question for all analytic spaces.

Our main result (Theorem 1 below) shows that this map is well-defined (in a
canonical way) and continuous in a very general situation, namely for t-
smooth me‘%’:res on arbitrary (not necessarily Hausdorff) topological spaces.
A similar result is true for denumerable products of probability measures, see
Theorem 2. In the second part we prove a result which might be of some
independent interest: for any measurable space (X,%) and a universally
measurable subset 4 < X the mapping u — u(A) is universally measurable on
the space of finite non-negative measures on 4, see Theorem 4 below.

Received May 28, 1976.



70 PAUL RESSEL

1. The main result.

Let X be a topological space, not necessarily Hausdorff. #(X) denotes the
Borel o-field of X, i.e. the o-field generated by the topology. We denote by
M . (X) the convex cone of all totally finite Borel measures on X, that is the set
of all g-additive functions p: #(X) — [0,00[. A measure u € M, (X) is called
t-smooth iff u(G)=sup, u(G,) for every net of open subsets {G,} filtering up to
G. Let M, (X, 1) be the subset of all t-smooth measures of M, (X). We call a
measure y € M, (X) regular iff

u(B) = sup{u(F) : FEB, F closed}
holds for all B € #(X), and if X is a Hausdorff space, then u is called tight iff
u(B) = sup {u(K) : K< B, K compact}

is true for all B € #(X). M . (X, r,7) denotes all regular t-smooth measures and
M, (X,t) all tight measures on X. The relation M, (X,t)c M ,(X,r,1) holds
for any Hausdorff space (cf. P 15 in [5]).

The weak topology on M (X,7) is the weakest topology such that the
function p > [ fdu is lower semi-continuous (Ls.c.) for every bounded ls.c.
function f: X — R. If X is Hausdorff then M, (X,t) is again Hausdorff, see
Theorem 11.2 in [5].

Let now two topological spaces X and Y be given. On the product space
X x Y we have two o-fields, Z(X)®#(Y) and #(X x Y). It is easy to see
that always Z(X)®@%2(Y)=%#(X x Y) but in general equality does not hold.

THEOREM 1. Let X and Y be two (not necessarily Hausdorff) topological
spaces. For every pue M, (X,t) and ve M (Y,7) there exists a uniquely
determined measure p&®v € M, (X x Y,1) which extends the product measure
u®v on B(X)Q#(Y). The mapping

T: M, (X,)xM,(Y,7) > M, (X xY7)
defined by T(u,v):=u®v has the following properties:

(i) T is continuous
i) TIM,(X,r,)xM_ (Y,r,0)eM, (X xY,r1)
(i) TIM (X, ) x M, (Y,t))s M, (X x Y,t) if X and Y are Hausdorff spaces.

Proor. Every finite positive measure on #(X)®4%(Y) has at most one
extension to a t-smooth measure on X x Y, therefore we only have to show the
existence of this extension.

Fix any point x € X and v € M, (Y,7). The image measure ¢ of v under the
continuous mapping
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Y > XxY

y= (%)

is T-smooth and clearly ¢(A4 x B)=¢,(A)v(B) for all A € Q(X) and B € 4(Y)
[, denoting the one-point measure in x], hence o=¢,®v. In a first step we
show that the mapping

XxM,(%1) > M, (X x Y1)
(x,v)r—»sx@)v

is continuous.
Assume that x, - x and v, > v. Let G,,...,G,£ X and H,,...,H,S Y be
open and put U:=U"_, (G;x H)). We shall.show

liminfe, ®v,(U) 2 &,®v(U) .

This holds trivially if x ¢ U_, G,. Suppose now that
={isn: xeG} + .
Then there exists a, such that x, € M;; G, for all a=a, and for those « we get

£, @v,(U) = &, ®v, <U (G;x H) ) <U H)

iel iel

hence

hmmfs ®v,(U) 2 hmmfv (U Hi>

iel
2 v(U H;) = e®v(U).
iel
Every open set U< X x Y has the form U=U,_, (G, x H,) for suitable open

sets G, <X and H, < Y. The measure ¢ _®v being t-smooth, we can find, given
£>0, finitely many 4,,...,4, € 4 such that

a,®v(0 (G, xH,h)) > e, ®v(U)—¢.

