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SIDON SETS AND
FOURIER-STIELTJES TRANSFORMS OF
SOME PRIME L-IDEALS

KEUI IZUCHI

Let G be an infinite compact abelian group and G be its dual group. M(G)
denotes the measure algebra on G. By Taylor [11], there is a compact
topological semigroup S, and we can consider that M(G)= M (S) and S, the set
of all continuous semicharacters on S, is identified with the maximal ideal
space of M (G). The reader is assumed to be familiar with the Taylor’s structure
semigroup. The Gelfand transform i of u € M(G) is given by ji(f)=[ fdu
(f € §). We can consider G<S$ and ji|g is the Fourier-Stieltjes transform of
i € M(G). The closure of G in § is denoted by G. Brown [1] shows that there
are many idempotents in G\G, where f € § is called an idempotent if f2=f.
For u € M(G), we put

L'(w) = {4 € M(G); A is absolutely continuous with respect to u} .
For an idempotent f € S, we put
J(f) = {xeS; f(x)=0}
and
I(f) = {g € M(G); p is concentrated on J(f)} .

Then I(f) is a prime L-ideal, where a closed ideal I of M (G) is called a prime
L-ideal if L'(})<I for 4 € I and

I* = {ue M(G); u is singular with I}

is a subalgebra. E <G is called a Sidon set if M (G) |g =I*(E), where [*(E) is the
set of all bounded functions on E. Let

M (G) = {ue M(G); p is continuous} .

Hartman [8] and Wells [12] show that M, (G) |g=1(E) for every Sidon set E.
And Brown [2] shows that Riesz products, using lacunary sequences, show
that if E is an infinite subset of G then E\G contains f such that |f|*&|f]. In
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this paper, we give a generalization of Hartman-Wells’ theorem that I(y) |g
=1°(E) for every Sidon set Ec G and for every idempotent y € G\G. As a
corollary, we show that if E is an infinite Sidon set and f € E\G, then |f|>%|f].

1.
For a finite subsets 4, B of G, we put

AB = {xy; x€ A, ye B}
and |A| denotes the cardinal number of A. Throughout the rest of this paper, let
x € G\G and y*=y. For u € M(G), we write p=p, + y,, where y, € I(y) and
o LI ().
THEOREM 1 (cf. [9, pp 48-50]). Let E be a subset of G such that
sup {min (|4],|B|); AB<E} < 0o .

For u € M(G), we have fi,(G)c i(G\E) ", where i(G\E)™ is the closure of i(G\E)
in the complex number plane.

ProoF. Since y € G\G, there is a net {y,},.4<G such that y, — y in S. Since
x=1 a.e. u,, we have

1) J'?a_1|d|l‘2| -0

by Taylor ([11, 5.1.5a]). Let y, € G and £>0. We first show that, using
Graham’s method in [6], there is a subsequence of distinct elements
{Vaps Pags+ - -} IN {Va}aeq such that:

@ iy Goyaya)l < & for n>m;
1

(3) IIYan"IIdlﬂzl <

) U <0y < ... <0y < ...

By (1), there is o, € A such that [y, —1]dlu,| <.
Suppose that there exists an n-distinct subset {y,,,. . ., 74} ©{Ya}aec4 Such that

Iy (YoVaym N < & for i<jsn, .

1
flv,,—lldluzl < 7 Gsn
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and al <d2< e <an’ Since )’(; I‘Va.'#l € I(X) and |()’617a.~1‘1)'A()’a)|—+ 0 (a - OO)
(i=1,2,...,n), there is a,,; € A such that a,<a,,,

J Vaner — 1 dlpa| < ;;% and i; 81 (PoYenes¥e N < &
This completes the inductive step and establishes (2), (3) and (4). By (3), there is
a subsequence {a,,}¢%; < {a,}s2, such that y, — 1 (k — 00) a.e. |u,|. We may
assume that y,, — 1 (n — 00) a.e. |u,|. By Egorov’s theorem [7, p. 88], there is
a Borel subset F such that |u,|(F)<e and y,, — 1 (n — 00) uniformly on F.
Then there is N >0 such that |y, —1|<¢ on F for every n> N. Then for n>k
>N, we have |y, 75" —1|<2¢ on F and

2 (v0)— ﬁ()’o)’a..)’; = 22 (vo) — i1, (VoYanYar )l
+1i1 (VoVaya )l

IA

[(2l) (7o) — (Walp) (oYaYa)l
+1(2lr) o) — (2 lF) GoVuyal+e  (by (2)

< Uvo(l—va,v;‘)duzlp +2e+e

IA

J|1“V%V;lldlﬂzllF+33

IIA

2e||lu, |l + 3¢,
where u,|r means the restriction measure of u, to F. Here suppose that
YoYaYm ' € E for every n>k>N. For m> N, we put
A = {Varw Vazms 1>+ - > Vasm-1}70
and
B = {Va Vamsrr- - -2 Vaamos} -

Then we have |4,,|=|B,|=m and A4,,B,, < E. This contradicts the assumption of
E. So that there is n>k>N such that yo,75" € G\E. This completes the
proof.

It is well known that if EcG is a Sidon set then

sup {min (|4},|B|); ABcE} < oo
(9, p. 8.
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CoroLLARY 2 (cf. [4] and [5]). Let EcG be a Sidon set, then
8210 < sup{la®)l; ye G\E},
where ||fi;]| ., =sup {|i,(7)| ; y € G}.

COROLLARY 3. Let Ec G be a Sidon set, then 1(x) |g=1°(E).

Proor. By Drury’s theorem [3], there is u € M(G) such that fi=1 on E and
|i| <% on G\E. By Corollary 2, i, ||, < and || 2 on E. Then (i, *M (G)) |g
=, M(G) |g=I®(E). Since u, € I(y) and I(y) is a closed ideal, we have
M (G) <1 (y).

COROLLARY 4. Let 1y, %2 - > X € G\G and 33 =1, X2 =X2s- . -, X2 = 1n- We put
I=I(x,)N ... NI(x,), then I|g=I®(E) for every Sidon set E.

Proor. By Corollary 3, there are p, € I(x,), u, € I{x3),- - -5 i, € 1(3,) such
that i, =f,=...=[4,=1on E. Then u=p,*u,*...*u, €l and fi=1 on E.
Since I is a closed ideal, we have I|z=I*(E).

CoroLLARY 5. If E is an infinite Sidon set and fe E\G, then there are no
idempotents m € G\G such that n(x)=|f(x)| for every x € S.

Proor. Let f € E\G. Suppose that there is an idempotent 7 € G\G such that
n(x)2|f (x)| for every x € S. By Corollary 3, there is u € I(n) such that i=1 on
E. Since ji(m)=/i(f)=0, we have f ¢ E. This is a contradiction.

COROLLARY 6. Let EcG be an infinite Sidon set. Then |f|*#|f| for every
f e E\G.

Proor. If fe 5\@ and |f|2=|f], then |f]| € G. By Corollary S, the result
follows.
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