i=1

From this we get

liminfe, ®v,(U) = liminfexd@)va(u (GlixH‘i)>
a a i=1

2 sx®v(0 (Gl‘xHM)> > &, ®@v(U)—¢.
=1
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By the Portmanteau theorem (cf. [5, Theorem 8.1]) we can conclude that
£, OV, > &, ®v.
The continuity of Y— X x Y, y — (x,y) shows that the section

A, ={yeY: (x,y) € A}

belongs to #(Y) if A e Z#(XxY). If UcX xY is open then (x,v) — v(U,)
=¢ ®v(U)is Ls.c. on X x M, (¥, 7); therefore x — v(A,) is Borel on X for any
ve M, (Y1) and A € #(X x Y), it is furthermore Ls.c. if 4 is open.

Now we define u®v for y € M, (X,7) and v € M, (Y,17) by

u®wm:=f v(A)du(x), AeB(XxY).
X

To show that u®v is t-smooth let U, be open sets in X x Y filtering up to U.
For any x € X then the open sections (U,), filter up to U, implying

v(U, = supv((U,), forall xeX.

But as stated above the functions x — v((U,),) are ls.c.; therefore we may
apply P 15 of [5] to get

p®v(U) = supu®v(U,) .

The unicity of a t-smooth extension of u®v gives us

p®V(4) = L v(4,)du(x) = L u(A%)dv(y)

for any A € (X xY), where A’={x e X : (x,y) € A}. From this it is seen
immediately that for any bounded or non-negative Borel function fon X x Y
we have

fdu®v) =J f S (x, y)du(x)dv(y) =J~ If(x,Y)dV(Y)du(XL
YJX X JY

XxY

Now let f be a non-negative Ls.c. function on X x Y. From the continuity of
(x,v) — &, ®v we get that

XxM,(Y7)— R,

(x,v) Lf (x, y)av(y)

is also ls.c., and applying this result a second time

M, (X,))x M, (Y1) > R,
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(u,v) "*J‘ J S, p)dv(y)dulx) = J fdu&v)
xJy XxY

is ls.c., too.
Let us assume p, » p and v, — v and let U X x Y be open. Then

liminf u, ®v,(U) = liminfjlud(ya®va)

2 jlud(u@@v) = u®vU),

therefore p,®v, » p®v by the Portmanteau theorem. We have proved (i).
If u and v are regular (tight) then

M= {AecBXxY): u®v(A)
= sup {u®v(F) : FS A closed (compact)}}

is a monotone class containing {Bx C : B € #(X), C € #(Y)} and also finite
disjoint unions of this family. Hence by the theorem about monotone classes
BX)RB(Y)=MH. Let USX xY be open and W X x Y be closed. Then
using 7-smoothness of u&®v we get UN W e .4 and the same for finite disjoint
unions of sets of this form. Hence indeed .# =% (X x Y) and this finishes the
proof.

Theorem 1 extends by induction to the product of finitely many topological
spaces. That it also extends to denumerable products, is shown in the next
theorem.

THEOREM 2. Let X,,X,,... be a sequence of (not necessarily Hausdorff)
topological spaces, and let u; € M (X,,t) be probability measures on X;, i=
1,2,.... Then there exists a uniquely determined t-smooth measure ®;.y p; on
X:=TIX, X, extending the product measure ®;.ql; On ®;.NB(X,). The
mapping T: T2, MY (X, 1) » M (X,1) defined by T((4;)):=®;cn H; has the
Jollowing properties:

(1) T is continuous
(i) T(IT2 My (X, r,0))sML(X,r,1)
(i) T(IT2, ML (X, )= ML (X,?) if all the X;'s are Hausdorff spaces.

Proor. Let =,: X — [1?-, X; be the natural projection. Every open set
U< X has the form U=UX, n, *(G,) where G,=TT}-, X, is open for all n and
where n; !(G,) increases. Therefore, denoting

e
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of :=UZ o, is an algebra generating #(X). From Theorem 1 we get in the
usual way a finitely additive set function u: &/, — [0, 1] which is s-additive
on each &/, namely

o E) = @uia. Bea(

iZn

n@.
i=1
To show that u has a c-additive extension to #(X), it has to be proved that
{4} s, Ajl I implies u(4;) — 0 and this in fact can be seen by an easy
adaptation of the proof of the product-measure-theorem, see for ex. [1, p.
139/140]. The unique o-additive extension to %#(X) we denote also by u.
Now we have to show that p is t-smooth. For that reason let the net U; of
open subsets in X filter up to U. As already remarked there exist open sets
Gi<TTi-, X, such that U,=U% n; ! (G2). Put

i=1

H; := U{Wg]—[ X, : W open and n,,"(W)gUA},

then GX< H}, H: is open, U,=U, n,*(H}) and furthermore {H2}, filters up
to his union for every n € N. From

U=y, - f;, n;l@ Hﬁ)

we get u(U)=sup, u(U,), using first the g-additivity of p and then the t-
smoothness of the finite products pu,® - - ®u, Hence p is the uniquely
determined t-smooth extension of ®; .\ u; to #(X).

The continuity of T will follow if we can show that for every open set Uc X
the mapping

—e

ML (X,1)—> R

i=1

)~ ® w(U)
ieN

is Ls.c. Writing U=UZ, n,*(G,), G,<IT/-, X; open, and with increasing
n, 1(G,), we get this from Theorem 1.

If all the p,’s are regular, then u= ®;.\ 4; is regular on &/, hence on #(X).
If all the u,’s are tight measures on Hausdorff spaces X, then u is regular on
o, and

u(X) = sup{u(K) : KX compact} .
This implies that u is tight on & and therefore u € M, (X,1).
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2. Measurability for measures on analytic spaces.

Let X be a topological space and define ¢g: M, (X) — R by @g(u):=pu(B),
where B is a Borel set in X. These functions can hardly be expected to be
continuous, but they are l.s.c. if B is open, and then a standard argument shows
that they are always Borel. We assume now that X is an analytic space, ie. a
Hausdorff space which is the continuous image of some polish space. Then if 4
is an analytic subset of X or if 4 is a-measurable (i.e. belongs to the o-field
spanned by the analytic subsets of X) the function ¢4 is well defined, and we
want to show that it still has some measurability property.

First we must prove two lemmas. Let Y be a Hausdorff space and consider
on

A (Y) := {K<Y: K is compact}
the topology generated by
{{Ke X (Y): KcG}: GSYopen} and
{{KeA(Y): KNG+J} : GSY open} .

It is easy to see that this topology is again Hausdorff. We are going to use the
very important fact that %" (Y) is a polish space in this topology, if Y is polish
(cf. [2, Chapter 3]).

LEMMA 1. Let f: Y — X be a continuous mapping between two Hausdorff
spaces. Then

XxA(Y)— R
(x,K) = 1 5k)(x)

is upper semi-continuous (u.s.c.).

Proor. Let x, — x, and K, — K,. We want to show that

limsup 1;k,(xz) = 17k, (Xo) -
This is trivially true if x, € f(K,). Assume x, ¢ f(K,), then there exist open
disjoint set G,H= X such that x,€ G and f(K,)<H. The open set
{K e ¥ (Y): Kcf '(H)} contains Ko, hence K, f '(H) for all aza;,a,
suitably chosen; furthermore x, € G for all a=a,,a, suitable. Choose a3 2a;,
ay=a,. For all a=>a, we have x, ¢ f(K,) and therefore

limsup 1,k )(x,) = 0.

LEMMA 2. Let X be an analytic space, Y a polish space and f: Y — X a
continuous mapping. Then
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M, (X)xA(Y)—> R
(1, K) - u(f(K))

is a u.s.c.-function.

Proor. By Lemma 1 the function ¢ — fl ry(x)de(x, L) is usc. on M, (X
x H(Y)). On the other hand the canonical map M, (X)x M, (A (Y))
— M, (X x X" (Y)) is continuous by Theorem 1. This implies that

. K) — j Ly (x)d(u®ek)(x, L)

= flf(x)(X)du(X) = u(f(K)
is us.c. on M (X)x A (Y).

We recall that a real valued function f defined on an analytic space X is by
definition an S-function iff {f>t} is analytic for all ¢ € R.

THEOREM 3. Let X be an analytic space and suppose that A is an analytic
subset of X (respectively that A is a-measurable). Then @4 is an S-function
(respectively an a-measurable function) on M , (X).

Proor. M, (X) is again an analytic space, cf. [4, Appendix, Theorem 7].
Suppose A € X is analytic, then there exists a polish space P and a continuous
surjection f: P — A. One easily can see that

u(4) = sup{u(f(K)): Kex'(P)} forall peM,(X).
Hence, if ¢t € R,
{peM (X): pA)>t} = proj{(n,K) e M (X)x A (P) : p(f(K))>t}

is an analytic subset of M, (X), being the projection of a Borel set in the
analytic space M, (X) x X (P). Therefore ¢4 is an S-function on M, (X). The
second statement follows immediately.

RemaRk. For a polish space X the above result has been proved by M. Traki,
see [6]. H. Wiltmann has generalized Traki’s method and gave independently
another proof of Theorem 3.

The next result we want to show, namely that ¢4 is universally measurable
on M _(X)if A is a universally measurable subset of X, is not a topological
statement. We only assume (X, %) to be an abstract measurable space and
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denote by 4, the o-field of universally measurable subsets of X with respect to
4, i.e. the intersection of all completions &, where u € M, (X, #), the set of all
probability measures on (X,%). The space M, (X,%) of all totally finite
measures on (X, %) is equipped with the o-field .# generated by the functions
¢p, Be %.

THEOREM 4. Let (X, %) be a measurable space and suppose that AS X is
universally measurable. Then ¢ 4 is universally measurable on (M (X, %), #).

Proor. Let t € R and ¢ € M, (M, (X), #). Without any restriction we may
assume ¢ to be concentrated on

M* = {ueM,(X,8): uX)=1}.
We define a measure y, on (X, %) by

Ho(B) := JM' u(B)de(p) = dee, Be#

and use the assumption on A4 to the effect that there exist B,, B, € £ such that
B, AS B, and pu,(B,\B;)=0. We have

{n:uB)>t}  {p:pA)>t} € {p:puBy)>t}
and {y: u(B)>t} € A, i=1,2. Furthermore
{p: u(B)>t, u(BY=t} < {u: u(B,\By)>0}

and o({u : u(B,\B,;)>0})=0. We conclude that {u : u(A4)>t} belongs to the g-
completion of .#, and therefore, ¢ being arbitrary, is universally measurable.

Now we are able to give a satisfactory answer to the problem mentioned in
the introduction.

THEOREM 5. (i) Let X, Y, Z be three analytic spaces and let f: X x Y — Z be
universally measurable. Consider the induced mapping
F-M, (X)xY—> M,(2)
(1) > !>

where f,(x):=f(x,y) and p'> is the image measure of p under f,. The following
holds:

(1) F is universally measurable.
(2) If f is a-measurable, Borel measurable or continuous, then F has the
corresponding property.

(i) Suppose that in (i) Z=R and that f is bounded.
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Consider the function
F:M,(X)xY—> R

(. y) — L S(x,y)dpu(x) .
The following holds:

(1) F is universally measurable.
(2") If fis a-measurable, an S-function, Borel measurable, u.s.c. or éontinuous,
then F has the corresponding property.

ProOF. (i) An easy direct argument shows that f, is universally measurable
for all y € Y, hence F is well defined. Let y: M (X x Y) - M, (Z) be the map
which sends g e M, (X xY) to its image measure under f. The fact that
#(M ,(2)) is generated by the maps pu — u(C), C € #(Z) (cf. [4, Appendix,
Theorem 8]) together with Theorem 4 shows that y is universally measurable.
Furthermore p is a-measurable, Borel or continuous if f has the resp. property.
Observing that F is the composition of § with the canonical map M (X)X Y
— M (X x Y) which is continuous by Theorem 1, part (i) is proved.

(ii) Choose a,b € R such that f(X x Y)<[a,b]. The function M, ([a,b])
- R,v [, p t dv(t) is continuous, hence (1') and most of (2') follows from (i).
The only point remaining to be proved is that F is an S-function if fis. From
Theorem 3 we get this if f is the indicator of an analytic subset of X x Y, and
this extends to general S-functions by standard arguments.
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